-
Notifications
You must be signed in to change notification settings - Fork 2
/
catmull-clark.jl
259 lines (191 loc) · 8.11 KB
/
catmull-clark.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# Copyright 2020 Paul Melis ([email protected])
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
using Printf
using StaticArrays
using PythonCall
include("halfedge.jl")
# Some utility functions to handle Julia's 1-based indexing
function get_vertex(V, idx)
s = 1+3*(idx-1)
return SVector(V[s], V[s+1], V[s+2])
end
function set_vertex(V, idx, v)
s = 1+3*(idx-1)
V[s:s+2] = v
end
function time_subdivide(vertices::PyArray, loop_start::PyArray, loop_total::PyArray, loops::PyArray)
@timev subdivide(vertices, loop_start, loop_total, loops)
end
function subdivide_ptrs(
vertices_ptr, vertices_length,
loop_start_ptr, loop_start_length,
loop_total_ptr, loop_total_length,
loops_ptr, loops_length)
#println(vertices_ptr, " ", vertices_length)
vertices = unsafe_wrap(Array{Float32,1}, Ptr{Float32}(vertices_ptr), vertices_length);
loop_start = unsafe_wrap(Array{UInt32,1}, Ptr{UInt32}(loop_start_ptr), loop_start_length);
loop_total = unsafe_wrap(Array{UInt32,1}, Ptr{UInt32}(loop_total_ptr), loop_total_length);
loops = unsafe_wrap(Array{UInt32,1}, Ptr{UInt32}(loops_ptr), loops_length);
#println(vertices)
#println(loop_start)
#println(loop_total)
#println(loops)
return subdivide(vertices, loop_start, loop_total, loops)
end
function subdivide(vertices::PyArray, loop_start::PyArray, loop_total::PyArray, loops::PyArray)
#println("(Julia) vertices ", vertices)
#println("(Julia) loop_start ", loop_start)
#println("(Julia) loop_total ", loop_total)
#println("(Julia) loops ", loops)
# Note: we turn Blender's 0-based indices into Julia's
# 1-based indices to avoid a whole load of +/- 1 fiddling
loop_start .+= 1
loops .+= 1
t0 = time()
num_vertices, num_faces, num_edges, vertex_start_edges, face_start_edges, polygon_edges = build(vertices, loop_start, loop_total, loops)
#println(num_vertices)
#println(num_faces)
#println(num_edges)
#println(vertex_start_edges)
#println(face_start_edges)
#println(polygon_edges)
t1 = time()
@printf("(Julia) Building half edges done in %.3fms\n", 1000*(t1-t0))
println("(Julia) Input: $(num_vertices) vertices, $(num_faces) polygons, $(num_edges) polygon edges")
# One new vertex for each input face, one new vertex for each edge
output_num_vertices = num_vertices + num_faces + num_edges
# 1 .. NV Original input vertices (initially, are overwritten later on)
# NV+1 .. NV+NF New face points
# NV+NF+1 .. end New edge points
output_vertices = Array{Float32}(undef, 3*output_num_vertices)
# Copy original input vertex positions, to be modified later on
output_vertices[1:3*num_vertices] = vertices
# Output is always all quads, as each input face is split into n quads,
# where n is the number of vertices in the face
output_num_quads = sum(loop_total)
output_loop_start = collect(range(UInt32(1), step=UInt32(4), stop=UInt32(output_num_quads*4)))
output_loop_total = fill(UInt32(4), output_num_quads)
output_loops = Array{UInt32}(undef, 4*output_num_quads)
# Wether a vertex is on the boundary
is_boundary_vertex = zeros(Bool, num_vertices)
println("(Julia) Output: $(output_num_vertices) vertices, $(output_num_quads) quads")
function face_point_index(fi)
return num_vertices + fi
end
function edge_point_index(ei)
return num_vertices + num_faces + ei
end
#
# Subdivide
#
# Add new face points: average of existing original face vertices
for fi = 1:num_faces
sum = SVector{3, Float32}(0.0, 0.0, 0.0)
n = 0
he = start = face_start_edges[fi]
while true
sum += get_vertex(vertices, he.source)
n += 1
he = he.next
if he == start break end
end
#println("face point ", fi, " ", sum/n)
set_vertex(output_vertices, face_point_index(fi), sum / n)
end
#println("FV ", face_vertices)
#println("OV ", output_vertices)
# Add new edge points: average of edge endpoints and neighbouring face points
for ei = 1:num_edges
he = polygon_edges[ei]
if he.sibling != nothing
edge_point = (
get_vertex(output_vertices, face_point_index(he.face))
+
get_vertex(output_vertices, face_point_index(he.sibling.face))
+
get_vertex(output_vertices, he.source)
+
get_vertex(output_vertices, he.target)
) / 4
else
# Boundary rule
edge_point = 0.5*(get_vertex(output_vertices, he.source) + get_vertex(output_vertices, he.target))
is_boundary_vertex[he.source] = is_boundary_vertex[he.target] = true
end
#println("edge point ", ei, " ", edge_point)
set_vertex(output_vertices, edge_point_index(ei), edge_point)
end
# Move original input vertices to new positions
for vi = 1:num_vertices
if !haskey(vertex_start_edges, vi)
# Skip unconnected vertices
continue
end
P = get_vertex(output_vertices, vi)
if is_boundary_vertex[vi]
he = vertex_start_edges[vi]
Pp = (
get_vertex(output_vertices, he.target)
+
6*P
+
get_vertex(output_vertices, he.prev.source)
) / 8
set_vertex(output_vertices, vi, Pp)
else
F_sum = SVector{3, Float32}(0, 0, 0)
R_sum = SVector{3, Float32}(0, 0, 0)
n = 0
# R = average of edge midpoints
# = 1/n * sum_i(0.5*(P+Q_i))
# = 1/n * (0.5*n*P + 0.5*sum_i(Q_i))
# = 0.5*P + 1/2n * sum_i(Q_i)
he = start = vertex_start_edges[vi]
while true
F_sum += get_vertex(output_vertices, face_point_index(he.face))
R_sum += get_vertex(output_vertices, he.target)
n += 1
@assert he.sibling != nothing
he = he.sibling.next
if he == start break end
end
F = F_sum / n
R = R_sum / (2*n) + 0.5f0 * P
set_vertex(output_vertices, vi, (F + 2*R + (n-3)*P) / n)
end
end
# Create new face loops for the quads for each subdivided original face
offs = 1
ofi = 1
for fi = 1:num_faces
he = start = face_start_edges[fi]
while true
output_loop_start[ofi] = offs
output_loops[offs] = edge_point_index(he.index)
output_loops[offs+1] = he.target
output_loops[offs+2] = edge_point_index(he.next.index)
output_loops[offs+3] = face_point_index(he.face)
offs += 4
ofi += 1
he = he.next
if he == start break end
end
end
t2 = time()
@printf("(Julia) Subdivision done in %.3fms\n", 1000*(t2-t1))
# Back to the sanity of 0-based indexing ;-)
output_loop_start .-= 1
output_loops .-= 1
return output_vertices, output_loop_start, output_loop_total, output_loops
end