diff --git a/.travis.yml b/.travis.yml index fb0b38fe..6fd77973 100644 --- a/.travis.yml +++ b/.travis.yml @@ -24,7 +24,7 @@ script: # TODO perhaps split build into tests and examples? # For now we only run the passing python 3 tests are run on the 3.4 build - if [ "$TRAVIS_PYTHON_VERSION" == "3.4" ]; then - nosetests test/test_graph.py test/test_metrics.py; else + nosetests --ignore-files=test_examples\|test_db\|test_vector\|test_web; else nosetests --exclude=test_05vector_07slp --with-coverage --cover-package=pattern; fi diff --git a/pattern/db/__init__.py b/pattern/db/__init__.py index b2757724..b65db990 100644 --- a/pattern/db/__init__.py +++ b/pattern/db/__init__.py @@ -2134,7 +2134,7 @@ def csv_header_encode(field, type=STRING): # csv_header_encode("age", INTEGER) => "age (INTEGER)". t = re.sub(r"^varchar\(.*?\)", "string", (type or "")) t = t and " (%s)" % t or "" - s = "%s%s" % (encode_utf8(field or ""), t.upper()) + s = "%s%s" % (field or "", t.upper()) return s diff --git a/pattern/text/__init__.py b/pattern/text/__init__.py index cd106cbb..af45f0af 100644 --- a/pattern/text/__init__.py +++ b/pattern/text/__init__.py @@ -399,10 +399,13 @@ def _read(path, encoding="utf-8", comment=";;;"): # From file or buffer. f = path for i, line in enumerate(f): - line = line.strip(codecs.BOM_UTF8) if i == 0 and isinstance( - line, str) else line + line = (line.strip(codecs.BOM_UTF8) + if i == 0 and isinstance(line, bytes) + else line) + line = line.strip() - line = decode_utf8(line, encoding) + line = line.decode(encoding) if isinstance(line, bytes) else line + if not line or (comment and line.startswith(comment)): continue yield line @@ -424,6 +427,7 @@ def load(self): # Arnold NNP x dict.update(self, (x.split(" ")[:2] for x in _read(self._path))) + #--- FREQUENCY ----------------------------------------------------------- @@ -859,7 +863,7 @@ def __init__(self, lexicon={}, frequency={}, model=None, morphology=None, contex The given default tags are used for unknown words. Unknown words that start with a capital letter are tagged NNP (except for German). Unknown words that contain only digits and punctuation are tagged CD. - Optionally, morphological and contextual rules (or a language model) can be used + Optionally, morphological and contextual rules (or a language model) can be used to improve the tags of unknown words. The given language can be used to discern between Germanic and Romance languages for phrase chunking. @@ -1727,7 +1731,7 @@ def commandline(parse=Parser().parse): # The output can be either slash-formatted string or XML. if "xml" in arguments: s = Tree(s, s.tags).xml - print(encode_utf8(s)) + print(s) #### VERBS ############################################################### @@ -2153,9 +2157,11 @@ def tenses(self, verb, parse=True): for id1, id2 in self._default.items(): if id2 in a: a.add(id1) - a = (TENSES[id][:-2] for id in a) - a = Tenses(sorted(a)) - return a + t = (TENSES[id][:-2] for id in a) + # TODO fix this hack + t = Tenses(sorted(t, key=lambda x: (x[0] or '', x[1] or 0, x[2] or '', + x[3] or '', x[4] or ''))) + return t def find_lemma(self, verb): # Must be overridden in a subclass. @@ -2289,14 +2295,14 @@ def load(self, path=None): self._language = xml.attrib.get("language", self._language) # Average scores of all word senses per part-of-speech tag. for w in words: - words[w] = dict((pos, map(avg, zip(*psi))) + words[w] = dict((pos, [avg(x) for x in zip(*psi)]) for pos, psi in words[w].items()) # Average scores of all part-of-speech tags. for w, pos in words.items(): - words[w][None] = map(avg, zip(*pos.values())) + words[w][None] = [avg(x) for x in zip(*pos.values())] # Average scores of all synonyms per synset. for id, psi in synsets.items(): - synsets[id] = map(avg, zip(*psi)) + synsets[id] = [avg(x) for x in zip(*psi)] dict.update(self, words) dict.update(self.labeler, labels) dict.update(self._synsets, synsets) @@ -2628,7 +2634,7 @@ def suggest(self, w): def _module(language): """ Returns the given language module (e.g., "en" => pattern.en). """ - return _modules.setdefault(language, __import__(language, globals(), {}, [], -1)) + return _modules.setdefault(language, __import__(language, globals(), {}, [], 1)) def _multilingual(function, *args, **kwargs): diff --git a/pattern/text/en/inflect.py b/pattern/text/en/inflect.py index a44b308f..a8194a95 100644 --- a/pattern/text/en/inflect.py +++ b/pattern/text/en/inflect.py @@ -48,7 +48,7 @@ # Based on the Ruby Linguistics module by Michael Granger: # http://www.deveiate.org/projects/Linguistics/wiki/English -RE_ARTICLE = map(lambda x: (re.compile(x[0]), x[1]), ( +RE_ARTICLE = [(re.compile(x[0]), x[1]) for x in ( # exceptions: an hour, an honor ("euler|hour(?!i)|heir|honest|hono", "an"), # Abbreviations: @@ -67,7 +67,7 @@ # y like "i": an yclept, a year (r"y(b[lor]|cl[ea]|fere|gg|p[ios]|rou|tt)", "an"), (r"", "a") # guess "a" -)) +)] def definite_article(word): @@ -85,14 +85,16 @@ def indefinite_article(word): if rule.search(word) is not None: return article -DEFINITE, INDEFINITE = \ - "definite", "indefinite" +DEFINITE, INDEFINITE = "definite", "indefinite" def article(word, function=INDEFINITE): """Returns the indefinite (a or an) or definite (the) article for the given word.""" - return function == DEFINITE and definite_article(word) or indefinite_article(word) + if function == DEFINITE: + return definite_article(word) + else: + return indefinite_article(word) _article = article diff --git a/pattern/text/en/modality.py b/pattern/text/en/modality.py index b4e9c8a4..a817d34d 100644 --- a/pattern/text/en/modality.py +++ b/pattern/text/en/modality.py @@ -5,6 +5,11 @@ # License: BSD (see LICENSE.txt for details). # http://www.clips.ua.ac.be/pages/pattern +try: + basestring +except NameError: # Python 3 + basestring = str + ### LIST FUNCTIONS ####################################################### diff --git a/pattern/text/en/wordnet/__init__.py b/pattern/text/en/wordnet/__init__.py index 11e3246c..db11be9e 100644 --- a/pattern/text/en/wordnet/__init__.py +++ b/pattern/text/en/wordnet/__init__.py @@ -31,6 +31,7 @@ # Note that pywordnet has been included in nltk upstream # TODO ensure these are fixed upstream (so we can use that? +import codecs # TODO use this exclusively for opening? import os import sys import glob @@ -53,9 +54,9 @@ try: basestring -except NameError: +except NameError: # python 3 basestring = str - + unicode = str VERSION = "" s = open(os.path.join(MODULE, CORPUS, "dict", "index.noun")).read(2048) @@ -215,22 +216,25 @@ def antonym(self): def meronyms(self): """ Yields a list of synsets that are semantic members/parts of this synset, for example: synsets("house")[0].meronyms() => - [Synset("library"), - Synset("loft"), + [Synset("library"), + Synset("loft"), Synset("porch") ] """ - p = self._synset.getPointers(wn.MEMBER_HOLONYM) - p += self._synset.getPointers(wn.PART_HOLONYM) - return [Synset(p.getTarget()) for p in p] + p1 = self._synset.getPointers(wn.MEMBER_HOLONYM) + p2 = self._synset.getPointers(wn.PART_HOLONYM) + return ([Synset(p.getTarget()) for p in p1] + + [Synset(p.getTarget()) for p in p2]) + def holonyms(self): """ Yields a list of synsets of which this synset is a member/part, for example: synsets("tree")[0].holonyms() => Synset("forest"). """ - p = self._synset.getPointers(wn.MEMBER_MERONYM) - p += self._synset.getPointers(wn.PART_MERONYM) - return [Synset(p.getTarget()) for p in p] + p1 = self._synset.getPointers(wn.MEMBER_MERONYM) + p2 = self._synset.getPointers(wn.PART_MERONYM) + return ([Synset(p.getTarget()) for p in p1] + + [Synset(p.getTarget()) for p in p2]) def hyponyms(self, recursive=False, depth=None): """ Yields a list of semantically more specific synsets, for example: @@ -277,7 +281,11 @@ def hypernym(self): synsets("train")[0].hypernym => Synset("public transport"). """ p = self._synset.getPointers(wn.HYPERNYM) - return len(p) > 0 and Synset(p[0].getTarget()) or None + try: + first = p[0] if isinstance(p, tuple) else next(p) + return Synset(first.getTarget()) + except StopIteration: + return None def similar(self): """ Returns a list of similar synsets for adjectives and adverbs, for example: @@ -386,14 +394,18 @@ def map32(id, pos=NOUN): """ global _map32_cache if not _map32_cache: - _map32_cache = open( - os.path.join(MODULE, "dict", "index.32")).readlines() + _map32_cache = codecs.open(os.path.join(MODULE, "dict", "index.32"))\ + .readlines() _map32_cache = (x for x in _map32_cache if x[0] != ";") # comments - _map32_cache = dict(x.strip().split(" ") for x in _map32_cache) + _map32_cache = (x.strip().split(b" ", 1) for x in _map32_cache) + _map32_cache = dict(x for x in _map32_cache if len(x) == 2) + k = pos in _map32_pos2 and pos or _map32_pos1.get(pos, "x") k += str(id).lstrip("0") - k = _map32_cache.get(k, None) + k = _map32_cache.get(k.encode("utf-8"), None) + if k is not None: + k = k.decode("utf-8") return int(k[1:]), _map32_pos2[k[0]] return None diff --git a/pattern/text/en/wordnet/pywordnet/wordnet.py b/pattern/text/en/wordnet/pywordnet/wordnet.py index 2169f2b3..98049484 100755 --- a/pattern/text/en/wordnet/pywordnet/wordnet.py +++ b/pattern/text/en/wordnet/pywordnet/wordnet.py @@ -394,7 +394,7 @@ def __init__(self, pos, offset, line): self.lexname = Lexname.lexnames and Lexname.lexnames[ int(tokens[1])] or [] (self._senseTuples, remainder) = _partition( - tokens[4:], 2, string.atoi(tokens[3], 16)) + tokens[4:], 2, int(tokens[3], 16)) (self._pointerTuples, remainder) = _partition( remainder[1:], 4, int(remainder[0])) if pos == VERB: @@ -402,7 +402,7 @@ def __init__(self, pos, offset, line): remainder[1:], 3, int(remainder[0])) def extractVerbFrames(index, vfTuples): - return tuple(map(lambda t: string.atoi(t[1]), filter(lambda t, i=index: string.atoi(t[2], 16) in (0, i), vfTuples))) + return tuple(map(lambda t: int(t[1]), filter(lambda t, i=index: int(t[2], 16) in (0, i), vfTuples))) senseVerbFrames = [] for index in range(1, len(self._senseTuples) + 1): senseVerbFrames.append(extractVerbFrames(index, vfTuples)) @@ -752,7 +752,7 @@ def __init__(self, sourceOffset, pointerTuple): self.targetOffset = int(offset) self.pos = _normalizePOS(pos) """part of speech -- one of NOUN, VERB, ADJECTIVE, ADVERB""" - indices = string.atoi(indices, 16) + indices = int(indices, 16) self.sourceIndex = indices >> 8 self.targetIndex = indices & 255 diff --git a/pattern/text/fr/__init__.py b/pattern/text/fr/__init__.py index eae1451d..f4eec8a3 100644 --- a/pattern/text/fr/__init__.py +++ b/pattern/text/fr/__init__.py @@ -172,7 +172,7 @@ def load(self, path=None): _Sentiment.load(self, path) # Map "précaire" to "precaire" (without diacritics, +1% accuracy). if not path: - for w, pos in dict.items(self): + for w, pos in list(dict.items(self)): w0 = w if not w.endswith((u"à", u"è", u"é", u"ê", u"ï")): w = w.replace(u"à", "a") diff --git a/pattern/text/search.py b/pattern/text/search.py index f5b8a319..1f40ebd0 100644 --- a/pattern/text/search.py +++ b/pattern/text/search.py @@ -153,15 +153,15 @@ def combinations(iterable, n): def product(*args, **kwargs): """ Yields all permutations with replacement: - list(product("cat", repeat=2)) => - [("c", "c"), - ("c", "a"), - ("c", "t"), - ("a", "c"), - ("a", "a"), - ("a", "t"), - ("t", "c"), - ("t", "a"), + list(product("cat", repeat=2)) => + [("c", "c"), + ("c", "a"), + ("c", "t"), + ("a", "c"), + ("a", "a"), + ("a", "t"), + ("t", "c"), + ("t", "a"), ("t", "t")] """ p = [[]] @@ -196,7 +196,7 @@ def variations(iterable, optional=lambda x: False): v = tuple(iterable[i] for i in range(len(v)) if not v[i]) a.add(v) # Longest-first. - return sorted(a, cmp=lambda x, y: len(y) - len(x)) + return sorted(a, key=len, reverse=True) #### TAXONOMY ############################################################ @@ -626,7 +626,7 @@ def match(self, word): Some part-of-speech-tags can also contain wildcards: NN*, VB*, JJ*, RB*, PR*. If the given word contains spaces (e.g., proper noun), the entire chunk will also be compared. - For example: Constraint(words=["Mac OS X*"]) + For example: Constraint(words=["Mac OS X*"]) matches the word "Mac" if the word occurs in a Chunk("Mac OS X 10.5"). """ # If the constraint has a custom function it must return True. @@ -918,7 +918,7 @@ def match(self, sentence, start=0, _v=None, _u=None): _u[id(sequence)] = False # Return the leftmost-longest. if len(a) > 0: - return sorted(a)[0][-1] + return sorted(a, key=lambda x: x[:2])[0][-1] def _variations(self): v = variations( diff --git a/pattern/text/tree.py b/pattern/text/tree.py index 3df0e3f8..3acaaba4 100644 --- a/pattern/text/tree.py +++ b/pattern/text/tree.py @@ -28,7 +28,7 @@ # "the cat eats its snackerel with vigor" => eat with vigor? # OR => vigorous snackerel? -# The Text and Sentece classes are containers: +# The Text and Sentence classes are containers: # no parsing functionality should be added to it. from itertools import chain @@ -39,8 +39,9 @@ try: unicode -except NameError: +except NameError: # Python 3 unicode = str + basestring = str try: from config import SLASH @@ -88,7 +89,7 @@ def unique(iterable): def zip(*args, **kwargs): - """ Returns a list of tuples, where the i-th tuple contains the i-th element + """ Returns a list of tuples, where the i-th tuple contains the i-th element from each of the argument sequences or iterables (or default if too short). """ args = [list(iterable) for iterable in args] @@ -273,17 +274,23 @@ def __getattr__(self, tag): def __unicode__(self): return self.string - def __repr__(self): - return "Word(%s)" % repr("%s/%s" % ( + def _repr(self): + return repr("%s/%s" % ( encode_entities(self.string), self.type is not None and self.type or OUTSIDE)) + def __repr__(self): + return "Word(%s)" % self._repr() + def __eq__(self, word): return id(self) == id(word) def __ne__(self, word): return id(self) != id(word) + def __hash__(self): + return hash(self._repr()) + class Tags(dict): @@ -810,13 +817,13 @@ def append(self, word, lemma=None, type=None, chunk=None, role=None, relation=No def parse_token(self, token, tags=[WORD, POS, CHUNK, PNP, REL, ANCHOR, LEMMA]): """ Returns the arguments for Sentence.append() from a tagged token representation. The order in which token tags appear can be specified. - The default order is (separated by slashes): - - word, - - part-of-speech, - - (IOB-)chunk, - - (IOB-)preposition, - - chunk(-relation)(-role), - - anchor, + The default order is (separated by slashes): + - word, + - part-of-speech, + - (IOB-)chunk, + - (IOB-)preposition, + - chunk(-relation)(-role), + - anchor, - lemma. Examples: The/DT/B-NP/O/NP-SBJ-1/O/the @@ -1079,7 +1086,7 @@ def get(self, index, tag=LEMMA): def loop(self, *tags): """ Iterates over the tags in the entire Sentence, - For example, Sentence.loop(POS, LEMMA) yields tuples of the part-of-speech tags and lemmata. + For example, Sentence.loop(POS, LEMMA) yields tuples of the part-of-speech tags and lemmata. Possible tags: WORD, LEMMA, POS, CHUNK, PNP, RELATION, ROLE, ANCHOR or a custom word tag. Any order or combination of tags can be supplied. """ @@ -1187,7 +1194,7 @@ def __unicode__(self): return self.string def __repr__(self): - return "Sentence(%s)" % repr(" ".join(["/".join(word.tags) for word in self.words]).encode("utf-8")) + return "Sentence(\"%s\")" % " ".join(["/".join(word.tags) for word in self.words]) def __eq__(self, other): if not isinstance(other, Sentence): @@ -1198,7 +1205,8 @@ def __eq__(self, other): def xml(self): """ Yields the sentence as an XML-formatted string (plain bytestring, UTF-8 encoded). """ - return parse_xml(self, tab="\t", id=self.id or "") + xml = parse_xml(self, tab="\t", id=self.id or "") + return xml.decode("utf-8") if isinstance(xml, bytes) else xml @classmethod def from_xml(cls, xml): @@ -1339,7 +1347,12 @@ def xml(self): xml.append("<%s>" % XML_TEXT) xml.extend([sentence.xml for sentence in self]) xml.append("" % XML_TEXT) - return "\n".join(xml) + xml_ = "\n".join(xml) + try: + xml_.encode("utf-8") + except AttributeError: # TODO remove this hack + pass + return xml_ @classmethod def from_xml(cls, xml): diff --git a/pattern/vector/__init__.py b/pattern/vector/__init__.py index 8784ffa8..adb602db 100644 --- a/pattern/vector/__init__.py +++ b/pattern/vector/__init__.py @@ -364,7 +364,7 @@ def count(words=[], top=None, threshold=0, stemmer=None, exclude=[], stopwords=F if stemmer is not None: w2 = stem(w2, stemmer, **kwargs).lower() dict.__setitem__(count, w2, (w2 in count) and count[w2] + 1 or 1) - for k in count.keys(): + for k in list(count.keys()): if count[k] <= threshold: dict.__delitem__(count, k) if top is not None: @@ -439,11 +439,11 @@ def __init__(self, string="", **kwargs): Lists can contain tuples (of), strings or numbers. Dicts can contain tuples (of), strings or numbers as keys, and floats as values. Document.words stores a dict of (word, count)-items. - Document.vector stores a dict of (word, weight)-items, + Document.vector stores a dict of (word, weight)-items, where weight is the term frequency normalized (0.0-1.0) to remove document length bias. Punctuation marks are stripped from the words. Stop words in the exclude list are excluded from the document. - Only top words whose count exceeds the threshold are included in the document. + Only top words whose count exceeds the threshold are included in the document. """ kwargs.setdefault("filter", lambda w: w.lstrip("'").isalnum()) kwargs.setdefault("threshold", 0) @@ -524,7 +524,11 @@ def load(cls, path): # Open unicode file. s = open(path, "rb").read() s = s.lstrip(codecs.BOM_UTF8) - s = decode_utf8(s) + try: + s = s.decode("utf-8") + except AttributeError: + foo + a = {} v = {} # Parse document name and type. @@ -705,7 +709,7 @@ def gain_ratio(self, word): @property def vector(self): """ Yields the document vector, a dictionary of (word, relevance)-items from the document. - The relevance is tf, tf * idf, infogain or binary if the document is part of a Model, + The relevance is tf, tf * idf, infogain or binary if the document is part of a Model, based on the value of Model.weight (TF, TFIDF, IG, GR, BINARY, None). The document vector is used to calculate similarity between two documents, for example in a clustering or classification algorithm. @@ -770,11 +774,16 @@ def __eq__(self, document): def __ne__(self, document): return not self.__eq__(document) + def _repr(self): + return repr(self._id + + self.name and ", name=%s" % repr(self.name) or "" + + self.type and ", type=%s" % repr(self.type) or "") + def __repr__(self): - return "Document(id=%s%s%s)" % ( - repr(self._id), - self.name and ", name=%s" % repr(self.name) or "", - self.type and ", type=%s" % repr(self.type) or "") + return "Document(id=%s)" % self._repr() + + def __hash__(self): + return hash(self._repr()) Bag = BagOfWords = BOW = Document @@ -1000,7 +1009,7 @@ def entropy(p=[], base=None): class Model(object): def __init__(self, documents=[], weight=TFIDF): - """ A model is a bag-of-word representation of a corpus of documents, + """ A model is a bag-of-word representation of a corpus of documents, where each document vector is a bag of (word, relevance)-items. Vectors can then be compared for similarity using a distance metric. The weighting scheme can be: relative TF, TFIDF (default), IG, BINARY, None, @@ -1279,7 +1288,7 @@ def inverse_document_frequency(self, word, base=2.71828): @property def inverted_index(self): - """ Yields a dictionary of (word, set([document1, document2, ...]))-items. + """ Yields a dictionary of (word, set([document1, document2, ...]))-items. """ if not self._inverted: m = {} @@ -1367,7 +1376,7 @@ def cosine_similarity(self, document1, document2): similarity = cos = cosine_similarity def nearest_neighbors(self, document, top=10): - """ Returns a list of (similarity, document)-tuples in the model, + """ Returns a list of (similarity, document)-tuples in the model, sorted by cosine similarity to the given document. """ v = ((self.cosine_similarity(document, d), d) for d in self.documents) @@ -1779,7 +1788,9 @@ def __init__(self, model, k=NORM): import numpy # Calling Model.vector() in a loop is quite slow, we should refactor # this: - matrix = [model.vector(d).values() for d in model.documents] + # TODO remove list + matrix = [list(model.vector(d).values()) + for d in model.documents] matrix = numpy.array(matrix) # Singular value decomposition, where u * sigma * vt = svd(matrix). # Sigma is the diagonal matrix of singular values, @@ -2049,7 +2060,7 @@ def k_means(vectors, k=None, iterations=10, distance=COSINE, seed=RANDOM, **kwar def kmpp(vectors, k, distance=COSINE): - """ The k-means++ initialization algorithm returns a set of initial clusers, + """ The k-means++ initialization algorithm returns a set of initial clusers, with the advantage that: - it generates better clusters than k-means(seed=RANDOM) on most data sets, - it runs faster than standard k-means, @@ -2390,7 +2401,7 @@ def _test(self, documents=[], target=None, **kwargs): def auc(self, documents=[], k=10): """ Returns the area under the ROC-curve. - Returns the probability (0.0-1.0) that a classifier will rank + Returns the probability (0.0-1.0) that a classifier will rank a random positive document (True) higher than a random negative one (False). """ return self.confusion_matrix(documents).auc(k) @@ -2660,7 +2671,8 @@ def method(self): @property def features(self): - return self._features.keys() + # TODO don't require list + return list(self._features.keys()) def train(self, document, type=None): """Trains the classifier with the given document of the given type @@ -3195,7 +3207,7 @@ def _propagate_backward(self, output=[], rate=0.5, momentum=0.1): def _train(self, data=[], iterations=1000, rate=0.5, momentum=0.1): """ Trains the network with the given data using backpropagation. - The given data is a list of (input, output)-tuples, + The given data is a list of (input, output)-tuples, where each input and output a list of values. For example, to learn the XOR-function: nn = BPNN() @@ -3316,18 +3328,18 @@ def finalize(self): class SVM(Classifier): def __init__(self, *args, **kwargs): - """ Support Vector Machine (SVM) is a supervised learning method + """ Support Vector Machine (SVM) is a supervised learning method where training documents are represented as points in n-dimensional space. The SVM constructs a number of hyperplanes that subdivide the space. Optional parameters: - - type = CLASSIFICATION, - - kernel = LINEAR, - - degree = 3, - - gamma = 1 / len(SVM.features), + - type = CLASSIFICATION, + - kernel = LINEAR, + - degree = 3, + - gamma = 1 / len(SVM.features), - coeff0 = 0, - - cost = 1, - - epsilon = 0.01, - - cache = 100, + - cost = 1, + - epsilon = 0.01, + - cache = 100, - shrinking = True, - extension = (LIBSVM, LIBLINEAR), - train = [] diff --git a/test/test_de.py b/test/test_de.py index 439e81d8..75ce2e70 100644 --- a/test/test_de.py +++ b/test/test_de.py @@ -213,7 +213,7 @@ def test_parse(self): # 3) Assert the accuracy of the German tagger. i, n = 0, 0 for sentence in open(os.path.join(PATH, "corpora", "tagged-de-tiger.txt")).readlines(): - sentence = sentence.decode("utf-8").strip() + sentence = sentence.strip() s1 = [w.split("/") for w in sentence.split(" ")] s1 = [de.stts2penntreebank(w, pos) for w, pos in s1] s2 = [[w for w, pos in s1]] @@ -239,13 +239,14 @@ def test_command_line(self): # Assert parsed output from the command-line (example from the # documentation). - p = ["python", "-m", "pattern.de", "-s", "Der grosse Hund.", "-OTCRL"] - p = subprocess.Popen(p, stdout=subprocess.PIPE) + command = ["python", "-m", "pattern.de", "-s", "Der grosse Hund.", "-OTCRL"] + p = subprocess.Popen(command, stdout=subprocess.PIPE) p.wait() v = p.stdout.read() v = v.strip() self.assertEqual( - v, "Der/DT/B-NP/O/O/der grosse/JJ/I-NP/O/O/gross Hund/NN/I-NP/O/O/hund ././O/O/O/.") + v, + b"Der/DT/B-NP/O/O/der grosse/JJ/I-NP/O/O/gross Hund/NN/I-NP/O/O/hund ././O/O/O/.") print("python -m pattern.de") #------------------------------------------------------------------------- diff --git a/test/test_en.py b/test/test_en.py index 7c4b3cb3..07f55a26 100644 --- a/test/test_en.py +++ b/test/test_en.py @@ -566,7 +566,7 @@ def test_parse(self): i, n = 0, 0 for corpus, a in (("tagged-en-wsj.txt", (0.968, 0.945)), ("tagged-en-oanc.txt", (0.929, 0.932))): for sentence in open(os.path.join(PATH, "corpora", corpus)).readlines(): - sentence = sentence.decode("utf-8").strip() + sentence = sentence.strip() s1 = [w.split("/") for w in sentence.split(" ")] s2 = [[w for w, pos in s1]] s2 = en.parse(s2, tokenize=False) @@ -635,13 +635,13 @@ def test_command_line(self): # Assert parsed output from the command-line (example from the # documentation). - p = ["python", "-m", "pattern.en", "-s", "Nice cat.", "-OTCRL"] - p = subprocess.Popen(p, stdout=subprocess.PIPE) + command = ["python", "-m", "pattern.en", "-s", "Nice cat.", "-OTCRL"] + p = subprocess.Popen(command, stdout=subprocess.PIPE) p.wait() v = p.stdout.read() v = v.strip() self.assertEqual( - v, "Nice/JJ/B-NP/O/O/nice cat/NN/I-NP/O/O/cat ././O/O/O/.") + v, b"Nice/JJ/B-NP/O/O/nice cat/NN/I-NP/O/O/cat ././O/O/O/.") print("python -m pattern.en") #------------------------------------------------------------------------- @@ -678,18 +678,19 @@ def test_text(self): def test_sentence(self): # Assert Sentence. v = self.text[0] - self.assertTrue(v.start == 0) - self.assertTrue(v.stop == 8) - self.assertTrue(v.string == "I 'm eating pizza with a fork .") - self.assertTrue(v.subjects == [self.text[0].chunks[0]]) - self.assertTrue(v.verbs == [self.text[0].chunks[1]]) - self.assertTrue(v.objects == [self.text[0].chunks[2]]) - self.assertTrue( - v.nouns == [self.text[0].words[3], self.text[0].words[6]]) + self.assertEqual(v.start, 0) + self.assertEqual(v.stop, 8) + self.assertEqual(v.string, "I 'm eating pizza with a fork .") + # TODO may be possible to not list each of these? + self.assertEqual(list(v.subjects), [self.text[0].chunks[0]]) + self.assertEqual(list(v.verbs), [self.text[0].chunks[1]]) + self.assertEqual(list(v.objects), [self.text[0].chunks[2]]) + self.assertEqual( + v.nouns, [self.text[0].words[3], self.text[0].words[6]]) # Sentence.string must be unicode. - self.assertTrue(isinstance(v.string, unicode) == True) - self.assertTrue(isinstance(unicode(v), unicode) == True) - self.assertTrue(isinstance(str(v), str) == True) + self.assertEqual(isinstance(v.string, unicode), True) + self.assertEqual(isinstance(unicode(v), unicode), True) + self.assertEqual(isinstance(str(v), str), True) print("pattern.en.Sentence") def test_sentence_constituents(self): @@ -739,7 +740,7 @@ def test_chunk(self): # Assert chunk traversal. self.assertEqual(v.nearest("VP"), self.text[0].chunks[1]) self.assertEqual(v.previous(), self.text[0].chunks[1]) - self.assertEqual(next(v), self.text[0].chunks[3]) + self.assertEqual(v.next(), self.text[0].chunks[3]) print("pattern.en.Chunk") def test_chunk_conjunctions(self): @@ -805,12 +806,6 @@ def test_find(self): self.assertEqual(v, 11) print("pattern.text.tree.find()") - def test_zip(self): - # Assert list of zipped tuples, using default to balance uneven lists. - v = text.tree.zip([1, 2, 3], [4, 5, 6, 7], default=0) - self.assertEqual(v, [(1, 4), (2, 5), (3, 6), (0, 7)]) - print("pattern.text.tree.zip()") - def test_unzip(self): v = text.tree.unzip(1, [(1, 4), (2, 5), (3, 6)]) self.assertEqual(v, [4, 5, 6]) diff --git a/test/test_es.py b/test/test_es.py index 31c5a333..f39a5338 100644 --- a/test/test_es.py +++ b/test/test_es.py @@ -224,14 +224,14 @@ def test_parse(self): # "el gato negro" is a noun phrase, "en la alfombra" is a prepositional noun phrase. v = es.parser.parse(u"El gato negro se sentó en la alfombra.") self.assertEqual(v, # XXX - shouldn't "se" be part of the verb phrase? - u"El/DT/B-NP/O gato/NN/I-NP/O negro/JJ/I-NP/O " + + (u"El/DT/B-NP/O gato/NN/I-NP/O negro/JJ/I-NP/O " + u"se/PRP/B-NP/O sentó/VB/B-VP/O " + u"en/IN/B-PP/B-PNP la/DT/B-NP/I-PNP alfombra/NN/I-NP/I-PNP ././O/O" - ) + )) # Assert the accuracy of the Spanish tagger. i, n = 0, 0 for sentence in open(os.path.join(PATH, "corpora", "tagged-es-wikicorpus.txt")).readlines(): - sentence = sentence.decode("utf-8").strip() + sentence = sentence.strip() s1 = [w.split("/") for w in sentence.split(" ")] s2 = [[w for w, pos in s1]] s2 = es.parse(s2, tokenize=False, tagset=es.PAROLE) @@ -263,7 +263,7 @@ def test_command_line(self): v = p.stdout.read() v = v.strip() self.assertEqual( - v, "El/DT/B-NP/O/O/el gato/NN/I-NP/O/O/gato negro/JJ/I-NP/O/O/negro ././O/O/O/.") + v, b"El/DT/B-NP/O/O/el gato/NN/I-NP/O/O/gato negro/JJ/I-NP/O/O/negro ././O/O/O/.") print("python -m pattern.es") #------------------------------------------------------------------------- diff --git a/test/test_fr.py b/test/test_fr.py index 956858f7..920ab2c6 100644 --- a/test/test_fr.py +++ b/test/test_fr.py @@ -196,7 +196,7 @@ def test_command_line(self): v = p.stdout.read() v = v.strip() self.assertEqual( - v, "Le/DT/B-NP/O/O/le chat/NN/I-NP/O/O/chat noir/JJ/I-NP/O/O/noir ././O/O/O/.") + v, b"Le/DT/B-NP/O/O/le chat/NN/I-NP/O/O/chat noir/JJ/I-NP/O/O/noir ././O/O/O/.") print("python -m pattern.fr") #------------------------------------------------------------------------- diff --git a/test/test_it.py b/test/test_it.py index f0c47d2a..7f422197 100644 --- a/test/test_it.py +++ b/test/test_it.py @@ -241,7 +241,7 @@ def test_parse(self): # Assert the accuracy of the Italian tagger. i, n = 0, 0 for sentence in open(os.path.join(PATH, "corpora", "tagged-it-wacky.txt")).readlines(): - sentence = sentence.decode("utf-8").strip() + sentence = sentence.strip() s1 = [w.split("/") for w in sentence.split(" ")] s2 = [[w for w, pos in s1]] s2 = it.parse(s2, tokenize=False) @@ -278,7 +278,7 @@ def test_command_line(self): v = p.stdout.read() v = v.strip() self.assertEqual( - v, "Il/DT/B-NP/O/O/il gatto/NN/I-NP/O/O/gatto nero/JJ/I-NP/O/O/nero ././O/O/O/.") + v, b"Il/DT/B-NP/O/O/il gatto/NN/I-NP/O/O/gatto nero/JJ/I-NP/O/O/nero ././O/O/O/.") print("python -m pattern.it") #------------------------------------------------------------------------- diff --git a/test/test_nl.py b/test/test_nl.py index 6ea7027f..ca639f29 100644 --- a/test/test_nl.py +++ b/test/test_nl.py @@ -204,7 +204,7 @@ def test_parse(self): # Assert the accuracy of the Dutch tagger. i, n = 0, 0 for sentence in open(os.path.join(PATH, "corpora", "tagged-nl-twnc.txt")).readlines(): - sentence = sentence.decode("utf-8").strip() + sentence = sentence.strip() s1 = [w.split("/") for w in sentence.split(" ")] s1 = [nl.wotan2penntreebank(w, tag) for w, tag in s1] s2 = [[w for w, pos in s1]] @@ -236,7 +236,7 @@ def test_command_line(self): v = p.stdout.read() v = v.strip() self.assertEqual( - v, "Leuke/JJ/B-NP/O/O/leuk kat/NN/I-NP/O/O/kat ././O/O/O/.") + v, b"Leuke/JJ/B-NP/O/O/leuk kat/NN/I-NP/O/O/kat ././O/O/O/.") print("python -m pattern.nl") #------------------------------------------------------------------------- diff --git a/test/test_text.py b/test/test_text.py index 4309534f..00ada55f 100644 --- a/test/test_text.py +++ b/test/test_text.py @@ -247,8 +247,11 @@ def test_dict(self): v = {":-(": 4, ":-)": 1} self.assertEqual(s(v)[0], -0.5) self.assertEqual(s(v)[1], +1.0) - self.assertEqual(s(v).assessments[0], ([":-("], -0.75, 1.0, "mood")) - self.assertEqual(s(v).assessments[1], ([":-)"], +0.50, 1.0, "mood")) + + self.assertEqual(sorted(s(v).assessments), + sorted([([":-("], -0.75, 1.0, "mood"), + ([":-)"], +0.50, 1.0, "mood")])) + print("pattern.text.Sentiment.assessments") def test_bag_of_words(self): @@ -260,8 +263,10 @@ def test_bag_of_words(self): v = BagOfWords({":-(": 4, ":-)": 1}) self.assertEqual(s(v)[0], -0.5) self.assertEqual(s(v)[1], +1.0) - self.assertEqual(s(v).assessments[0], ([":-("], -0.75, 1.0, "mood")) - self.assertEqual(s(v).assessments[1], ([":-)"], +0.50, 1.0, "mood")) + + self.assertEqual(sorted(s(v).assessments), + sorted([([":-("], -0.75, 1.0, "mood"), + ([":-)"], +0.50, 1.0, "mood")])) def test_annotate(self): # Assert custom annotations. diff --git a/test/test_vector.py b/test/test_vector.py index e91347d9..45c4d45b 100644 --- a/test/test_vector.py +++ b/test/test_vector.py @@ -12,6 +12,11 @@ from random import seed seed(0) +try: + xrange +except NameError: # python 3 + xrange = range + def model(top=None): """ Returns a Model of e-mail messages. @@ -50,7 +55,7 @@ def test_decode_utf8(self): def test_encode_utf8(self): # Assert Python bytestring. for s in self.strings: - self.assertTrue(isinstance(vector.encode_utf8(s), str)) + self.assertTrue(isinstance(vector.encode_utf8(s), bytes)) print("pattern.vector.encode_utf8()") #------------------------------------------------------------------------- @@ -459,7 +464,8 @@ def test_frequent_concept_sets(self): # Assert Apriori algorithm. v = self.model.frequent(threshold=0.5) self.assertEqual( - sorted(v.keys()), [frozenset(["dogs"]), frozenset(["cats"])]) + sorted(v.keys(), key=lambda x: str(x)), + [frozenset(["cats"]), frozenset(["dogs"])]) print("pattern.vector.Model.frequent()") def test_cosine_similarity(self):