-
Notifications
You must be signed in to change notification settings - Fork 680
/
value-and-momentum-factors-across-asset-classes.py
440 lines (372 loc) · 14 KB
/
value-and-momentum-factors-across-asset-classes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
"""
data_tools.py
"""
# Bond yields
class QuandlAAAYield(PythonQuandl):
def __init__(self):
self.ValueColumnName = "BAMLC0A1CAAAEY"
class QuandlHighYield(PythonQuandl):
def __init__(self):
self.ValueColumnName = "BAMLH0A0HYM2EY"
# Quantpedia bond yield data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaBondYield(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource(
"data.quantpedia.com/backtesting_data/bond_yield/{0}.csv".format(
config.Symbol.Value
),
SubscriptionTransportMedium.RemoteFile,
FileFormat.Csv,
)
def Reader(self, config, line, date, isLiveMode):
data = QuantpediaBondYield()
data.Symbol = config.Symbol
if not line[0].isdigit():
return None
split = line.split(",")
data.Time = datetime.strptime(split[0], "%Y-%m-%d") + timedelta(days=1)
data["yield"] = float(split[1])
data.Value = float(split[1])
return data
# Country PE data
# NOTE: IMPORTANT: Data order must be ascending (date-wise)
from dateutil.relativedelta import relativedelta
class CountryPE(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource(
"data.quantpedia.com/backtesting_data/economic/country_pe.csv",
SubscriptionTransportMedium.RemoteFile,
FileFormat.Csv,
)
def Reader(self, config, line, date, isLiveMode):
data = CountryPE()
data.Symbol = config.Symbol
if not line[0].isdigit():
return None
split = line.split(";")
data.Time = datetime.strptime(split[0], "%Y") + relativedelta(years=1)
self.symbols = [
"Argentina",
"Australia",
"Austria",
"Belgium",
"Brazil",
"Canada",
"Chile",
"China",
"Egypt",
"France",
"Germany",
"Hong Kong",
"India",
"Indonesia",
"Ireland",
"Israel",
"Italy",
"Japan",
"Malaysia",
"Mexico",
"Netherlands",
"New Zealand",
"Norway",
"Philippines",
"Poland",
"Russia",
"Saudi Arabia",
"Singapore",
"South Africa",
"South Korea",
"Spain",
"Sweden",
"Switzerland",
"Taiwan",
"Thailand",
"Turkey",
"United Kingdom",
"United States",
]
index = 1
for symbol in self.symbols:
data[symbol] = float(split[index])
index += 1
data.Value = float(split[1])
return data
# Quandl "value" data
class QuandlValue(PythonQuandl):
def __init__(self):
self.ValueColumnName = "Value"
# Quantpedia PE ratio data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaPERatio(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource(
"data.quantpedia.com/backtesting_data/economic/{0}.csv".format(
config.Symbol.Value
),
SubscriptionTransportMedium.RemoteFile,
FileFormat.Csv,
)
def Reader(self, config, line, date, isLiveMode):
data = QuantpediaPERatio()
data.Symbol = config.Symbol
if not line[0].isdigit():
return None
split = line.split(";")
data.Time = datetime.strptime(split[0], "%Y-%m-%d") + timedelta(days=1)
data["pe_ratio"] = float(split[1])
data.Value = float(split[1])
return data
# Quantpedia bond yield data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaBondYield(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource(
"data.quantpedia.com/backtesting_data/bond_yield/{0}.csv".format(
config.Symbol.Value
),
SubscriptionTransportMedium.RemoteFile,
FileFormat.Csv,
)
def Reader(self, config, line, date, isLiveMode):
data = QuantpediaBondYield()
data.Symbol = config.Symbol
if not line[0].isdigit():
return None
split = line.split(",")
data.Time = datetime.strptime(split[0], "%Y-%m-%d") + timedelta(days=1)
data["yield"] = float(split[1])
data.Value = float(split[1])
return data
# Quantpedia data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaFutures(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource(
"data.quantpedia.com/backtesting_data/futures/{0}.csv".format(
config.Symbol.Value
),
SubscriptionTransportMedium.RemoteFile,
FileFormat.Csv,
)
def Reader(self, config, line, date, isLiveMode):
data = QuantpediaFutures()
data.Symbol = config.Symbol
if not line[0].isdigit():
return None
split = line.split(";")
data.Time = datetime.strptime(split[0], "%d.%m.%Y") + timedelta(days=1)
data["back_adjusted"] = float(split[1])
data["spliced"] = float(split[2])
data.Value = float(split[1])
return data
"""
main.py
"""
# https://quantpedia.com/strategies/value-and-momentum-factors-across-asset-classes/
#
# Create an investment universe containing investable asset classes (could be US large-cap, mid-cap stocks, US REITS, UK, Japan, Emerging market stocks, US treasuries, US Investment grade bonds,
# US high yield bonds, Germany bonds, Japan bonds, US cash) and find a good tracking vehicle for each asset class (best vehicles are ETFs or index funds). Momentum ranking is done on price series.
# Valuation ranking is done on adjusted yield measure for each asset class. E/P (Earning/Price) measure is used for stocks, and YTM (Yield-to-maturity) is used for bonds. US, Japan, and Germany
# treasury yield are adjusted by -1%, US investment-grade bonds are adjusted by -2%, US High yield bonds are adjusted by -6%, emerging markets equities are adjusted by -1%, and US REITs are
# adjusted by -2% to get unbiased structural yields for each asset class. Rank each asset class by 12-month momentum, 1-month momentum, and by valuation and weight all three strategies (25% weight
# to 12m momentum, 25% weight to 1-month momentum, 50% weight to value strategy). Go long top quartile portfolio and go short bottom quartile portfolio.
#
# QC implementation changes:
# - Country PB data ends in 2019. Last known value is used for further years calculations for the sake of backtest.
import data_tools
class ValueandMomentumFactorsacrossAssetClasses(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2013, 1, 1)
self.SetCash(100000)
# investable asset, yield symbol, yield data access function, yield adjustment, reverse flag(PE -> EP)
self.assets = [
(
"SPY",
"MULTPL/SP500_EARNINGS_YIELD_MONTH",
data_tools.QuandlValue,
0,
True,
), # US large-cap
(
"MDY",
"MID_CAP_PE",
data_tools.QuantpediaPERatio,
0,
True,
), # US mid-cap stocks
(
"IYR",
"REITS_DIVIDEND_YIELD",
data_tools.QuantpediaPERatio,
-2,
False,
), # US REITS - same csv data format as PERatio files
("EWU", "United Kingdom", None, 0, True), # UK
("EWJ", "Japan", None, 0, True), # Japan
(
"EEM",
"EMERGING_MARKET_PE",
data_tools.QuantpediaPERatio,
-1,
True,
), # Emerging market stocks
(
"LQD",
"ML/AAAEY",
data_tools.QuandlAAAYield,
-2,
False,
), # US Investment grade bonds
(
"HYG",
"ML/USTRI",
data_tools.QuandlHighYield,
-6,
False,
), # US high yield bonds
(
"CME_TY1",
"US10YT",
data_tools.QuantpediaBondYield,
-1,
False,
), # US bonds
(
"EUREX_FGBL1",
"DE10YT",
data_tools.QuantpediaBondYield,
-1,
False,
), # Germany bonds
(
"SGX_JB1",
"JP10YT",
data_tools.QuantpediaBondYield,
-1,
False,
), # Japan bonds
(
"BIL",
"OECD/KEI_IRSTCI01_USA_ST_M",
data_tools.QuandlValue,
0,
False,
), # US cash
]
# country pe data
self.country_pe_data = self.AddData(data_tools.CountryPE, "CountryData").Symbol
self.data = {}
self.period = 12 * 21
self.SetWarmUp(self.period)
for symbol, yield_symbol, yield_access, _, _ in self.assets:
# investable asset
if yield_access == data_tools.QuantpediaBondYield:
data = self.AddData(
data_tools.QuantpediaFutures, symbol, Resolution.Daily
)
else:
data = self.AddEquity(symbol, Resolution.Daily)
# yield
if yield_access != None:
self.AddData(yield_access, yield_symbol, Resolution.Daily)
self.data[symbol] = RollingWindow[float](self.period)
data.SetFeeModel(CustomFeeModel(self))
data.SetLeverage(5)
self.recent_month = -1
def OnData(self, data):
if self.IsWarmingUp:
return
# store investable asset price data
for symbol, yield_symbol, _, _, _ in self.assets:
symbol_obj = self.Symbol(symbol)
if symbol_obj in data and data[symbol_obj]:
self.data[symbol].Add(data[symbol_obj].Value)
if self.Time.month == self.recent_month:
return
self.recent_month = self.Time.month
performance_1M = {}
performance_12M = {}
valuation = {}
# performance and valuation calculation
if (
self.Securities[self.country_pe_data].GetLastData()
and (
self.Time.date()
- self.Securities[self.country_pe_data].GetLastData().Time.date()
).days
<= 365
):
for (
symbol,
yield_symbol,
yield_access,
bond_adjustment,
reverse_flag,
) in self.assets:
if (
self.Securities[symbol].GetLastData()
and (
self.Time.date()
- self.Securities[symbol].GetLastData().Time.date()
).days
< 3
):
if self.data[symbol].IsReady:
closes = [x for x in self.data[symbol]]
performance_1M[symbol] = closes[0] / closes[21] - 1
performance_12M[symbol] = (
closes[0] / closes[len(closes) - 1] - 1
)
if yield_access == None:
country_pb_data = self.Securities[
"CountryData"
].GetLastData()
if country_pb_data:
pe = country_pb_data[yield_symbol]
yield_value = pe
else:
yield_value = self.Securities[
self.Symbol(yield_symbol)
].Price
# reverse if needed, EP->PE
if reverse_flag:
yield_value = 1 / yield_value
if yield_value != 0:
valuation[symbol] = yield_value + bond_adjustment
long = []
short = []
if len(valuation) != 0:
# sort assets by metrics
sorted_by_p1 = sorted(performance_1M.items(), key=lambda x: x[1])
sorted_by_p12 = sorted(performance_12M.items(), key=lambda x: x[1])
sorted_by_value = sorted(valuation.items(), key=lambda x: x[1])
# rank assets
score = {}
for i, (symbol, _) in enumerate(sorted_by_p1):
score[symbol] = i * 0.25
for i, (symbol, _) in enumerate(sorted_by_p12):
score[symbol] += i * 0.25
for i, (symbol, _) in enumerate(sorted_by_value):
score[symbol] += i * 0.5
# sort by rank
sorted_by_rank = sorted(score, key=lambda x: score[x], reverse=True)
quartile = int(len(sorted_by_rank) / 4)
long = sorted_by_rank[:quartile]
short = sorted_by_rank[-quartile:]
# trade execution
invested = [x.Key.Value for x in self.Portfolio if x.Value.Invested]
for symbol in invested:
if symbol not in long + short:
self.Liquidate(symbol)
long_count = len(long)
short_count = len(short)
for symbol in long:
self.SetHoldings(symbol, 1 / long_count)
for symbol in short:
self.SetHoldings(symbol, -1 / short_count)
# Custom fee model.
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))