-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconfig.yaml
60 lines (52 loc) · 2.71 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
debug: True
preprocess:
root_path: '/ssd/ssd0/data/'
idx_path: 'index/'
waveform_path: 'waveform/'
save_path: 'preprocessed/' # Path for saving preprocessed data
mimic:
clinical_path: 'MIMIC/Clinical/mimic-iv-2.2/'
ecg_path: 'MIMIC/ECG/mimic-iv-ecg-diagnostic-electrocardiogram-matched-subset-1.0/'
flag: False # If True, preprocess will be executed before training
all: True # If True, all data will be preprocessed
multi: False # If debugging with Pycharm,
# goto "Settings"->"Debugger"->"Python Debugger"->Set Gevent Compatible True
data: # configs for splitting data for preprocessing
internal: False # If True, internal data will be preprocessed
train: False # If True, train data will be preprocessed (only for internal data)
af: True # If True, AFIB_OR_AFL data will be selected
time: 10 # Length of time for each data, used for checking preprocessed data length
option:
augment: True # If True, data augmentation will be executed
# (only for AFIB_OR_AFL data, by four times using different preprocessing steps)
target_fs: 125 # Target sampling rate for resampling
detrend: baseline # baseline for ECG, total for PPG and ABP
denoise: soft # soft, hard
normalize: minmax # minmax, zscore
train:
model_save_path: 'models/' # Path for saving model
general:
load_augmented: True # If True, augmented data will be loaded for training sequence
split_ratio: 0.8 # Ratio for train and validation split
number_of_classes: 2 # Number of classes for classification
epochs: 200
early_stop_n: 10 # Number of epochs for early stopping
loss_fn: BCEWithLogitsLoss # BCEWithLogitsLoss
batch_size: 512
hyperparameter:
in_channels: 1 # Number of channels for input data
out_channels: 32 # Number of channels for first convolution layer
dropout: 0.25
lr: 0.001
weight_decay: 0.1
gamma: 0.99
test:
batch_size: 512
metrics: ['AUROC', 'Sensitivity', 'Specificity', 'Accuracy', 'Precision', 'Recall', 'F1-score']
threshold: 0.5 # Threshold for binary classification
save_path: 'results/'
wandb:
flag: False # If True, log will be sent to wandb
project: ECG
entity: paperchae