-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patharchface.py
759 lines (729 loc) · 54 KB
/
archface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
import pickle
import numpy as np
class LResNet100(nn.Module):
def __init__(self):
super(LResNet100, self).__init__()
self.conv0 = nn.Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.bn0 = nn.BatchNorm2d(64, momentum=0.9, eps=2e-05)
self.relu0 = nn.PReLU(num_parameters=64)
self.stage1_unit1_bn1 = nn.BatchNorm2d(64, momentum=0.9, eps=2e-05)
self.stage1_unit1_conv1 = nn.Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage1_unit1_bn2 = nn.BatchNorm2d(64, momentum=0.9, eps=2e-05)
self.stage1_unit1_relu1 = nn.PReLU(num_parameters=64)
self.stage1_unit1_conv2 = nn.Conv2d(64, 64, kernel_size=(3, 3), stride=(2, 2), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage1_unit1_bn3 = nn.BatchNorm2d(64, momentum=0.9, eps=2e-05)
self.stage1_unit1_conv1sc = nn.Conv2d(64, 64, kernel_size=(1, 1), stride=(2, 2), dilation=1, bias=False, groups=1, padding=0)
self.stage1_unit1_sc = nn.BatchNorm2d(64, momentum=0.9, eps=2e-05)
self.stage1_unit2_bn1 = nn.BatchNorm2d(64, momentum=0.9, eps=2e-05)
self.stage1_unit2_conv1 = nn.Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage1_unit2_bn2 = nn.BatchNorm2d(64, momentum=0.9, eps=2e-05)
self.stage1_unit2_relu1 = nn.PReLU(num_parameters=64)
self.stage1_unit2_conv2 = nn.Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage1_unit2_bn3 = nn.BatchNorm2d(64, momentum=0.9, eps=2e-05)
self.stage1_unit3_bn1 = nn.BatchNorm2d(64, momentum=0.9, eps=2e-05)
self.stage1_unit3_conv1 = nn.Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage1_unit3_bn2 = nn.BatchNorm2d(64, momentum=0.9, eps=2e-05)
self.stage1_unit3_relu1 = nn.PReLU(num_parameters=64)
self.stage1_unit3_conv2 = nn.Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage1_unit3_bn3 = nn.BatchNorm2d(64, momentum=0.9, eps=2e-05)
self.stage2_unit1_bn1 = nn.BatchNorm2d(64, momentum=0.9, eps=2e-05)
self.stage2_unit1_conv1 = nn.Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage2_unit1_bn2 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit1_relu1 = nn.PReLU(num_parameters=128)
self.stage2_unit1_conv2 = nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage2_unit1_bn3 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit1_conv1sc = nn.Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), dilation=1, bias=False, groups=1, padding=0)
self.stage2_unit1_sc = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit2_bn1 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit2_conv1 = nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage2_unit2_bn2 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit2_relu1 = nn.PReLU(num_parameters=128)
self.stage2_unit2_conv2 = nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage2_unit2_bn3 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit3_bn1 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit3_conv1 = nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage2_unit3_bn2 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit3_relu1 = nn.PReLU(num_parameters=128)
self.stage2_unit3_conv2 = nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage2_unit3_bn3 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit4_bn1 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit4_conv1 = nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage2_unit4_bn2 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit4_relu1 = nn.PReLU(num_parameters=128)
self.stage2_unit4_conv2 = nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage2_unit4_bn3 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit5_bn1 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit5_conv1 = nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage2_unit5_bn2 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit5_relu1 = nn.PReLU(num_parameters=128)
self.stage2_unit5_conv2 = nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage2_unit5_bn3 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit6_bn1 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit6_conv1 = nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage2_unit6_bn2 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit6_relu1 = nn.PReLU(num_parameters=128)
self.stage2_unit6_conv2 = nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage2_unit6_bn3 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit7_bn1 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit7_conv1 = nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage2_unit7_bn2 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit7_relu1 = nn.PReLU(num_parameters=128)
self.stage2_unit7_conv2 = nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage2_unit7_bn3 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit8_bn1 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit8_conv1 = nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage2_unit8_bn2 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit8_relu1 = nn.PReLU(num_parameters=128)
self.stage2_unit8_conv2 = nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage2_unit8_bn3 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit9_bn1 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit9_conv1 = nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage2_unit9_bn2 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit9_relu1 = nn.PReLU(num_parameters=128)
self.stage2_unit9_conv2 = nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage2_unit9_bn3 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit10_bn1 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit10_conv1 = nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage2_unit10_bn2 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit10_relu1 = nn.PReLU(num_parameters=128)
self.stage2_unit10_conv2 = nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage2_unit10_bn3 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit11_bn1 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit11_conv1 = nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage2_unit11_bn2 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit11_relu1 = nn.PReLU(num_parameters=128)
self.stage2_unit11_conv2 = nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage2_unit11_bn3 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit12_bn1 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit12_conv1 = nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage2_unit12_bn2 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit12_relu1 = nn.PReLU(num_parameters=128)
self.stage2_unit12_conv2 = nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage2_unit12_bn3 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit13_bn1 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit13_conv1 = nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage2_unit13_bn2 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage2_unit13_relu1 = nn.PReLU(num_parameters=128)
self.stage2_unit13_conv2 = nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage2_unit13_bn3 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage3_unit1_bn1 = nn.BatchNorm2d(128, momentum=0.9, eps=2e-05)
self.stage3_unit1_conv1 = nn.Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit1_bn2 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit1_relu1 = nn.PReLU(num_parameters=256)
self.stage3_unit1_conv2 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit1_bn3 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit1_conv1sc = nn.Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), dilation=1, bias=False, groups=1, padding=0)
self.stage3_unit1_sc = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit2_bn1 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit2_conv1 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit2_bn2 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit2_relu1 = nn.PReLU(num_parameters=256)
self.stage3_unit2_conv2 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit2_bn3 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit3_bn1 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit3_conv1 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit3_bn2 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit3_relu1 = nn.PReLU(num_parameters=256)
self.stage3_unit3_conv2 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit3_bn3 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit4_bn1 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit4_conv1 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit4_bn2 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit4_relu1 = nn.PReLU(num_parameters=256)
self.stage3_unit4_conv2 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit4_bn3 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit5_bn1 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit5_conv1 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit5_bn2 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit5_relu1 = nn.PReLU(num_parameters=256)
self.stage3_unit5_conv2 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit5_bn3 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit6_bn1 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit6_conv1 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit6_bn2 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit6_relu1 = nn.PReLU(num_parameters=256)
self.stage3_unit6_conv2 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit6_bn3 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit7_bn1 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit7_conv1 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit7_bn2 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit7_relu1 = nn.PReLU(num_parameters=256)
self.stage3_unit7_conv2 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit7_bn3 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit8_bn1 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit8_conv1 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit8_bn2 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit8_relu1 = nn.PReLU(num_parameters=256)
self.stage3_unit8_conv2 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit8_bn3 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit9_bn1 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit9_conv1 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit9_bn2 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit9_relu1 = nn.PReLU(num_parameters=256)
self.stage3_unit9_conv2 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit9_bn3 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit10_bn1 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit10_conv1 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit10_bn2 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit10_relu1 = nn.PReLU(num_parameters=256)
self.stage3_unit10_conv2 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit10_bn3 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit11_bn1 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit11_conv1 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit11_bn2 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit11_relu1 = nn.PReLU(num_parameters=256)
self.stage3_unit11_conv2 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit11_bn3 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit12_bn1 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit12_conv1 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit12_bn2 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit12_relu1 = nn.PReLU(num_parameters=256)
self.stage3_unit12_conv2 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit12_bn3 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit13_bn1 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit13_conv1 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit13_bn2 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit13_relu1 = nn.PReLU(num_parameters=256)
self.stage3_unit13_conv2 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit13_bn3 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit14_bn1 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit14_conv1 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit14_bn2 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit14_relu1 = nn.PReLU(num_parameters=256)
self.stage3_unit14_conv2 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit14_bn3 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit15_bn1 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit15_conv1 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit15_bn2 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit15_relu1 = nn.PReLU(num_parameters=256)
self.stage3_unit15_conv2 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit15_bn3 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit16_bn1 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit16_conv1 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit16_bn2 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit16_relu1 = nn.PReLU(num_parameters=256)
self.stage3_unit16_conv2 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit16_bn3 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit17_bn1 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit17_conv1 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit17_bn2 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit17_relu1 = nn.PReLU(num_parameters=256)
self.stage3_unit17_conv2 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit17_bn3 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit18_bn1 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit18_conv1 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit18_bn2 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit18_relu1 = nn.PReLU(num_parameters=256)
self.stage3_unit18_conv2 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit18_bn3 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit19_bn1 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit19_conv1 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit19_bn2 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit19_relu1 = nn.PReLU(num_parameters=256)
self.stage3_unit19_conv2 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit19_bn3 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit20_bn1 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit20_conv1 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit20_bn2 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit20_relu1 = nn.PReLU(num_parameters=256)
self.stage3_unit20_conv2 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit20_bn3 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit21_bn1 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit21_conv1 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit21_bn2 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit21_relu1 = nn.PReLU(num_parameters=256)
self.stage3_unit21_conv2 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit21_bn3 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit22_bn1 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit22_conv1 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit22_bn2 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit22_relu1 = nn.PReLU(num_parameters=256)
self.stage3_unit22_conv2 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit22_bn3 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit23_bn1 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit23_conv1 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit23_bn2 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit23_relu1 = nn.PReLU(num_parameters=256)
self.stage3_unit23_conv2 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit23_bn3 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit24_bn1 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit24_conv1 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit24_bn2 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit24_relu1 = nn.PReLU(num_parameters=256)
self.stage3_unit24_conv2 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit24_bn3 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit25_bn1 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit25_conv1 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit25_bn2 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit25_relu1 = nn.PReLU(num_parameters=256)
self.stage3_unit25_conv2 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit25_bn3 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit26_bn1 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit26_conv1 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit26_bn2 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit26_relu1 = nn.PReLU(num_parameters=256)
self.stage3_unit26_conv2 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit26_bn3 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit27_bn1 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit27_conv1 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit27_bn2 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit27_relu1 = nn.PReLU(num_parameters=256)
self.stage3_unit27_conv2 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit27_bn3 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit28_bn1 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit28_conv1 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit28_bn2 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit28_relu1 = nn.PReLU(num_parameters=256)
self.stage3_unit28_conv2 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit28_bn3 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit29_bn1 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit29_conv1 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit29_bn2 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit29_relu1 = nn.PReLU(num_parameters=256)
self.stage3_unit29_conv2 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit29_bn3 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit30_bn1 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit30_conv1 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit30_bn2 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage3_unit30_relu1 = nn.PReLU(num_parameters=256)
self.stage3_unit30_conv2 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage3_unit30_bn3 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage4_unit1_bn1 = nn.BatchNorm2d(256, momentum=0.9, eps=2e-05)
self.stage4_unit1_conv1 = nn.Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage4_unit1_bn2 = nn.BatchNorm2d(512, momentum=0.9, eps=2e-05)
self.stage4_unit1_relu1 = nn.PReLU(num_parameters=512)
self.stage4_unit1_conv2 = nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage4_unit1_bn3 = nn.BatchNorm2d(512, momentum=0.9, eps=2e-05)
self.stage4_unit1_conv1sc = nn.Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), dilation=1, bias=False, groups=1, padding=0)
self.stage4_unit1_sc = nn.BatchNorm2d(512, momentum=0.9, eps=2e-05)
self.stage4_unit2_bn1 = nn.BatchNorm2d(512, momentum=0.9, eps=2e-05)
self.stage4_unit2_conv1 = nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage4_unit2_bn2 = nn.BatchNorm2d(512, momentum=0.9, eps=2e-05)
self.stage4_unit2_relu1 = nn.PReLU(num_parameters=512)
self.stage4_unit2_conv2 = nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage4_unit2_bn3 = nn.BatchNorm2d(512, momentum=0.9, eps=2e-05)
self.stage4_unit3_bn1 = nn.BatchNorm2d(512, momentum=0.9, eps=2e-05)
self.stage4_unit3_conv1 = nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage4_unit3_bn2 = nn.BatchNorm2d(512, momentum=0.9, eps=2e-05)
self.stage4_unit3_relu1 = nn.PReLU(num_parameters=512)
self.stage4_unit3_conv2 = nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), dilation=1, bias=False, groups=1, padding=(1, 1))
self.stage4_unit3_bn3 = nn.BatchNorm2d(512, momentum=0.9, eps=2e-05)
self.bn1 = nn.BatchNorm2d(512, momentum=0.9, eps=2e-05)
self.dropout0 = nn.Dropout(p=0.4)
self.pre_fc1 = nn.Linear(25088, 512, bias=True)
self.fc1 = nn.BatchNorm1d(512, momentum=0.9, eps=2e-05)
self.gradients = None
self.activations = None
def activations_hook(self, grad):
self.gradients = grad
def get_activations_gradient(self):
return self.gradients
def get_activations(self):
return self.activations
def forward(self, __input__0):
id = __input__0.clone()
# _minusscalar0 = -127.5 + id
# _mulscalar0 = 0.0078125 * _minusscalar0
# conv0 = self.conv0(2 * (id - 0.5))
conv0 = self.conv0(id)
bn0 = self.bn0(conv0)
relu0 = self.relu0(bn0)
stage1_unit1_bn1 = self.stage1_unit1_bn1(relu0)
stage1_unit1_conv1 = self.stage1_unit1_conv1(stage1_unit1_bn1)
stage1_unit1_bn2 = self.stage1_unit1_bn2(stage1_unit1_conv1)
stage1_unit1_relu1 = self.stage1_unit1_relu1(stage1_unit1_bn2)
stage1_unit1_conv2 = self.stage1_unit1_conv2(stage1_unit1_relu1)
stage1_unit1_bn3 = self.stage1_unit1_bn3(stage1_unit1_conv2)
stage1_unit1_conv1sc = self.stage1_unit1_conv1sc(relu0)
stage1_unit1_sc = self.stage1_unit1_sc(stage1_unit1_conv1sc)
_plus0 = stage1_unit1_bn3 + stage1_unit1_sc
stage1_unit2_bn1 = self.stage1_unit2_bn1(_plus0)
stage1_unit2_conv1 = self.stage1_unit2_conv1(stage1_unit2_bn1)
stage1_unit2_bn2 = self.stage1_unit2_bn2(stage1_unit2_conv1)
stage1_unit2_relu1 = self.stage1_unit2_relu1(stage1_unit2_bn2)
stage1_unit2_conv2 = self.stage1_unit2_conv2(stage1_unit2_relu1)
stage1_unit2_bn3 = self.stage1_unit2_bn3(stage1_unit2_conv2)
_plus1 = stage1_unit2_bn3 + _plus0
stage1_unit3_bn1 = self.stage1_unit3_bn1(_plus1)
stage1_unit3_conv1 = self.stage1_unit3_conv1(stage1_unit3_bn1)
stage1_unit3_bn2 = self.stage1_unit3_bn2(stage1_unit3_conv1)
stage1_unit3_relu1 = self.stage1_unit3_relu1(stage1_unit3_bn2)
stage1_unit3_conv2 = self.stage1_unit3_conv2(stage1_unit3_relu1)
stage1_unit3_bn3 = self.stage1_unit3_bn3(stage1_unit3_conv2)
_plus2 = stage1_unit3_bn3 + _plus1
stage2_unit1_bn1 = self.stage2_unit1_bn1(_plus2)
stage2_unit1_conv1 = self.stage2_unit1_conv1(stage2_unit1_bn1)
stage2_unit1_bn2 = self.stage2_unit1_bn2(stage2_unit1_conv1)
stage2_unit1_relu1 = self.stage2_unit1_relu1(stage2_unit1_bn2)
stage2_unit1_conv2 = self.stage2_unit1_conv2(stage2_unit1_relu1)
stage2_unit1_bn3 = self.stage2_unit1_bn3(stage2_unit1_conv2)
stage2_unit1_conv1sc = self.stage2_unit1_conv1sc(_plus2)
stage2_unit1_sc = self.stage2_unit1_sc(stage2_unit1_conv1sc)
_plus3 = stage2_unit1_bn3 + stage2_unit1_sc
stage2_unit2_bn1 = self.stage2_unit2_bn1(_plus3)
stage2_unit2_conv1 = self.stage2_unit2_conv1(stage2_unit2_bn1)
stage2_unit2_bn2 = self.stage2_unit2_bn2(stage2_unit2_conv1)
stage2_unit2_relu1 = self.stage2_unit2_relu1(stage2_unit2_bn2)
stage2_unit2_conv2 = self.stage2_unit2_conv2(stage2_unit2_relu1)
stage2_unit2_bn3 = self.stage2_unit2_bn3(stage2_unit2_conv2)
_plus4 = stage2_unit2_bn3 + _plus3
stage2_unit3_bn1 = self.stage2_unit3_bn1(_plus4)
stage2_unit3_conv1 = self.stage2_unit3_conv1(stage2_unit3_bn1)
stage2_unit3_bn2 = self.stage2_unit3_bn2(stage2_unit3_conv1)
stage2_unit3_relu1 = self.stage2_unit3_relu1(stage2_unit3_bn2)
stage2_unit3_conv2 = self.stage2_unit3_conv2(stage2_unit3_relu1)
stage2_unit3_bn3 = self.stage2_unit3_bn3(stage2_unit3_conv2)
_plus5 = stage2_unit3_bn3 + _plus4
stage2_unit4_bn1 = self.stage2_unit4_bn1(_plus5)
stage2_unit4_conv1 = self.stage2_unit4_conv1(stage2_unit4_bn1)
stage2_unit4_bn2 = self.stage2_unit4_bn2(stage2_unit4_conv1)
stage2_unit4_relu1 = self.stage2_unit4_relu1(stage2_unit4_bn2)
stage2_unit4_conv2 = self.stage2_unit4_conv2(stage2_unit4_relu1)
stage2_unit4_bn3 = self.stage2_unit4_bn3(stage2_unit4_conv2)
_plus6 = stage2_unit4_bn3 + _plus5
stage2_unit5_bn1 = self.stage2_unit5_bn1(_plus6)
stage2_unit5_conv1 = self.stage2_unit5_conv1(stage2_unit5_bn1)
stage2_unit5_bn2 = self.stage2_unit5_bn2(stage2_unit5_conv1)
stage2_unit5_relu1 = self.stage2_unit5_relu1(stage2_unit5_bn2)
stage2_unit5_conv2 = self.stage2_unit5_conv2(stage2_unit5_relu1)
stage2_unit5_bn3 = self.stage2_unit5_bn3(stage2_unit5_conv2)
_plus7 = stage2_unit5_bn3 + _plus6
stage2_unit6_bn1 = self.stage2_unit6_bn1(_plus7)
stage2_unit6_conv1 = self.stage2_unit6_conv1(stage2_unit6_bn1)
stage2_unit6_bn2 = self.stage2_unit6_bn2(stage2_unit6_conv1)
stage2_unit6_relu1 = self.stage2_unit6_relu1(stage2_unit6_bn2)
stage2_unit6_conv2 = self.stage2_unit6_conv2(stage2_unit6_relu1)
stage2_unit6_bn3 = self.stage2_unit6_bn3(stage2_unit6_conv2)
_plus8 = stage2_unit6_bn3 + _plus7
stage2_unit7_bn1 = self.stage2_unit7_bn1(_plus8)
stage2_unit7_conv1 = self.stage2_unit7_conv1(stage2_unit7_bn1)
stage2_unit7_bn2 = self.stage2_unit7_bn2(stage2_unit7_conv1)
stage2_unit7_relu1 = self.stage2_unit7_relu1(stage2_unit7_bn2)
stage2_unit7_conv2 = self.stage2_unit7_conv2(stage2_unit7_relu1)
stage2_unit7_bn3 = self.stage2_unit7_bn3(stage2_unit7_conv2)
_plus9 = stage2_unit7_bn3 + _plus8
stage2_unit8_bn1 = self.stage2_unit8_bn1(_plus9)
stage2_unit8_conv1 = self.stage2_unit8_conv1(stage2_unit8_bn1)
stage2_unit8_bn2 = self.stage2_unit8_bn2(stage2_unit8_conv1)
stage2_unit8_relu1 = self.stage2_unit8_relu1(stage2_unit8_bn2)
stage2_unit8_conv2 = self.stage2_unit8_conv2(stage2_unit8_relu1)
stage2_unit8_bn3 = self.stage2_unit8_bn3(stage2_unit8_conv2)
_plus10 = stage2_unit8_bn3 + _plus9
stage2_unit9_bn1 = self.stage2_unit9_bn1(_plus10)
stage2_unit9_conv1 = self.stage2_unit9_conv1(stage2_unit9_bn1)
stage2_unit9_bn2 = self.stage2_unit9_bn2(stage2_unit9_conv1)
stage2_unit9_relu1 = self.stage2_unit9_relu1(stage2_unit9_bn2)
stage2_unit9_conv2 = self.stage2_unit9_conv2(stage2_unit9_relu1)
stage2_unit9_bn3 = self.stage2_unit9_bn3(stage2_unit9_conv2)
_plus11 = stage2_unit9_bn3 + _plus10
stage2_unit10_bn1 = self.stage2_unit10_bn1(_plus11)
stage2_unit10_conv1 = self.stage2_unit10_conv1(stage2_unit10_bn1)
stage2_unit10_bn2 = self.stage2_unit10_bn2(stage2_unit10_conv1)
stage2_unit10_relu1 = self.stage2_unit10_relu1(stage2_unit10_bn2)
stage2_unit10_conv2 = self.stage2_unit10_conv2(stage2_unit10_relu1)
stage2_unit10_bn3 = self.stage2_unit10_bn3(stage2_unit10_conv2)
_plus12 = stage2_unit10_bn3 + _plus11
stage2_unit11_bn1 = self.stage2_unit11_bn1(_plus12)
stage2_unit11_conv1 = self.stage2_unit11_conv1(stage2_unit11_bn1)
stage2_unit11_bn2 = self.stage2_unit11_bn2(stage2_unit11_conv1)
stage2_unit11_relu1 = self.stage2_unit11_relu1(stage2_unit11_bn2)
stage2_unit11_conv2 = self.stage2_unit11_conv2(stage2_unit11_relu1)
stage2_unit11_bn3 = self.stage2_unit11_bn3(stage2_unit11_conv2)
_plus13 = stage2_unit11_bn3 + _plus12
stage2_unit12_bn1 = self.stage2_unit12_bn1(_plus13)
stage2_unit12_conv1 = self.stage2_unit12_conv1(stage2_unit12_bn1)
stage2_unit12_bn2 = self.stage2_unit12_bn2(stage2_unit12_conv1)
stage2_unit12_relu1 = self.stage2_unit12_relu1(stage2_unit12_bn2)
stage2_unit12_conv2 = self.stage2_unit12_conv2(stage2_unit12_relu1)
stage2_unit12_bn3 = self.stage2_unit12_bn3(stage2_unit12_conv2)
_plus14 = stage2_unit12_bn3 + _plus13
stage2_unit13_bn1 = self.stage2_unit13_bn1(_plus14)
stage2_unit13_conv1 = self.stage2_unit13_conv1(stage2_unit13_bn1)
stage2_unit13_bn2 = self.stage2_unit13_bn2(stage2_unit13_conv1)
stage2_unit13_relu1 = self.stage2_unit13_relu1(stage2_unit13_bn2)
stage2_unit13_conv2 = self.stage2_unit13_conv2(stage2_unit13_relu1)
stage2_unit13_bn3 = self.stage2_unit13_bn3(stage2_unit13_conv2)
_plus15 = stage2_unit13_bn3 + _plus14
stage3_unit1_bn1 = self.stage3_unit1_bn1(_plus15)
stage3_unit1_conv1 = self.stage3_unit1_conv1(stage3_unit1_bn1)
stage3_unit1_bn2 = self.stage3_unit1_bn2(stage3_unit1_conv1)
stage3_unit1_relu1 = self.stage3_unit1_relu1(stage3_unit1_bn2)
stage3_unit1_conv2 = self.stage3_unit1_conv2(stage3_unit1_relu1)
stage3_unit1_bn3 = self.stage3_unit1_bn3(stage3_unit1_conv2)
stage3_unit1_conv1sc = self.stage3_unit1_conv1sc(_plus15)
stage3_unit1_sc = self.stage3_unit1_sc(stage3_unit1_conv1sc)
_plus16 = stage3_unit1_bn3 + stage3_unit1_sc
stage3_unit2_bn1 = self.stage3_unit2_bn1(_plus16)
stage3_unit2_conv1 = self.stage3_unit2_conv1(stage3_unit2_bn1)
stage3_unit2_bn2 = self.stage3_unit2_bn2(stage3_unit2_conv1)
stage3_unit2_relu1 = self.stage3_unit2_relu1(stage3_unit2_bn2)
stage3_unit2_conv2 = self.stage3_unit2_conv2(stage3_unit2_relu1)
stage3_unit2_bn3 = self.stage3_unit2_bn3(stage3_unit2_conv2)
_plus17 = stage3_unit2_bn3 + _plus16
stage3_unit3_bn1 = self.stage3_unit3_bn1(_plus17)
stage3_unit3_conv1 = self.stage3_unit3_conv1(stage3_unit3_bn1)
stage3_unit3_bn2 = self.stage3_unit3_bn2(stage3_unit3_conv1)
stage3_unit3_relu1 = self.stage3_unit3_relu1(stage3_unit3_bn2)
stage3_unit3_conv2 = self.stage3_unit3_conv2(stage3_unit3_relu1)
stage3_unit3_bn3 = self.stage3_unit3_bn3(stage3_unit3_conv2)
_plus18 = stage3_unit3_bn3 + _plus17
stage3_unit4_bn1 = self.stage3_unit4_bn1(_plus18)
stage3_unit4_conv1 = self.stage3_unit4_conv1(stage3_unit4_bn1)
stage3_unit4_bn2 = self.stage3_unit4_bn2(stage3_unit4_conv1)
stage3_unit4_relu1 = self.stage3_unit4_relu1(stage3_unit4_bn2)
stage3_unit4_conv2 = self.stage3_unit4_conv2(stage3_unit4_relu1)
stage3_unit4_bn3 = self.stage3_unit4_bn3(stage3_unit4_conv2)
_plus19 = stage3_unit4_bn3 + _plus18
stage3_unit5_bn1 = self.stage3_unit5_bn1(_plus19)
stage3_unit5_conv1 = self.stage3_unit5_conv1(stage3_unit5_bn1)
stage3_unit5_bn2 = self.stage3_unit5_bn2(stage3_unit5_conv1)
stage3_unit5_relu1 = self.stage3_unit5_relu1(stage3_unit5_bn2)
stage3_unit5_conv2 = self.stage3_unit5_conv2(stage3_unit5_relu1)
stage3_unit5_bn3 = self.stage3_unit5_bn3(stage3_unit5_conv2)
_plus20 = stage3_unit5_bn3 + _plus19
stage3_unit6_bn1 = self.stage3_unit6_bn1(_plus20)
stage3_unit6_conv1 = self.stage3_unit6_conv1(stage3_unit6_bn1)
stage3_unit6_bn2 = self.stage3_unit6_bn2(stage3_unit6_conv1)
stage3_unit6_relu1 = self.stage3_unit6_relu1(stage3_unit6_bn2)
stage3_unit6_conv2 = self.stage3_unit6_conv2(stage3_unit6_relu1)
stage3_unit6_bn3 = self.stage3_unit6_bn3(stage3_unit6_conv2)
_plus21 = stage3_unit6_bn3 + _plus20
stage3_unit7_bn1 = self.stage3_unit7_bn1(_plus21)
stage3_unit7_conv1 = self.stage3_unit7_conv1(stage3_unit7_bn1)
stage3_unit7_bn2 = self.stage3_unit7_bn2(stage3_unit7_conv1)
stage3_unit7_relu1 = self.stage3_unit7_relu1(stage3_unit7_bn2)
stage3_unit7_conv2 = self.stage3_unit7_conv2(stage3_unit7_relu1)
stage3_unit7_bn3 = self.stage3_unit7_bn3(stage3_unit7_conv2)
_plus22 = stage3_unit7_bn3 + _plus21
stage3_unit8_bn1 = self.stage3_unit8_bn1(_plus22)
stage3_unit8_conv1 = self.stage3_unit8_conv1(stage3_unit8_bn1)
stage3_unit8_bn2 = self.stage3_unit8_bn2(stage3_unit8_conv1)
stage3_unit8_relu1 = self.stage3_unit8_relu1(stage3_unit8_bn2)
stage3_unit8_conv2 = self.stage3_unit8_conv2(stage3_unit8_relu1)
stage3_unit8_bn3 = self.stage3_unit8_bn3(stage3_unit8_conv2)
_plus23 = stage3_unit8_bn3 + _plus22
stage3_unit9_bn1 = self.stage3_unit9_bn1(_plus23)
stage3_unit9_conv1 = self.stage3_unit9_conv1(stage3_unit9_bn1)
stage3_unit9_bn2 = self.stage3_unit9_bn2(stage3_unit9_conv1)
stage3_unit9_relu1 = self.stage3_unit9_relu1(stage3_unit9_bn2)
stage3_unit9_conv2 = self.stage3_unit9_conv2(stage3_unit9_relu1)
stage3_unit9_bn3 = self.stage3_unit9_bn3(stage3_unit9_conv2)
_plus24 = stage3_unit9_bn3 + _plus23
stage3_unit10_bn1 = self.stage3_unit10_bn1(_plus24)
stage3_unit10_conv1 = self.stage3_unit10_conv1(stage3_unit10_bn1)
stage3_unit10_bn2 = self.stage3_unit10_bn2(stage3_unit10_conv1)
stage3_unit10_relu1 = self.stage3_unit10_relu1(stage3_unit10_bn2)
stage3_unit10_conv2 = self.stage3_unit10_conv2(stage3_unit10_relu1)
stage3_unit10_bn3 = self.stage3_unit10_bn3(stage3_unit10_conv2)
_plus25 = stage3_unit10_bn3 + _plus24
stage3_unit11_bn1 = self.stage3_unit11_bn1(_plus25)
stage3_unit11_conv1 = self.stage3_unit11_conv1(stage3_unit11_bn1)
stage3_unit11_bn2 = self.stage3_unit11_bn2(stage3_unit11_conv1)
stage3_unit11_relu1 = self.stage3_unit11_relu1(stage3_unit11_bn2)
stage3_unit11_conv2 = self.stage3_unit11_conv2(stage3_unit11_relu1)
stage3_unit11_bn3 = self.stage3_unit11_bn3(stage3_unit11_conv2)
_plus26 = stage3_unit11_bn3 + _plus25
stage3_unit12_bn1 = self.stage3_unit12_bn1(_plus26)
stage3_unit12_conv1 = self.stage3_unit12_conv1(stage3_unit12_bn1)
stage3_unit12_bn2 = self.stage3_unit12_bn2(stage3_unit12_conv1)
stage3_unit12_relu1 = self.stage3_unit12_relu1(stage3_unit12_bn2)
stage3_unit12_conv2 = self.stage3_unit12_conv2(stage3_unit12_relu1)
stage3_unit12_bn3 = self.stage3_unit12_bn3(stage3_unit12_conv2)
_plus27 = stage3_unit12_bn3 + _plus26
stage3_unit13_bn1 = self.stage3_unit13_bn1(_plus27)
stage3_unit13_conv1 = self.stage3_unit13_conv1(stage3_unit13_bn1)
stage3_unit13_bn2 = self.stage3_unit13_bn2(stage3_unit13_conv1)
stage3_unit13_relu1 = self.stage3_unit13_relu1(stage3_unit13_bn2)
stage3_unit13_conv2 = self.stage3_unit13_conv2(stage3_unit13_relu1)
stage3_unit13_bn3 = self.stage3_unit13_bn3(stage3_unit13_conv2)
_plus28 = stage3_unit13_bn3 + _plus27
stage3_unit14_bn1 = self.stage3_unit14_bn1(_plus28)
stage3_unit14_conv1 = self.stage3_unit14_conv1(stage3_unit14_bn1)
stage3_unit14_bn2 = self.stage3_unit14_bn2(stage3_unit14_conv1)
stage3_unit14_relu1 = self.stage3_unit14_relu1(stage3_unit14_bn2)
stage3_unit14_conv2 = self.stage3_unit14_conv2(stage3_unit14_relu1)
stage3_unit14_bn3 = self.stage3_unit14_bn3(stage3_unit14_conv2)
_plus29 = stage3_unit14_bn3 + _plus28
stage3_unit15_bn1 = self.stage3_unit15_bn1(_plus29)
stage3_unit15_conv1 = self.stage3_unit15_conv1(stage3_unit15_bn1)
stage3_unit15_bn2 = self.stage3_unit15_bn2(stage3_unit15_conv1)
stage3_unit15_relu1 = self.stage3_unit15_relu1(stage3_unit15_bn2)
stage3_unit15_conv2 = self.stage3_unit15_conv2(stage3_unit15_relu1)
stage3_unit15_bn3 = self.stage3_unit15_bn3(stage3_unit15_conv2)
_plus30 = stage3_unit15_bn3 + _plus29
stage3_unit16_bn1 = self.stage3_unit16_bn1(_plus30)
stage3_unit16_conv1 = self.stage3_unit16_conv1(stage3_unit16_bn1)
stage3_unit16_bn2 = self.stage3_unit16_bn2(stage3_unit16_conv1)
stage3_unit16_relu1 = self.stage3_unit16_relu1(stage3_unit16_bn2)
stage3_unit16_conv2 = self.stage3_unit16_conv2(stage3_unit16_relu1)
stage3_unit16_bn3 = self.stage3_unit16_bn3(stage3_unit16_conv2)
_plus31 = stage3_unit16_bn3 + _plus30
stage3_unit17_bn1 = self.stage3_unit17_bn1(_plus31)
stage3_unit17_conv1 = self.stage3_unit17_conv1(stage3_unit17_bn1)
stage3_unit17_bn2 = self.stage3_unit17_bn2(stage3_unit17_conv1)
stage3_unit17_relu1 = self.stage3_unit17_relu1(stage3_unit17_bn2)
stage3_unit17_conv2 = self.stage3_unit17_conv2(stage3_unit17_relu1)
stage3_unit17_bn3 = self.stage3_unit17_bn3(stage3_unit17_conv2)
_plus32 = stage3_unit17_bn3 + _plus31
stage3_unit18_bn1 = self.stage3_unit18_bn1(_plus32)
stage3_unit18_conv1 = self.stage3_unit18_conv1(stage3_unit18_bn1)
stage3_unit18_bn2 = self.stage3_unit18_bn2(stage3_unit18_conv1)
stage3_unit18_relu1 = self.stage3_unit18_relu1(stage3_unit18_bn2)
stage3_unit18_conv2 = self.stage3_unit18_conv2(stage3_unit18_relu1)
stage3_unit18_bn3 = self.stage3_unit18_bn3(stage3_unit18_conv2)
_plus33 = stage3_unit18_bn3 + _plus32
stage3_unit19_bn1 = self.stage3_unit19_bn1(_plus33)
stage3_unit19_conv1 = self.stage3_unit19_conv1(stage3_unit19_bn1)
stage3_unit19_bn2 = self.stage3_unit19_bn2(stage3_unit19_conv1)
stage3_unit19_relu1 = self.stage3_unit19_relu1(stage3_unit19_bn2)
stage3_unit19_conv2 = self.stage3_unit19_conv2(stage3_unit19_relu1)
stage3_unit19_bn3 = self.stage3_unit19_bn3(stage3_unit19_conv2)
_plus34 = stage3_unit19_bn3 + _plus33
stage3_unit20_bn1 = self.stage3_unit20_bn1(_plus34)
stage3_unit20_conv1 = self.stage3_unit20_conv1(stage3_unit20_bn1)
stage3_unit20_bn2 = self.stage3_unit20_bn2(stage3_unit20_conv1)
stage3_unit20_relu1 = self.stage3_unit20_relu1(stage3_unit20_bn2)
stage3_unit20_conv2 = self.stage3_unit20_conv2(stage3_unit20_relu1)
stage3_unit20_bn3 = self.stage3_unit20_bn3(stage3_unit20_conv2)
_plus35 = stage3_unit20_bn3 + _plus34
stage3_unit21_bn1 = self.stage3_unit21_bn1(_plus35)
stage3_unit21_conv1 = self.stage3_unit21_conv1(stage3_unit21_bn1)
stage3_unit21_bn2 = self.stage3_unit21_bn2(stage3_unit21_conv1)
stage3_unit21_relu1 = self.stage3_unit21_relu1(stage3_unit21_bn2)
stage3_unit21_conv2 = self.stage3_unit21_conv2(stage3_unit21_relu1)
stage3_unit21_bn3 = self.stage3_unit21_bn3(stage3_unit21_conv2)
_plus36 = stage3_unit21_bn3 + _plus35
stage3_unit22_bn1 = self.stage3_unit22_bn1(_plus36)
stage3_unit22_conv1 = self.stage3_unit22_conv1(stage3_unit22_bn1)
stage3_unit22_bn2 = self.stage3_unit22_bn2(stage3_unit22_conv1)
stage3_unit22_relu1 = self.stage3_unit22_relu1(stage3_unit22_bn2)
stage3_unit22_conv2 = self.stage3_unit22_conv2(stage3_unit22_relu1)
stage3_unit22_bn3 = self.stage3_unit22_bn3(stage3_unit22_conv2)
_plus37 = stage3_unit22_bn3 + _plus36
stage3_unit23_bn1 = self.stage3_unit23_bn1(_plus37)
stage3_unit23_conv1 = self.stage3_unit23_conv1(stage3_unit23_bn1)
stage3_unit23_bn2 = self.stage3_unit23_bn2(stage3_unit23_conv1)
stage3_unit23_relu1 = self.stage3_unit23_relu1(stage3_unit23_bn2)
stage3_unit23_conv2 = self.stage3_unit23_conv2(stage3_unit23_relu1)
stage3_unit23_bn3 = self.stage3_unit23_bn3(stage3_unit23_conv2)
_plus38 = stage3_unit23_bn3 + _plus37
stage3_unit24_bn1 = self.stage3_unit24_bn1(_plus38)
stage3_unit24_conv1 = self.stage3_unit24_conv1(stage3_unit24_bn1)
stage3_unit24_bn2 = self.stage3_unit24_bn2(stage3_unit24_conv1)
stage3_unit24_relu1 = self.stage3_unit24_relu1(stage3_unit24_bn2)
stage3_unit24_conv2 = self.stage3_unit24_conv2(stage3_unit24_relu1)
stage3_unit24_bn3 = self.stage3_unit24_bn3(stage3_unit24_conv2)
_plus39 = stage3_unit24_bn3 + _plus38
stage3_unit25_bn1 = self.stage3_unit25_bn1(_plus39)
stage3_unit25_conv1 = self.stage3_unit25_conv1(stage3_unit25_bn1)
stage3_unit25_bn2 = self.stage3_unit25_bn2(stage3_unit25_conv1)
stage3_unit25_relu1 = self.stage3_unit25_relu1(stage3_unit25_bn2)
stage3_unit25_conv2 = self.stage3_unit25_conv2(stage3_unit25_relu1)
stage3_unit25_bn3 = self.stage3_unit25_bn3(stage3_unit25_conv2)
_plus40 = stage3_unit25_bn3 + _plus39
stage3_unit26_bn1 = self.stage3_unit26_bn1(_plus40)
stage3_unit26_conv1 = self.stage3_unit26_conv1(stage3_unit26_bn1)
stage3_unit26_bn2 = self.stage3_unit26_bn2(stage3_unit26_conv1)
stage3_unit26_relu1 = self.stage3_unit26_relu1(stage3_unit26_bn2)
stage3_unit26_conv2 = self.stage3_unit26_conv2(stage3_unit26_relu1)
stage3_unit26_bn3 = self.stage3_unit26_bn3(stage3_unit26_conv2)
_plus41 = stage3_unit26_bn3 + _plus40
stage3_unit27_bn1 = self.stage3_unit27_bn1(_plus41)
stage3_unit27_conv1 = self.stage3_unit27_conv1(stage3_unit27_bn1)
stage3_unit27_bn2 = self.stage3_unit27_bn2(stage3_unit27_conv1)
stage3_unit27_relu1 = self.stage3_unit27_relu1(stage3_unit27_bn2)
stage3_unit27_conv2 = self.stage3_unit27_conv2(stage3_unit27_relu1)
stage3_unit27_bn3 = self.stage3_unit27_bn3(stage3_unit27_conv2)
_plus42 = stage3_unit27_bn3 + _plus41
stage3_unit28_bn1 = self.stage3_unit28_bn1(_plus42)
stage3_unit28_conv1 = self.stage3_unit28_conv1(stage3_unit28_bn1)
stage3_unit28_bn2 = self.stage3_unit28_bn2(stage3_unit28_conv1)
stage3_unit28_relu1 = self.stage3_unit28_relu1(stage3_unit28_bn2)
stage3_unit28_conv2 = self.stage3_unit28_conv2(stage3_unit28_relu1)
stage3_unit28_bn3 = self.stage3_unit28_bn3(stage3_unit28_conv2)
_plus43 = stage3_unit28_bn3 + _plus42
stage3_unit29_bn1 = self.stage3_unit29_bn1(_plus43)
stage3_unit29_conv1 = self.stage3_unit29_conv1(stage3_unit29_bn1)
stage3_unit29_bn2 = self.stage3_unit29_bn2(stage3_unit29_conv1)
stage3_unit29_relu1 = self.stage3_unit29_relu1(stage3_unit29_bn2)
stage3_unit29_conv2 = self.stage3_unit29_conv2(stage3_unit29_relu1)
stage3_unit29_bn3 = self.stage3_unit29_bn3(stage3_unit29_conv2)
_plus44 = stage3_unit29_bn3 + _plus43
stage3_unit30_bn1 = self.stage3_unit30_bn1(_plus44)
stage3_unit30_conv1 = self.stage3_unit30_conv1(stage3_unit30_bn1)
stage3_unit30_bn2 = self.stage3_unit30_bn2(stage3_unit30_conv1)
stage3_unit30_relu1 = self.stage3_unit30_relu1(stage3_unit30_bn2)
stage3_unit30_conv2 = self.stage3_unit30_conv2(stage3_unit30_relu1)
stage3_unit30_bn3 = self.stage3_unit30_bn3(stage3_unit30_conv2)
_plus45 = stage3_unit30_bn3 + _plus44
stage4_unit1_bn1 = self.stage4_unit1_bn1(_plus45)
stage4_unit1_conv1 = self.stage4_unit1_conv1(stage4_unit1_bn1)
stage4_unit1_bn2 = self.stage4_unit1_bn2(stage4_unit1_conv1)
stage4_unit1_relu1 = self.stage4_unit1_relu1(stage4_unit1_bn2)
stage4_unit1_conv2 = self.stage4_unit1_conv2(stage4_unit1_relu1)
stage4_unit1_bn3 = self.stage4_unit1_bn3(stage4_unit1_conv2)
stage4_unit1_conv1sc = self.stage4_unit1_conv1sc(_plus45)
stage4_unit1_sc = self.stage4_unit1_sc(stage4_unit1_conv1sc)
_plus46 = stage4_unit1_bn3 + stage4_unit1_sc
stage4_unit2_bn1 = self.stage4_unit2_bn1(_plus46)
stage4_unit2_conv1 = self.stage4_unit2_conv1(stage4_unit2_bn1)
stage4_unit2_bn2 = self.stage4_unit2_bn2(stage4_unit2_conv1)
stage4_unit2_relu1 = self.stage4_unit2_relu1(stage4_unit2_bn2)
stage4_unit2_conv2 = self.stage4_unit2_conv2(stage4_unit2_relu1)
stage4_unit2_bn3 = self.stage4_unit2_bn3(stage4_unit2_conv2)
_plus47 = stage4_unit2_bn3 + _plus46
stage4_unit3_bn1 = self.stage4_unit3_bn1(_plus47)
stage4_unit3_conv1 = self.stage4_unit3_conv1(stage4_unit3_bn1)
stage4_unit3_bn2 = self.stage4_unit3_bn2(stage4_unit3_conv1)
stage4_unit3_relu1 = self.stage4_unit3_relu1(stage4_unit3_bn2)
stage4_unit3_conv2 = self.stage4_unit3_conv2(stage4_unit3_relu1)
### grad-cam
# h = stage4_unit3_conv2.register_hook(self.activations_hook)
# self.activations = stage4_unit3_conv2
stage4_unit3_bn3 = self.stage4_unit3_bn3(stage4_unit3_conv2)
_plus48 = stage4_unit3_bn3 + _plus47
bn1 = self.bn1(_plus48)
dropout0 = self.dropout0(bn1)
pre_fc1 = self.pre_fc1(dropout0.view([int(dropout0.size(0)), -1]))
fc1 = self.fc1(pre_fc1)
return fc1
if __name__ == '__main__':
from PIL import Image
net = LResNet100()
net.load_state_dict(torch.load('torchtest.pt'))
net = net.cuda()
net.eval()
# with torch.no_grad():
# res = net(torch.ones(1, 3, 112, 112))
# res = res.data.numpy()
# print (type(res))
# with open('dmp.pkl', 'rb') as f:
# data = pickle.load(f)
# # print (type(data))
# print (np.square(data).sum())
# print (np.square(res).sum())
# print (np.square(data - res).sum())
img1 = np.array(Image.open('grisha.png')).astype(np.float32)
img1 = np.transpose(img1, (2, 0, 1)).reshape(1, 3, 112, 112)
img2 = np.array(Image.open('danil.png')).astype(np.float32)
img2 = np.transpose(img2, (2, 0, 1)).reshape(1, 3, 112, 112)
out1 = np.loadtxt('grisha.txt', dtype=np.float32, delimiter=',')
out2 = np.loadtxt('danil.txt', dtype=np.float32, delimiter=',')
# with torch.no_grad():
img1t = torch.tensor(img1).cuda()
img1t.requires_grad = True
# img2t = torch.tensor(img2).cuda()
# img2t = img2t.requires_grad()
# out1t = net(img1t).cpu().numpy().flatten()
# out2t = net(img2t).cpu().numpy().flatten()
out1t = net(img1t)
# out2t = net(img2t)
loss = out1t.sum()
loss.backward()
print (img1t.grad)
# print (np.square(out1t - out1).sum())
# print (np.square(out2t - out2).sum())