forked from gpgpu-sim/gpgpu-sim_distribution
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cuda_runtime_api.cc
2136 lines (1871 loc) · 72.9 KB
/
cuda_runtime_api.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// This file created from cuda_runtime_api.h distributed with CUDA 1.1
// Changes Copyright 2009, Tor M. Aamodt, Ali Bakhoda and George L. Yuan
// University of British Columbia
/*
* cuda_runtime_api.cc
*
* Copyright © 2009 by Tor M. Aamodt, Wilson W. L. Fung, Ali Bakhoda,
* George L. Yuan and the University of British Columbia, Vancouver,
* BC V6T 1Z4, All Rights Reserved.
*
* THIS IS A LEGAL DOCUMENT BY DOWNLOADING GPGPU-SIM, YOU ARE AGREEING TO THESE
* TERMS AND CONDITIONS.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNERS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* NOTE: The files libcuda/cuda_runtime_api.c and src/cuda-sim/cuda-math.h
* are derived from the CUDA Toolset available from http://www.nvidia.com/cuda
* (property of NVIDIA). The files benchmarks/BlackScholes/ and
* benchmarks/template/ are derived from the CUDA SDK available from
* http://www.nvidia.com/cuda (also property of NVIDIA). The files from
* src/intersim/ are derived from Booksim (a simulator provided with the
* textbook "Principles and Practices of Interconnection Networks" available
* from http://cva.stanford.edu/books/ppin/). As such, those files are bound by
* the corresponding legal terms and conditions set forth separately (original
* copyright notices are left in files from these sources and where we have
* modified a file our copyright notice appears before the original copyright
* notice).
*
* Using this version of GPGPU-Sim requires a complete installation of CUDA
* which is distributed seperately by NVIDIA under separate terms and
* conditions. To use this version of GPGPU-Sim with OpenCL requires a
* recent version of NVIDIA's drivers which support OpenCL.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the University of British Columbia nor the names of
* its contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* 4. This version of GPGPU-SIM is distributed freely for non-commercial use only.
*
* 5. No nonprofit user may place any restrictions on the use of this software,
* including as modified by the user, by any other authorized user.
*
* 6. GPGPU-SIM was developed primarily by Tor M. Aamodt, Wilson W. L. Fung,
* Ali Bakhoda, George L. Yuan, at the University of British Columbia,
* Vancouver, BC V6T 1Z4
*/
/*
* Copyright 1993-2007 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO USER:
*
* This source code is subject to NVIDIA ownership rights under U.S. and
* international Copyright laws. Users and possessors of this source code
* are hereby granted a nonexclusive, royalty-free license to use this code
* in individual and commercial software.
*
* NVIDIA MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THIS SOURCE
* CODE FOR ANY PURPOSE. IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR
* IMPLIED WARRANTY OF ANY KIND. NVIDIA DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOURCE CODE, INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL,
* OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
* OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
* OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
* OR PERFORMANCE OF THIS SOURCE CODE.
*
* U.S. Government End Users. This source code is a "commercial item" as
* that term is defined at 48 C.F.R. 2.101 (OCT 1995), consisting of
* "commercial computer software" and "commercial computer software
* documentation" as such terms are used in 48 C.F.R. 12.212 (SEPT 1995)
* and is provided to the U.S. Government only as a commercial end item.
* Consistent with 48 C.F.R.12.212 and 48 C.F.R. 227.7202-1 through
* 227.7202-4 (JUNE 1995), all U.S. Government End Users acquire the
* source code with only those rights set forth herein.
*
* Any use of this source code in individual and commercial software must
* include, in the user documentation and internal comments to the code,
* the above Disclaimer and U.S. Government End Users Notice.
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <time.h>
#include <stdarg.h>
#include <iostream>
#include <string>
#include <sstream>
#include <fstream>
#ifdef OPENGL_SUPPORT
#define GL_GLEXT_PROTOTYPES
#ifdef __APPLE__
#include <GLUT/glut.h> // Apple's version of GLUT is here
#else
#include <GL/gl.h>
#endif
#endif
#define __CUDA_RUNTIME_API_H__
#include "host_defines.h"
#include "builtin_types.h"
#include "driver_types.h"
#include "__cudaFatFormat.h"
#include "../src/gpgpu-sim/gpu-sim.h"
#include "../src/cuda-sim/ptx_loader.h"
#include "../src/cuda-sim/cuda-sim.h"
#include "../src/cuda-sim/ptx_ir.h"
#include "../src/cuda-sim/ptx_parser.h"
#include "../src/gpgpusim_entrypoint.h"
#include "../src/stream_manager.h"
#include <pthread.h>
#include <semaphore.h>
#ifdef __APPLE__
#include <mach-o/dyld.h>
#endif
extern void synchronize();
extern void exit_simulation();
static int load_static_globals( symbol_table *symtab, unsigned min_gaddr, unsigned max_gaddr, gpgpu_t *gpu );
static int load_constants( symbol_table *symtab, addr_t min_gaddr, gpgpu_t *gpu );
static kernel_info_t *gpgpu_cuda_ptx_sim_init_grid( const char *kernel_key,
gpgpu_ptx_sim_arg_list_t args,
struct dim3 gridDim,
struct dim3 blockDim,
struct CUctx_st* context );
/*DEVICE_BUILTIN*/
struct cudaArray
{
void *devPtr;
int devPtr32;
struct cudaChannelFormatDesc desc;
int width;
int height;
int size; //in bytes
unsigned dimensions;
};
#if !defined(__dv)
#if defined(__cplusplus)
#define __dv(v) \
= v
#else /* __cplusplus */
#define __dv(v)
#endif /* __cplusplus */
#endif /* !__dv */
cudaError_t g_last_cudaError = cudaSuccess;
extern stream_manager *g_stream_manager;
void register_ptx_function( const char *name, function_info *impl )
{
// no longer need this
}
#if defined __APPLE__
# define __my_func__ __PRETTY_FUNCTION__
#else
# if defined __cplusplus ? __GNUC_PREREQ (2, 6) : __GNUC_PREREQ (2, 4)
# define __my_func__ __PRETTY_FUNCTION__
# else
# if defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L
# define __my_func__ __func__
# else
# define __my_func__ ((__const char *) 0)
# endif
# endif
#endif
struct _cuda_device_id {
_cuda_device_id(gpgpu_sim* gpu) {m_id = 0; m_next = NULL; m_gpgpu=gpu;}
struct _cuda_device_id *next() { return m_next; }
unsigned num_shader() const { return m_gpgpu->get_config().num_shader(); }
int num_devices() const {
if( m_next == NULL ) return 1;
else return 1 + m_next->num_devices();
}
struct _cuda_device_id *get_device( unsigned n )
{
assert( n < (unsigned)num_devices() );
struct _cuda_device_id *p=this;
for(unsigned i=0; i<n; i++)
p = p->m_next;
return p;
}
const struct cudaDeviceProp *get_prop() const
{
return m_gpgpu->get_prop();
}
unsigned get_id() const { return m_id; }
gpgpu_sim *get_gpgpu() { return m_gpgpu; }
private:
unsigned m_id;
class gpgpu_sim *m_gpgpu;
struct _cuda_device_id *m_next;
};
struct CUctx_st {
CUctx_st( _cuda_device_id *gpu ) { m_gpu = gpu; }
_cuda_device_id *get_device() { return m_gpu; }
void add_binary( symbol_table *symtab, unsigned fat_cubin_handle )
{
m_code[fat_cubin_handle] = symtab;
m_last_fat_cubin_handle = fat_cubin_handle;
}
void add_ptxinfo( const char *deviceFun, const struct gpgpu_ptx_sim_kernel_info &info )
{
symbol *s = m_code[m_last_fat_cubin_handle]->lookup(deviceFun);
assert( s != NULL );
function_info *f = s->get_pc();
assert( f != NULL );
f->set_kernel_info(info);
}
void register_function( unsigned fat_cubin_handle, const char *hostFun, const char *deviceFun )
{
if( m_code.find(fat_cubin_handle) != m_code.end() ) {
symbol *s = m_code[fat_cubin_handle]->lookup(deviceFun);
assert( s != NULL );
function_info *f = s->get_pc();
assert( f != NULL );
m_kernel_lookup[hostFun] = f;
} else {
m_kernel_lookup[hostFun] = NULL;
}
}
function_info *get_kernel(const char *hostFun)
{
std::map<const void*,function_info*>::iterator i=m_kernel_lookup.find(hostFun);
assert( i != m_kernel_lookup.end() );
return i->second;
}
private:
_cuda_device_id *m_gpu; // selected gpu
std::map<unsigned,symbol_table*> m_code; // fat binary handle => global symbol table
unsigned m_last_fat_cubin_handle;
std::map<const void*,function_info*> m_kernel_lookup; // unique id (CUDA app function address) => kernel entry point
};
class kernel_config {
public:
kernel_config( dim3 GridDim, dim3 BlockDim, size_t sharedMem, struct CUstream_st *stream )
{
m_GridDim=GridDim;
m_BlockDim=BlockDim;
m_sharedMem=sharedMem;
m_stream = stream;
}
void set_arg( const void *arg, size_t size, size_t offset )
{
m_args.push_front( gpgpu_ptx_sim_arg(arg,size,offset) );
}
dim3 grid_dim() const { return m_GridDim; }
dim3 block_dim() const { return m_BlockDim; }
gpgpu_ptx_sim_arg_list_t get_args() { return m_args; }
struct CUstream_st *get_stream() { return m_stream; }
private:
dim3 m_GridDim;
dim3 m_BlockDim;
size_t m_sharedMem;
struct CUstream_st *m_stream;
gpgpu_ptx_sim_arg_list_t m_args;
};
class _cuda_device_id *GPGPUSim_Init()
{
static _cuda_device_id *the_device = NULL;
if( !the_device ) {
gpgpu_sim *the_gpu = gpgpu_ptx_sim_init_perf();
cudaDeviceProp *prop = (cudaDeviceProp *) calloc(sizeof(cudaDeviceProp),1);
snprintf(prop->name,256,"GPGPU-Sim_v%s", g_gpgpusim_version_string );
prop->major = 2;
prop->minor = 0;
prop->totalGlobalMem = 0x40000000 /* 1 GB */;
prop->memPitch = 0;
prop->maxThreadsPerBlock = 512;
prop->maxThreadsDim[0] = 512;
prop->maxThreadsDim[1] = 512;
prop->maxThreadsDim[2] = 512;
prop->maxGridSize[0] = 0x40000000;
prop->maxGridSize[1] = 0x40000000;
prop->maxGridSize[2] = 0x40000000;
prop->totalConstMem = 0x40000000;
prop->textureAlignment = 0;
prop->sharedMemPerBlock = the_gpu->shared_mem_size();
prop->regsPerBlock = the_gpu->num_registers_per_core();
prop->warpSize = the_gpu->wrp_size();
prop->clockRate = the_gpu->shader_clock();
#if (CUDART_VERSION >= 2010)
prop->multiProcessorCount = the_gpu->get_config().num_shader();
#endif
the_gpu->set_prop(prop);
the_device = new _cuda_device_id(the_gpu);
}
start_sim_thread(1);
return the_device;
}
static CUctx_st* GPGPUSim_Context()
{
static CUctx_st *the_context = NULL;
if( the_context == NULL ) {
_cuda_device_id *the_gpu = GPGPUSim_Init();
the_context = new CUctx_st(the_gpu);
}
return the_context;
}
void ptxinfo_addinfo()
{
if( !strcmp("__cuda_dummy_entry__",get_ptxinfo_kname()) ) {
// this string produced by ptxas for empty ptx files (e.g., bandwidth test)
clear_ptxinfo();
return;
}
CUctx_st *context = GPGPUSim_Context();
print_ptxinfo();
context->add_ptxinfo( get_ptxinfo_kname(), get_ptxinfo_kinfo() );
clear_ptxinfo();
}
void cuda_not_implemented( const char* func, unsigned line )
{
fflush(stdout);
fflush(stderr);
printf("\n\nGPGPU-Sim PTX: Execution error: CUDA API function \"%s()\" has not been implemented yet.\n"
" [$GPGPUSIM_ROOT/libcuda/%s around line %u]\n\n\n",
func,__FILE__, line );
fflush(stdout);
abort();
}
#define gpgpusim_ptx_error(msg, ...) gpgpusim_ptx_error_impl(__func__, __FILE__,__LINE__, msg, ##__VA_ARGS__)
#define gpgpusim_ptx_assert(cond,msg, ...) gpgpusim_ptx_assert_impl((cond),__func__, __FILE__,__LINE__, msg, ##__VA_ARGS__)
void gpgpusim_ptx_error_impl( const char *func, const char *file, unsigned line, const char *msg, ... )
{
va_list ap;
char buf[1024];
va_start(ap,msg);
vsnprintf(buf,1024,msg,ap);
va_end(ap);
printf("GPGPU-Sim CUDA API: %s\n", buf);
printf(" [%s:%u : %s]\n", file, line, func );
abort();
}
void gpgpusim_ptx_assert_impl( int test_value, const char *func, const char *file, unsigned line, const char *msg, ... )
{
va_list ap;
char buf[1024];
va_start(ap,msg);
vsnprintf(buf,1024,msg,ap);
va_end(ap);
if ( test_value == 0 )
gpgpusim_ptx_error_impl(func, file, line, msg);
}
typedef std::map<unsigned,CUevent_st*> event_tracker_t;
int CUevent_st::m_next_event_uid;
event_tracker_t g_timer_events;
int g_active_device = 0; //active gpu that runs the code
std::list<kernel_config> g_cuda_launch_stack;
/*******************************************************************************
* *
* *
* *
*******************************************************************************/
extern "C" {
/*******************************************************************************
* *
* *
* *
*******************************************************************************/
__host__ cudaError_t CUDARTAPI cudaMalloc(void **devPtr, size_t size)
{
CUctx_st* context = GPGPUSim_Context();
*devPtr = context->get_device()->get_gpgpu()->gpu_malloc(size);
if(g_debug_execution >= 3)
printf("GPGPU-Sim PTX: cudaMallocing %zu bytes starting at 0x%llx..\n",size, (unsigned long long) *devPtr);
if ( *devPtr ) {
return g_last_cudaError = cudaSuccess;
} else {
return g_last_cudaError = cudaErrorMemoryAllocation;
}
}
__host__ cudaError_t CUDARTAPI cudaMallocHost(void **ptr, size_t size)
{
GPGPUSim_Context();
*ptr = malloc(size);
if ( *ptr ) {
return g_last_cudaError = cudaSuccess;
} else {
return g_last_cudaError = cudaErrorMemoryAllocation;
}
}
__host__ cudaError_t CUDARTAPI cudaMallocPitch(void **devPtr, size_t *pitch, size_t width, size_t height)
{
unsigned malloc_width_inbytes = width;
printf("GPGPU-Sim PTX: cudaMallocPitch (width = %d)\n", malloc_width_inbytes);
CUctx_st* ctx = GPGPUSim_Context();
*devPtr = ctx->get_device()->get_gpgpu()->gpu_malloc(malloc_width_inbytes*height);
pitch[0] = malloc_width_inbytes;
if ( *devPtr ) {
return g_last_cudaError = cudaSuccess;
} else {
return g_last_cudaError = cudaErrorMemoryAllocation;
}
}
__host__ cudaError_t CUDARTAPI cudaMallocArray(struct cudaArray **array, const struct cudaChannelFormatDesc *desc, size_t width, size_t height __dv(1))
{
unsigned size = width * height * ((desc->x + desc->y + desc->z + desc->w)/8);
CUctx_st* context = GPGPUSim_Context();
(*array) = (struct cudaArray*) malloc(sizeof(struct cudaArray));
(*array)->desc = *desc;
(*array)->width = width;
(*array)->height = height;
(*array)->size = size;
(*array)->dimensions = 2;
((*array)->devPtr32)= (int) (long long)context->get_device()->get_gpgpu()->gpu_mallocarray(size);
printf("GPGPU-Sim PTX: cudaMallocArray: devPtr32 = %d\n", ((*array)->devPtr32));
((*array)->devPtr) = (void*) (long long) ((*array)->devPtr32);
if ( ((*array)->devPtr) ) {
return g_last_cudaError = cudaSuccess;
} else {
return g_last_cudaError = cudaErrorMemoryAllocation;
}
}
__host__ cudaError_t CUDARTAPI cudaFree(void *devPtr)
{
// TODO... manage g_global_mem space?
return g_last_cudaError = cudaSuccess;
}
__host__ cudaError_t CUDARTAPI cudaFreeHost(void *ptr)
{
free (ptr); // this will crash the system if called twice
return g_last_cudaError = cudaSuccess;
}
__host__ cudaError_t CUDARTAPI cudaFreeArray(struct cudaArray *array)
{
// TODO... manage g_global_mem space?
return g_last_cudaError = cudaSuccess;
};
/*******************************************************************************
* *
* *
* *
*******************************************************************************/
__host__ cudaError_t CUDARTAPI cudaMemcpy(void *dst, const void *src, size_t count, enum cudaMemcpyKind kind)
{
//CUctx_st *context = GPGPUSim_Context();
//gpgpu_t *gpu = context->get_device()->get_gpgpu();
if(g_debug_execution >= 3)
printf("GPGPU-Sim PTX: cudaMemcpy(): devPtr = %p\n", dst);
if( kind == cudaMemcpyHostToDevice )
g_stream_manager->push( stream_operation(src,(size_t)dst,count,0) );
else if( kind == cudaMemcpyDeviceToHost )
g_stream_manager->push( stream_operation((size_t)src,dst,count,0) );
else if( kind == cudaMemcpyDeviceToDevice )
g_stream_manager->push( stream_operation((size_t)src,(size_t)dst,count,0) );
else {
printf("GPGPU-Sim PTX: cudaMemcpy - ERROR : unsupported cudaMemcpyKind\n");
abort();
}
return g_last_cudaError = cudaSuccess;
}
__host__ cudaError_t CUDARTAPI cudaMemcpyToArray(struct cudaArray *dst, size_t wOffset, size_t hOffset, const void *src, size_t count, enum cudaMemcpyKind kind)
{
CUctx_st *context = GPGPUSim_Context();
gpgpu_t *gpu = context->get_device()->get_gpgpu();
size_t size = count;
printf("GPGPU-Sim PTX: cudaMemcpyToArray\n");
if( kind == cudaMemcpyHostToDevice )
gpu->memcpy_to_gpu( (size_t)(dst->devPtr), src, size);
else if( kind == cudaMemcpyDeviceToHost )
gpu->memcpy_from_gpu( dst->devPtr, (size_t)src, size);
else if( kind == cudaMemcpyDeviceToDevice )
gpu->memcpy_gpu_to_gpu( (size_t)(dst->devPtr), (size_t)src, size);
else {
printf("GPGPU-Sim PTX: cudaMemcpyToArray - ERROR : unsupported cudaMemcpyKind\n");
abort();
}
dst->devPtr32 = (unsigned) (size_t)(dst->devPtr);
return g_last_cudaError = cudaSuccess;
}
__host__ cudaError_t CUDARTAPI cudaMemcpyFromArray(void *dst, const struct cudaArray *src, size_t wOffset, size_t hOffset, size_t count, enum cudaMemcpyKind kind)
{
cuda_not_implemented(__my_func__,__LINE__);
return g_last_cudaError = cudaErrorUnknown;
}
__host__ cudaError_t CUDARTAPI cudaMemcpyArrayToArray(struct cudaArray *dst, size_t wOffsetDst, size_t hOffsetDst, const struct cudaArray *src, size_t wOffsetSrc, size_t hOffsetSrc, size_t count, enum cudaMemcpyKind kind __dv(cudaMemcpyDeviceToDevice))
{
cuda_not_implemented(__my_func__,__LINE__);
return g_last_cudaError = cudaErrorUnknown;
}
__host__ cudaError_t CUDARTAPI cudaMemcpy2D(void *dst, size_t dpitch, const void *src, size_t spitch, size_t width, size_t height, enum cudaMemcpyKind kind)
{
CUctx_st *context = GPGPUSim_Context();
gpgpu_t *gpu = context->get_device()->get_gpgpu();
size_t size = spitch*height;
gpgpusim_ptx_assert( (dpitch==spitch), "different src and dst pitch not supported yet" );
if( kind == cudaMemcpyHostToDevice )
gpu->memcpy_to_gpu( (size_t)dst, src, size );
else if( kind == cudaMemcpyDeviceToHost )
gpu->memcpy_from_gpu( dst, (size_t)src, size );
else if( kind == cudaMemcpyDeviceToDevice )
gpu->memcpy_gpu_to_gpu( (size_t)dst, (size_t)src, size);
else {
printf("GPGPU-Sim PTX: cudaMemcpy2D - ERROR : unsupported cudaMemcpyKind\n");
abort();
}
return g_last_cudaError = cudaSuccess;
}
__host__ cudaError_t CUDARTAPI cudaMemcpy2DToArray(struct cudaArray *dst, size_t wOffset, size_t hOffset, const void *src, size_t spitch, size_t width, size_t height, enum cudaMemcpyKind kind)
{
CUctx_st *context = GPGPUSim_Context();
gpgpu_t *gpu = context->get_device()->get_gpgpu();
size_t size = spitch*height;
size_t channel_size = dst->desc.w+dst->desc.x+dst->desc.y+dst->desc.z;
gpgpusim_ptx_assert( ((channel_size%8) == 0), "none byte multiple destination channel size not supported (sz=%u)", channel_size );
unsigned elem_size = channel_size/8;
gpgpusim_ptx_assert( (dst->dimensions==2), "copy to none 2D array not supported" );
gpgpusim_ptx_assert( (wOffset==0), "non-zero wOffset not yet supported" );
gpgpusim_ptx_assert( (hOffset==0), "non-zero hOffset not yet supported" );
gpgpusim_ptx_assert( (dst->height == (int)height), "partial copy not supported" );
gpgpusim_ptx_assert( (elem_size*dst->width == width), "partial copy not supported" );
gpgpusim_ptx_assert( (spitch == width), "spitch != width not supported" );
if( kind == cudaMemcpyHostToDevice )
gpu->memcpy_to_gpu( (size_t)(dst->devPtr), src, size);
else if( kind == cudaMemcpyDeviceToHost )
gpu->memcpy_from_gpu( dst->devPtr, (size_t)src, size);
else if( kind == cudaMemcpyDeviceToDevice )
gpu->memcpy_gpu_to_gpu( (size_t)dst->devPtr, (size_t)src, size);
else {
printf("GPGPU-Sim PTX: cudaMemcpy2D - ERROR : unsupported cudaMemcpyKind\n");
abort();
}
dst->devPtr32 = (unsigned) (size_t)(dst->devPtr);
return g_last_cudaError = cudaSuccess;
}
__host__ cudaError_t CUDARTAPI cudaMemcpy2DFromArray(void *dst, size_t dpitch, const struct cudaArray *src, size_t wOffset, size_t hOffset, size_t width, size_t height, enum cudaMemcpyKind kind)
{
cuda_not_implemented(__my_func__,__LINE__);
return g_last_cudaError = cudaErrorUnknown;
}
__host__ cudaError_t CUDARTAPI cudaMemcpy2DArrayToArray(struct cudaArray *dst, size_t wOffsetDst, size_t hOffsetDst, const struct cudaArray *src, size_t wOffsetSrc, size_t hOffsetSrc, size_t width, size_t height, enum cudaMemcpyKind kind __dv(cudaMemcpyDeviceToDevice))
{
cuda_not_implemented(__my_func__,__LINE__);
return g_last_cudaError = cudaErrorUnknown;
}
__host__ cudaError_t CUDARTAPI cudaMemcpyToSymbol(const char *symbol, const void *src, size_t count, size_t offset __dv(0), enum cudaMemcpyKind kind __dv(cudaMemcpyHostToDevice))
{
//CUctx_st *context = GPGPUSim_Context();
assert(kind == cudaMemcpyHostToDevice);
printf("GPGPU-Sim PTX: cudaMemcpyToSymbol: symbol = %p\n", symbol);
//stream_operation( const char *symbol, const void *src, size_t count, size_t offset )
g_stream_manager->push( stream_operation(src,symbol,count,offset,0) );
//gpgpu_ptx_sim_memcpy_symbol(symbol,src,count,offset,1,context->get_device()->get_gpgpu());
return g_last_cudaError = cudaSuccess;
}
__host__ cudaError_t CUDARTAPI cudaMemcpyFromSymbol(void *dst, const char *symbol, size_t count, size_t offset __dv(0), enum cudaMemcpyKind kind __dv(cudaMemcpyDeviceToHost))
{
//CUctx_st *context = GPGPUSim_Context();
assert(kind == cudaMemcpyDeviceToHost);
printf("GPGPU-Sim PTX: cudaMemcpyFromSymbol: symbol = %p\n", symbol);
g_stream_manager->push( stream_operation(symbol,dst,count,offset,0) );
//gpgpu_ptx_sim_memcpy_symbol(symbol,dst,count,offset,0,context->get_device()->get_gpgpu());
return g_last_cudaError = cudaSuccess;
}
/*******************************************************************************
* *
* *
* *
*******************************************************************************/
__host__ cudaError_t CUDARTAPI cudaMemcpyAsync(void *dst, const void *src, size_t count, enum cudaMemcpyKind kind, cudaStream_t stream)
{
struct CUstream_st *s = (struct CUstream_st *)stream;
switch( kind ) {
case cudaMemcpyHostToDevice: g_stream_manager->push( stream_operation(src,(size_t)dst,count,s) ); break;
case cudaMemcpyDeviceToHost: g_stream_manager->push( stream_operation((size_t)src,dst,count,s) ); break;
case cudaMemcpyDeviceToDevice: g_stream_manager->push( stream_operation((size_t)src,(size_t)dst,count,s) ); break;
default:
abort();
}
return g_last_cudaError = cudaSuccess;
}
__host__ cudaError_t CUDARTAPI cudaMemcpyToArrayAsync(struct cudaArray *dst, size_t wOffset, size_t hOffset, const void *src, size_t count, enum cudaMemcpyKind kind, cudaStream_t stream)
{
cuda_not_implemented(__my_func__,__LINE__);
return g_last_cudaError = cudaErrorUnknown;
}
__host__ cudaError_t CUDARTAPI cudaMemcpyFromArrayAsync(void *dst, const struct cudaArray *src, size_t wOffset, size_t hOffset, size_t count, enum cudaMemcpyKind kind, cudaStream_t stream)
{
cuda_not_implemented(__my_func__,__LINE__);
return g_last_cudaError = cudaErrorUnknown;
}
__host__ cudaError_t CUDARTAPI cudaMemcpy2DAsync(void *dst, size_t dpitch, const void *src, size_t spitch, size_t width, size_t height, enum cudaMemcpyKind kind, cudaStream_t stream)
{
cuda_not_implemented(__my_func__,__LINE__);
return g_last_cudaError = cudaErrorUnknown;
}
__host__ cudaError_t CUDARTAPI cudaMemcpy2DToArrayAsync(struct cudaArray *dst, size_t wOffset, size_t hOffset, const void *src, size_t spitch, size_t width, size_t height, enum cudaMemcpyKind kind, cudaStream_t stream)
{
cuda_not_implemented(__my_func__,__LINE__);
return g_last_cudaError = cudaErrorUnknown;
}
__host__ cudaError_t CUDARTAPI cudaMemcpy2DFromArrayAsync(void *dst, size_t dpitch, const struct cudaArray *src, size_t wOffset, size_t hOffset, size_t width, size_t height, enum cudaMemcpyKind kind, cudaStream_t stream)
{
cuda_not_implemented(__my_func__,__LINE__);
return g_last_cudaError = cudaErrorUnknown;
}
/*******************************************************************************
* *
* *
* *
*******************************************************************************/
__host__ cudaError_t CUDARTAPI cudaMemset(void *mem, int c, size_t count)
{
CUctx_st *context = GPGPUSim_Context();
gpgpu_t *gpu = context->get_device()->get_gpgpu();
gpu->gpu_memset((size_t)mem, c, count);
return g_last_cudaError = cudaSuccess;
}
__host__ cudaError_t CUDARTAPI cudaMemset2D(void *mem, size_t pitch, int c, size_t width, size_t height)
{
cuda_not_implemented(__my_func__,__LINE__);
return g_last_cudaError = cudaErrorUnknown;
}
/*******************************************************************************
* *
* *
* *
*******************************************************************************/
__host__ cudaError_t CUDARTAPI cudaGetSymbolAddress(void **devPtr, const char *symbol)
{
cuda_not_implemented(__my_func__,__LINE__);
return g_last_cudaError = cudaErrorUnknown;
}
__host__ cudaError_t CUDARTAPI cudaGetSymbolSize(size_t *size, const char *symbol)
{
cuda_not_implemented(__my_func__,__LINE__);
return g_last_cudaError = cudaErrorUnknown;
}
/*******************************************************************************
* *
* *
* *
*******************************************************************************/
__host__ cudaError_t CUDARTAPI cudaGetDeviceCount(int *count)
{
_cuda_device_id *dev = GPGPUSim_Init();
*count = dev->num_devices();
return g_last_cudaError = cudaSuccess;
}
__host__ cudaError_t CUDARTAPI cudaGetDeviceProperties(struct cudaDeviceProp *prop, int device)
{
_cuda_device_id *dev = GPGPUSim_Init();
if (device <= dev->num_devices() ) {
*prop= *dev->get_prop();
return g_last_cudaError = cudaSuccess;
} else {
return g_last_cudaError = cudaErrorInvalidDevice;
}
}
__host__ cudaError_t CUDARTAPI cudaChooseDevice(int *device, const struct cudaDeviceProp *prop)
{
_cuda_device_id *dev = GPGPUSim_Init();
*device = dev->get_id();
return g_last_cudaError = cudaSuccess;
}
__host__ cudaError_t CUDARTAPI cudaSetDevice(int device)
{
//set the active device to run cuda
if ( device <= GPGPUSim_Init()->num_devices() ) {
g_active_device = device;
return g_last_cudaError = cudaSuccess;
} else {
return g_last_cudaError = cudaErrorInvalidDevice;
}
}
__host__ cudaError_t CUDARTAPI cudaGetDevice(int *device)
{
*device = g_active_device;
return g_last_cudaError = cudaSuccess;
}
/*******************************************************************************
* *
* *
* *
*******************************************************************************/
__host__ cudaError_t CUDARTAPI cudaBindTexture(size_t *offset,
const struct textureReference *texref,
const void *devPtr,
const struct cudaChannelFormatDesc *desc,
size_t size __dv(UINT_MAX))
{
CUctx_st *context = GPGPUSim_Context();
gpgpu_t *gpu = context->get_device()->get_gpgpu();
printf("GPGPU-Sim PTX: in cudaBindTexture: sizeof(struct textureReference) = %zu\n", sizeof(struct textureReference));
struct cudaArray *array;
array = (struct cudaArray*) malloc(sizeof(struct cudaArray));
array->desc = *desc;
array->size = size;
array->width = size;
array->height = 1;
array->dimensions = 1;
array->devPtr = (void*)devPtr;
array->devPtr32 = (int)(long long)devPtr;
offset = 0;
printf("GPGPU-Sim PTX: size = %zu\n", size);
printf("GPGPU-Sim PTX: texref = %p, array = %p\n", texref, array);
printf("GPGPU-Sim PTX: devPtr32 = %x\n", array->devPtr32);
printf("GPGPU-Sim PTX: Name corresponding to textureReference: %s\n", gpu->gpgpu_ptx_sim_findNamefromTexture(texref));
printf("GPGPU-Sim PTX: ChannelFormatDesc: x=%d, y=%d, z=%d, w=%d\n", desc->x, desc->y, desc->z, desc->w);
printf("GPGPU-Sim PTX: Texture Normalized? = %d\n", texref->normalized);
gpu->gpgpu_ptx_sim_bindTextureToArray(texref, array);
devPtr = (void*)(long long)array->devPtr32;
printf("GPGPU-Sim PTX: devPtr = %p\n", devPtr);
return g_last_cudaError = cudaSuccess;
}
__host__ cudaError_t CUDARTAPI cudaBindTextureToArray(const struct textureReference *texref, const struct cudaArray *array, const struct cudaChannelFormatDesc *desc)
{
CUctx_st *context = GPGPUSim_Context();
gpgpu_t *gpu = context->get_device()->get_gpgpu();
printf("GPGPU-Sim PTX: in cudaBindTextureToArray: %p %p\n", texref, array);
printf("GPGPU-Sim PTX: devPtr32 = %x\n", array->devPtr32);
printf("GPGPU-Sim PTX: Name corresponding to textureReference: %s\n", gpu->gpgpu_ptx_sim_findNamefromTexture(texref));
printf("GPGPU-Sim PTX: Texture Normalized? = %d\n", texref->normalized);
gpu->gpgpu_ptx_sim_bindTextureToArray(texref, array);
return g_last_cudaError = cudaSuccess;
}
__host__ cudaError_t CUDARTAPI cudaUnbindTexture(const struct textureReference *texref)
{
return g_last_cudaError = cudaSuccess;
}
__host__ cudaError_t CUDARTAPI cudaGetTextureAlignmentOffset(size_t *offset, const struct textureReference *texref)
{
cuda_not_implemented(__my_func__,__LINE__);
return g_last_cudaError = cudaErrorUnknown;
}
__host__ cudaError_t CUDARTAPI cudaGetTextureReference(const struct textureReference **texref, const char *symbol)
{
cuda_not_implemented(__my_func__,__LINE__);
return g_last_cudaError = cudaErrorUnknown;
}
__host__ cudaError_t CUDARTAPI cudaGetChannelDesc(struct cudaChannelFormatDesc *desc, const struct cudaArray *array)
{
*desc = array->desc;
return g_last_cudaError = cudaSuccess;
}
__host__ struct cudaChannelFormatDesc CUDARTAPI cudaCreateChannelDesc(int x, int y, int z, int w, enum cudaChannelFormatKind f)
{
struct cudaChannelFormatDesc dummy;
dummy.x = x;
dummy.y = y;
dummy.z = z;
dummy.w = w;
dummy.f = f;
return dummy;
}
__host__ cudaError_t CUDARTAPI cudaGetLastError(void)
{
return g_last_cudaError;
}
__host__ const char* CUDARTAPI cudaGetErrorString(cudaError_t error)
{
if( g_last_cudaError == cudaSuccess )
return "no error";
char buf[1024];
snprintf(buf,1024,"<<GPGPU-Sim PTX: there was an error (code = %d)>>", g_last_cudaError);
return strdup(buf);
}
__host__ cudaError_t CUDARTAPI cudaConfigureCall(dim3 gridDim, dim3 blockDim, size_t sharedMem, cudaStream_t stream)
{
struct CUstream_st *s = (struct CUstream_st *)stream;
g_cuda_launch_stack.push_back( kernel_config(gridDim,blockDim,sharedMem,s) );
return g_last_cudaError = cudaSuccess;
}
__host__ cudaError_t CUDARTAPI cudaSetupArgument(const void *arg, size_t size, size_t offset)
{
gpgpusim_ptx_assert( !g_cuda_launch_stack.empty(), "empty launch stack" );
kernel_config &config = g_cuda_launch_stack.back();
config.set_arg(arg,size,offset);
return g_last_cudaError = cudaSuccess;
}
__host__ cudaError_t CUDARTAPI cudaLaunch( const char *hostFun )
{
CUctx_st* context = GPGPUSim_Context();
char *mode = getenv("PTX_SIM_MODE_FUNC");
if( mode )
sscanf(mode,"%u", &g_ptx_sim_mode);
gpgpusim_ptx_assert( !g_cuda_launch_stack.empty(), "empty launch stack" );
kernel_config config = g_cuda_launch_stack.back();
struct CUstream_st *stream = config.get_stream();
printf("\nGPGPU-Sim PTX: cudaLaunch for 0x%p (mode=%s) on stream %u\n", hostFun,
g_ptx_sim_mode?"functional simulation":"performance simulation", stream?stream->get_uid():0 );
kernel_info_t *grid = gpgpu_cuda_ptx_sim_init_grid(hostFun,config.get_args(),config.grid_dim(),config.block_dim(),context);
std::string kname = grid->name();
dim3 gridDim = config.grid_dim();
dim3 blockDim = config.block_dim();
printf("GPGPU-Sim PTX: pushing kernel \'%s\' to stream %u, gridDim= (%u,%u,%u) blockDim = (%u,%u,%u) \n",
kname.c_str(), stream?stream->get_uid():0, gridDim.x,gridDim.y,gridDim.z,blockDim.x,blockDim.y,blockDim.z );
stream_operation op(grid,g_ptx_sim_mode,stream);
g_stream_manager->push(op);
g_cuda_launch_stack.pop_back();
return g_last_cudaError = cudaSuccess;
}
/*******************************************************************************
* *
* *
* *
*******************************************************************************/
__host__ cudaError_t CUDARTAPI cudaStreamCreate(cudaStream_t *stream)
{
printf("GPGPU-Sim PTX: cudaStreamCreate\n");
#if (CUDART_VERSION >= 3000)
*stream = new struct CUstream_st();
g_stream_manager->add_stream(*stream);
#else
*stream = 0;
printf("GPGPU-Sim PTX: WARNING: Asynchronous kernel execution not supported (%s)\n", __my_func__);
#endif
return g_last_cudaError = cudaSuccess;
}
__host__ cudaError_t CUDARTAPI cudaStreamDestroy(cudaStream_t stream)
{
#if (CUDART_VERSION >= 3000)
g_stream_manager->destroy_stream(stream);
#endif
return g_last_cudaError = cudaSuccess;
}
__host__ cudaError_t CUDARTAPI cudaStreamSynchronize(cudaStream_t stream)
{
#if (CUDART_VERSION >= 3000)
if( stream == NULL )
return g_last_cudaError = cudaErrorInvalidResourceHandle;
stream->synchronize();
#else
printf("GPGPU-Sim PTX: WARNING: Asynchronous kernel execution not supported (%s)\n", __my_func__);
#endif
return g_last_cudaError = cudaSuccess;
}
__host__ cudaError_t CUDARTAPI cudaStreamQuery(cudaStream_t stream)
{
#if (CUDART_VERSION >= 3000)
if( stream == NULL )
return g_last_cudaError = cudaErrorInvalidResourceHandle;
return g_last_cudaError = stream->empty()?cudaSuccess:cudaErrorNotReady;
#else
printf("GPGPU-Sim PTX: WARNING: Asynchronous kernel execution not supported (%s)\n", __my_func__);
return g_last_cudaError = cudaSuccess; // it is always success because all cuda calls are synchronous
#endif
}
/*******************************************************************************
* *
* *
* *
*******************************************************************************/
__host__ cudaError_t CUDARTAPI cudaEventCreate(cudaEvent_t *event)
{
CUevent_st *e = new CUevent_st(false);
g_timer_events[e->get_uid()] = e;
#if CUDART_VERSION >= 3000
*event = e;
#else
*event = e->get_uid();
#endif
return g_last_cudaError = cudaSuccess;
}
CUevent_st *get_event(cudaEvent_t event)
{