-
Notifications
You must be signed in to change notification settings - Fork 680
/
how-to-use-lexical-density-of-company-filings.py
251 lines (199 loc) · 10.2 KB
/
how-to-use-lexical-density-of-company-filings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
from QuantConnect.DataSource import *
import numpy as np
from enum import Enum
class BrainLanguageMetrics(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2010, 1, 1)
self.init_cash = 100000
self.SetCash(self.init_cash)
self.market = self.AddEquity('SPY', Resolution.Daily).Symbol
self.mkt = [] # benchmark chart data
# metric dictionary with signal optimism flag
# metric_dictionary:dict[int, (str, bool)] = {
# # 1 : ('SentenceCount', True),
# # 2 : ('MeanSentenceLength', True),
# # 3 : ('Sentiment', True),
# # 4 : ('Uncertainty', False),
# # 5 : ('Litigious', False),
# # 6 : ('Constraining', False),
# # 7 : ('Interesting', True),
# # 8 : ('Readability', True),
# 9 : ('LexicalRichness', True),
# 10 : ('LexicalDensity', True),
# 11 : ('SpecificDensity', True),
# 12 : ('SPY', True),
# }
self.metric_values = [
#'LexicalRichness', #9
'LexicalDensity', #10
'SpecificDensity' #11
]
# opt parameters
# self.metric_property:tuple = metric_dictionary[int(self.GetParameter("metric"))]
# self.metric_property:tuple = metric_dictionary[11]
# self.portfolio_size_property:int = int(self.GetParameter("portfolio_size"))
self.portfolio_size_property:int = 10
# self.universe_size_property:int = int(self.GetParameter("universe_size"))
self.universe_size_property:int = 500
# self.long = []
# self.short = []
self.traded_quantity = {}
self.metric = {}
self.metric_symbols = {}
self.price = {}
self.recent_universe = []
self.coarse_count = self.universe_size_property
self.selection_flag = False
self.rebalance_flag = False
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
self.Schedule.On(self.DateRules.MonthStart(self.market), self.TimeRules.AfterMarketOpen(self.market), self.Selection)
# self.Schedule.On(self.DateRules.EveryDay(self.market), self.TimeRules.AfterMarketOpen(self.market), self.PrintBenchmark)
def PrintBenchmark(self):
mkt_price = self.History(self.market, 2, Resolution.Daily)['close'].unstack(level=0).iloc[-1]
self.mkt.append(mkt_price)
mkt_perf = self.init_cash * self.mkt[-1] / self.mkt[0]
self.Plot('Strategy Equity', self.market, mkt_perf)
def OnSecuritiesChanged(self, changes):
for security in changes.AddedSecurities:
security.SetFeeModel(CustomFeeModel(self))
security.SetLeverage(10)
# remove recently stored metric value
for security in changes.RemovedSecurities:
symbol = security.Symbol
if symbol in self.metric:
del self.metric[symbol]
def CoarseSelectionFunction(self, coarse):
# return old universe if selection is not needed
if self.rebalance_flag and not self.selection_flag:
for stock in coarse:
symbol = stock.Symbol
if symbol in self.recent_universe:
self.price[symbol] = stock.AdjustedPrice
return self.recent_universe
if not self.selection_flag:
return Universe.Unchanged
self.selection_flag = False
if self.universe_size_property == 500 or self.universe_size_property == 1000:
# select top n stocks by dollar volume
selected = [x for x in sorted([x for x in coarse if x.HasFundamentalData],
key = lambda x: x.DollarVolume, reverse = True)[:self.coarse_count]]
elif self.universe_size_property == 3000:
selected = [x for x in coarse if x.HasFundamentalData]
for stock in selected:
symbol = stock.Symbol
self.price[symbol] = stock.AdjustedPrice
if symbol in self.metric:
continue
# create RollingWindow for specific stock symbol
# self.metric[symbol] = RollingWindow[float](self.period)
self.metric[symbol] = None
# subscribe to Brain Language Metrics data
dataset_symbol = self.AddData(BrainCompanyFilingLanguageMetrics10K , symbol).Symbol
# warmup Brain Language Metrics data
history = self.History(dataset_symbol, 3*30, Resolution.Daily)
# self.Debug(f"We got {len(history)} items from our history request for {dataset_symbol}")
if not history.empty:
metrics = []
for metric_value in self.metric_values:
m = getattr(history['reportsentiment'].iloc[-1], metric_value)
metrics.append(m)
# sent = history['reportsentiment'].iloc[-1].Sentiment
self.metric[symbol] = (history.iloc[-1].reportdate, metrics[0], metrics[1])#, metrics[2])
# store metric symbol under stock symbol
self.metric_symbols[symbol] = dataset_symbol
# return stock, which have short interest data ready
return [x.Symbol for x in selected if x.Symbol in self.metric and x.Symbol in self.price]
def FineSelectionFunction(self, fine):
fine = [x for x in fine if x.MarketCap != 0
and ((x.SecurityReference.ExchangeId == "NYS")
or (x.SecurityReference.ExchangeId == "NAS")
or (x.SecurityReference.ExchangeId == "ASE"))]
if self.universe_size_property == 3000:
fine = sorted(fine, key = lambda x:x.MarketCap, reverse=True)[:self.coarse_count]
self.recent_universe = [x.Symbol for x in fine]
metric_cnt = len(self.metric_values)
for ms_i in range(metric_cnt):
metric = { stock.Symbol : self.metric[stock.Symbol][ms_i+1] for stock in fine \
if stock.Symbol in self.metric and \
self.metric[stock.Symbol] is not None and \
self.metric[stock.Symbol][ms_i+1] is not None and \
(self.Time - self.metric[stock.Symbol][0]).days <= 30
}
if len(metric) < self.portfolio_size_property:
continue
# sorting by metric
sorted_by_metric = sorted(metric.items(), key = lambda x: x[1], reverse=True)
percentile = int(len(sorted_by_metric) / self.portfolio_size_property)
long = [x[0] for x in sorted_by_metric[:percentile]]
short = [x[0] for x in sorted_by_metric[-percentile:]]
# calculate quantity for every stock in every portfolio
long_cnt = len(long)
short_cnt = len(short)
for symbol in long:
q = int(((self.Portfolio.TotalPortfolioValue / metric_cnt) / long_cnt) / self.price[symbol])
if symbol not in self.traded_quantity:
self.traded_quantity[symbol] = 0
self.traded_quantity[symbol] += q
for symbol in short:
q = -int(((self.Portfolio.TotalPortfolioValue / metric_cnt) / short_cnt) / self.price[symbol])
if symbol not in self.traded_quantity:
self.traded_quantity[symbol] = 0
self.traded_quantity[symbol] += q
# self.short = []
# self.long = []
return list(self.traded_quantity.keys())
def OnData(self, data):
# update metric value for each stock
for stock_symbol, metric_symbol in self.metric_symbols.items():
# check if there are data for subscribed metric_symbol
if metric_symbol in data and data[metric_symbol]:
metrics = []
for metric_value in self.metric_values:
m = getattr(data[metric_symbol].ReportSentiment, metric_value)
metrics.append(m)
# sent = data[metric_symbol].ReportSentiment.Sentiment
# update metric value for specific stock
self.metric[stock_symbol] = (self.Time, metrics[0], metrics[1])#, metrics[2])
# monthly rebalance
if not self.rebalance_flag:
return
self.rebalance_flag = False
if self.universe_size_property == 3000:
if self.Time.year in [2014, 2016] and self.Time.month == 6:
self.Liquidate()
return
self.Liquidate()
for symbol, q in self.traded_quantity.items():
if q != 0:
self.MarketOrder(symbol, q)
# long_c = len(self.long)
# short_c = len(self.short)
# for symbol in self.long:
# self.SetHoldings(symbol, 1/long_c)
# for symbol in self.short:
# self.SetHoldings(symbol, -1/short_c)
# self.weight.clear()
# self.long.clear()
# self.short.clear()
self.traded_quantity.clear()
def Selection(self):
# if metric is market, hold SPY only without rebalance and selection
# if self.metric_property[0] == self.market.Value:
# if not self.Portfolio[self.market].Invested:
# self.SetHoldings(self.market, 1)
# else:
# new universe selection every three months
if self.Time.month % 3 == 0:
self.selection_flag = True
# rebalance once a month
self.rebalance_flag = True
# Custom fee model
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))
# Quandl short interest data.
class QuandlShortVolume(PythonQuandl):
def __init__(self):
self.ValueColumnName = 'SHORTVOLUME' # also 'TOTALVOLUME' is accesible