-
Notifications
You must be signed in to change notification settings - Fork 680
/
skewness-effect-in-commodities.py
157 lines (135 loc) · 6.45 KB
/
skewness-effect-in-commodities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# https://quantpedia.com/strategies/skewness-effect-in-commodities/
#
# The investment universe consists of 27 futures contracts on commodities. Each month, investor calculates skewness (3rd moment of returns)
# from daily returns from data going 12 months into the past for all futures. Commodities are then sorted into quintiles and investor goes
# long quintile containing the commodities with the 20% lowest total skewness and short quintile containing the commodities with the 20% highest
# total skewness (over a ranking period of 12 months). The resultant portfolio is equally weighted and rebalanced each month.
import numpy as np
from AlgorithmImports import *
from scipy.stats import skew
class SkewnessEffect(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
self.symbols = [
"CME_S1", # Soybean Futures, Continuous Contract
"CME_W1", # Wheat Futures, Continuous Contract
"CME_SM1", # Soybean Meal Futures, Continuous Contract
"CME_BO1", # Soybean Oil Futures, Continuous Contract
"CME_C1", # Corn Futures, Continuous Contract
"CME_O1", # Oats Futures, Continuous Contract
"CME_LC1", # Live Cattle Futures, Continuous Contract
"CME_FC1", # Feeder Cattle Futures, Continuous Contract
"CME_LN1", # Lean Hog Futures, Continuous Contract
"CME_GC1", # Gold Futures, Continuous Contract
"CME_SI1", # Silver Futures, Continuous Contract
"CME_PL1", # Platinum Futures, Continuous Contract
"CME_CL1", # Crude Oil Futures, Continuous Contract
"CME_HG1", # Copper Futures, Continuous Contract
"CME_LB1", # Random Length Lumber Futures, Continuous Contract
# "CME_NG1", # Natural Gas (Henry Hub) Physical Futures, Continuous Contract
"CME_PA1", # Palladium Futures, Continuous Contract
"CME_RR1", # Rough Rice Futures, Continuous Contract
"CME_DA1", # Class III Milk Futures
"ICE_RS1", # Canola Futures, Continuous Contract
"ICE_GO1", # Gas Oil Futures, Continuous Contract
"CME_RB2", # Gasoline Futures, Continuous Contract
"CME_KW2", # Wheat Kansas, Continuous Contract
"ICE_WT1", # WTI Crude Futures, Continuous Contract
"ICE_CC1", # Cocoa Futures, Continuous Contract
"ICE_CT1", # Cotton No. 2 Futures, Continuous Contract
"ICE_KC1", # Coffee C Futures, Continuous Contract
"ICE_O1", # Heating Oil Futures, Continuous Contract
"ICE_OJ1", # Orange Juice Futures, Continuous Contract
"ICE_SB1", # Sugar No. 11 Futures, Continuous Contract
]
self.period = 12 * 21
self.quantile = 5
self.SetWarmup(self.period)
self.data = {}
for symbol in self.symbols:
data = self.AddData(QuantpediaFutures, symbol, Resolution.Daily)
data.SetFeeModel(CustomFeeModel())
data.SetLeverage(5)
self.data[symbol] = RollingWindow[float](self.period)
self.Schedule.On(
self.DateRules.MonthStart(self.symbols[0]),
self.TimeRules.At(0, 0),
self.Rebalance,
)
def OnData(self, data):
for symbol in self.symbols:
symbol_obj = self.Symbol(symbol)
if symbol_obj in data.Keys:
price = data[symbol_obj].Value
if price != 0:
self.data[symbol].Add(price)
def Rebalance(self):
if self.IsWarmingUp:
return
# Skewness calculation
skewness_data = {}
for symbol in self.symbols:
if self.data[symbol].IsReady:
if (
self.Securities[symbol].GetLastData()
and (
self.Time.date()
- self.Securities[symbol].GetLastData().Time.date()
).days
< 5
):
prices = np.array([x for x in self.data[symbol]])
returns = (prices[:-1] / prices[1:]) - 1
if len(returns) == self.period - 1:
# NOTE: Manual skewness calculation example
# avg = np.average(returns)
# std = np.std(returns)
# skewness = (sum(np.power((x - avg), 3) for x in returns)) / ((self.return_history[symbol].maxlen-1) * np.power(std, 3))
skewness_data[symbol] = skew(returns)
long = []
short = []
if len(skewness_data) >= self.quantile:
# Skewness sorting
sorted_by_skewness = sorted(
skewness_data.items(), key=lambda x: x[1], reverse=True
)
quintile = int(len(sorted_by_skewness) / self.quantile)
long = [x[0] for x in sorted_by_skewness[-quintile:]]
short = [x[0] for x in sorted_by_skewness[:quintile]]
# Trade execution
invested = [x.Key.Value for x in self.Portfolio if x.Value.Invested]
for symbol in invested:
if symbol not in long + short:
self.Liquidate(symbol)
for symbol in long:
self.SetHoldings(symbol, 1 / len(long))
for symbol in short:
self.SetHoldings(symbol, -1 / len(short))
# Quantpedia data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaFutures(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource(
"data.quantpedia.com/backtesting_data/futures/{0}.csv".format(
config.Symbol.Value
),
SubscriptionTransportMedium.RemoteFile,
FileFormat.Csv,
)
def Reader(self, config, line, date, isLiveMode):
data = QuantpediaFutures()
data.Symbol = config.Symbol
if not line[0].isdigit():
return None
split = line.split(";")
data.Time = datetime.strptime(split[0], "%d.%m.%Y") + timedelta(days=1)
data["back_adjusted"] = float(split[1])
data["spliced"] = float(split[2])
data.Value = float(split[1])
return data
# Custom fee model.
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))