-
-
Notifications
You must be signed in to change notification settings - Fork 52
/
index.ts
350 lines (349 loc) · 23.2 KB
/
index.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
/*! noble-ed25519 - MIT License (c) 2019 Paul Miller (paulmillr.com) */
const P = 2n ** 255n - 19n; // ed25519 is twisted edwards curve
const N = 2n ** 252n + 27742317777372353535851937790883648493n; // curve's (group) order
const Gx = 0x216936d3cd6e53fec0a4e231fdd6dc5c692cc7609525a7b2c9562d608f25d51an; // base point x
const Gy = 0x6666666666666666666666666666666666666666666666666666666666666658n; // base point y
const CURVE = { // Curve's formula is −x² + y² = -a + dx²y²
a: -1n, // where a=-1, d = -(121665/121666) == -(121665 * inv(121666)) mod P
d: 37095705934669439343138083508754565189542113879843219016388785533085940283555n,
p: P, n: N, h: 8, Gx, Gy // field prime, curve (group) order, cofactor
};
type Bytes = Uint8Array; type Hex = Bytes | string; // types
const err = (m = ''): never => { throw new Error(m); }; // error helper, messes-up stack trace
const isS = (s: unknown): s is string => typeof s === 'string'; // is string
const isu8 = (a: unknown): a is Uint8Array => (
a instanceof Uint8Array || (ArrayBuffer.isView(a) && a.constructor.name === 'Uint8Array')
);
const au8 = (a: unknown, l?: number): Bytes => // is Uint8Array (of specific length)
!isu8(a) || (typeof l === 'number' && l > 0 && a.length !== l) ?
err('Uint8Array of valid length expected') : a;
const u8n = (data?: any) => new Uint8Array(data); // creates Uint8Array
const toU8 = (a: Hex, len?: number) => au8(isS(a) ? h2b(a) : u8n(au8(a)), len); // norm(hex/u8a) to u8a
const M = (a: bigint, b = P) => { let r = a % b; return r >= 0n ? r : b + r; }; // mod division
const isPoint = (p: any) => (p instanceof Point ? p : err('Point expected')); // is xyzt point
interface AffinePoint { x: bigint, y: bigint } // Point in 2d xy affine coordinates
class Point { // Point in xyzt extended coordinates
constructor(readonly ex: bigint, readonly ey: bigint, readonly ez: bigint, readonly et: bigint) {}
static readonly BASE = new Point(Gx, Gy, 1n, M(Gx * Gy)); // Generator / Base point
static readonly ZERO = new Point(0n, 1n, 1n, 0n); // Identity / Zero point
static fromAffine(p: AffinePoint) { return new Point(p.x, p.y, 1n, M(p.x * p.y)); }
static fromHex(hex: Hex, zip215 = false) { // RFC8032 5.1.3: hex / Uint8Array to Point.
const { d } = CURVE;
hex = toU8(hex, 32);
const normed = hex.slice(); // copy the array to not mess it up
const lastByte = hex[31];
normed[31] = lastByte & ~0x80; // adjust first LE byte = last BE byte
const y = b2n_LE(normed); // decode as little-endian, convert to num
if (zip215 && !(0n <= y && y < 2n ** 256n)) err('bad y coord 1'); // zip215=true [1..2^256-1]
if (!zip215 && !(0n <= y && y < P)) err('bad y coord 2'); // zip215=false [1..P-1]
const y2 = M(y * y); // y²
const u = M(y2 - 1n); // u=y²-1
const v = M(d * y2 + 1n); // v=dy²+1
let { isValid, value: x } = uvRatio(u, v); // (uv³)(uv⁷)^(p-5)/8; square root
if (!isValid) err('bad y coordinate 3'); // not square root: bad point
const isXOdd = (x & 1n) === 1n; // adjust sign of x coordinate
const isLastByteOdd = (lastByte & 0x80) !== 0; // x_0, last bit
if (!zip215 && x === 0n && isLastByteOdd) err('bad y coord 3'); // x=0 and x_0 = 1
if (isLastByteOdd !== isXOdd) x = M(-x);
return new Point(x, y, 1n, M(x * y)); // Z=1, T=xy
}
get x() { return this.toAffine().x; } // .x, .y will call expensive toAffine.
get y() { return this.toAffine().y; } // Should be used with care.
equals(other: Point): boolean { // equality check: compare points
const { ex: X1, ey: Y1, ez: Z1 } = this;
const { ex: X2, ey: Y2, ez: Z2 } = isPoint(other); // isPoint() checks class equality
const X1Z2 = M(X1 * Z2), X2Z1 = M(X2 * Z1);
const Y1Z2 = M(Y1 * Z2), Y2Z1 = M(Y2 * Z1);
return X1Z2 === X2Z1 && Y1Z2 === Y2Z1;
}
is0(): boolean { return this.equals(I); }
negate(): Point { // negate: flip over the affine x coordinate
return new Point(M(-this.ex), this.ey, this.ez, M(-this.et));
}
double(): Point { // Point doubling. Complete formula.
const { ex: X1, ey: Y1, ez: Z1 } = this; // Cost: 4M + 4S + 1*a + 6add + 1*2
const { a } = CURVE; // https://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html#doubling-dbl-2008-hwcd
const A = M(X1 * X1); const B = M(Y1 * Y1); const C = M(2n * M(Z1 * Z1));
const D = M(a * A); const x1y1 = X1 + Y1; const E = M(M(x1y1 * x1y1) - A - B);
const G = D + B; const F = G - C; const H = D - B;
const X3 = M(E * F); const Y3 = M(G * H); const T3 = M(E * H); const Z3 = M(F * G);
return new Point(X3, Y3, Z3, T3);
}
add(other: Point) { // Point addition. Complete formula.
const { ex: X1, ey: Y1, ez: Z1, et: T1 } = this; // Cost: 8M + 1*k + 8add + 1*2.
const { ex: X2, ey: Y2, ez: Z2, et: T2 } = isPoint(other); // doesn't check if other on-curve
const { a, d } = CURVE; // http://hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html#addition-add-2008-hwcd-3
const A = M(X1 * X2); const B = M(Y1 * Y2); const C = M(T1 * d * T2);
const D = M(Z1 * Z2); const E = M((X1 + Y1) * (X2 + Y2) - A - B);
const F = M(D - C); const G = M(D + C); const H = M(B - a * A);
const X3 = M(E * F); const Y3 = M(G * H); const T3 = M(E * H); const Z3 = M(F * G);
return new Point(X3, Y3, Z3, T3);
}
mul(n: bigint, safe = true): Point { // Multiply point by scalar n
if (n === 0n) return safe === true ? err('cannot multiply by 0') : I;
if (!(typeof n === 'bigint' && 0n < n && n < N)) err('invalid scalar, must be < L');
if (!safe && this.is0() || n === 1n) return this; // safe=true bans 0. safe=false allows 0.
if (this.equals(G)) return wNAF(n).p; // use wNAF precomputes for base points
let p = I, f = G; // init result point & fake point
for (let d: Point = this; n > 0n; d = d.double(), n >>= 1n) { // double-and-add ladder
if (n & 1n) p = p.add(d); // if bit is present, add to point
else if (safe) f = f.add(d); // if not, add to fake for timing safety
}
return p;
}
multiply(scalar: bigint) { return this.mul(scalar); } // Aliases for compatibilty
clearCofactor(): Point { return this.mul(BigInt(CURVE.h), false); } // multiply by cofactor
isSmallOrder(): boolean { return this.clearCofactor().is0(); } // check if P is small order
isTorsionFree(): boolean { // multiply by big number CURVE.n
let p = this.mul(N / 2n, false).double(); // ensures the point is not "bad".
if (N % 2n) p = p.add(this); // P^(N+1) // P*N == (P*(N/2))*2+P
return p.is0();
}
toAffine(): AffinePoint { // converts point to 2d xy affine point
const { ex: x, ey: y, ez: z } = this; // (x, y, z, t) ∋ (x=x/z, y=y/z, t=xy)
if (this.equals(I)) return { x: 0n, y: 1n }; // fast-path for zero point
const iz = invert(z, P); // z^-1: invert z
if (M(z * iz) !== 1n) err('invalid inverse'); // (z * z^-1) must be 1, otherwise bad math
return { x: M(x * iz), y: M(y * iz) } // x = x*z^-1; y = y*z^-1
}
toRawBytes(): Bytes { // Encode to Uint8Array
const { x, y } = this.toAffine(); // convert to affine 2d point
const b = n2b_32LE(y); // encode number to 32 bytes
b[31] |= x & 1n ? 0x80 : 0; // store sign in first LE byte
return b;
}
toHex(): string { return b2h(this.toRawBytes()); } // encode to hex string
}
const { BASE: G, ZERO: I } = Point; // Generator, identity points
const padh = (num: number | bigint, pad: number) => num.toString(16).padStart(pad, '0')
const b2h = (b: Bytes): string => Array.from(au8(b)).map(e => padh(e, 2)).join(''); // bytes to hex
const C = { _0: 48, _9: 57, A: 65, F: 70, a: 97, f: 102 } as const; // ASCII characters
const _ch = (ch: number): number | undefined => {
if (ch >= C._0 && ch <= C._9) return ch - C._0; // '2' => 50-48
if (ch >= C.A && ch <= C.F) return ch - (C.A - 10); // 'B' => 66-(65-10)
if (ch >= C.a && ch <= C.f) return ch - (C.a - 10); // 'b' => 98-(97-10)
return;
};
const h2b = (hex: string): Bytes => { // hex to bytes
const e = 'hex invalid';
if (!isS(hex)) return err(e);
const hl = hex.length, al = hl / 2;
if (hl % 2) return err(e);
const array = u8n(al);
for (let ai = 0, hi = 0; ai < al; ai++, hi += 2) { // treat each char as ASCII
const n1 = _ch(hex.charCodeAt(hi)); // parse first char, multiply it by 16
const n2 = _ch(hex.charCodeAt(hi + 1)); // parse second char
if (n1 === undefined || n2 === undefined) return err(e);
array[ai] = n1 * 16 + n2; // example: 'A9' => 10*16 + 9
}
return array;
};
const n2b_32LE = (num: bigint) => h2b(padh(num, 32 * 2)).reverse(); // number to bytes LE
const b2n_LE = (b: Bytes): bigint => BigInt('0x' + b2h(u8n(au8(b)).reverse())); // bytes LE to num
const concatB = (...arrs: Bytes[]) => { // concatenate Uint8Array-s
const r = u8n(arrs.reduce((sum, a) => sum + au8(a).length, 0)); // create u8a of summed length
let pad = 0; // walk through each array,
arrs.forEach(a => {r.set(a, pad); pad += a.length}); // ensure they have proper type
return r;
};
const invert = (num: bigint, md: bigint): bigint => { // modular inversion
if (num === 0n || md <= 0n) err('no inverse n=' + num + ' mod=' + md); // no neg exponent for now
let a = M(num, md), b = md, x = 0n, y = 1n, u = 1n, v = 0n;
while (a !== 0n) { // uses euclidean gcd algorithm
const q = b / a, r = b % a; // not constant-time
const m = x - u * q, n = y - v * q;
b = a, a = r, x = u, y = v, u = m, v = n;
}
return b === 1n ? M(x, md) : err('no inverse'); // b is gcd at this point
};
const pow2 = (x: bigint, power: bigint): bigint => { // pow2(x, 4) == x^(2^4)
let r = x;
while (power-- > 0n) { r *= r; r %= P; }
return r;
}
const pow_2_252_3 = (x: bigint) => { // x^(2^252-3) unrolled util for square root
const x2 = (x * x) % P; // x^2, bits 1
const b2 = (x2 * x) % P; // x^3, bits 11
const b4 = (pow2(b2, 2n) * b2) % P; // x^(2^4-1), bits 1111
const b5 = (pow2(b4, 1n) * x) % P; // x^(2^5-1), bits 11111
const b10 = (pow2(b5, 5n) * b5) % P; // x^(2^10)
const b20 = (pow2(b10, 10n) * b10) % P; // x^(2^20)
const b40 = (pow2(b20, 20n) * b20) % P; // x^(2^40)
const b80 = (pow2(b40, 40n) * b40) % P; // x^(2^80)
const b160 = (pow2(b80, 80n) * b80) % P; // x^(2^160)
const b240 = (pow2(b160, 80n) * b80) % P; // x^(2^240)
const b250 = (pow2(b240, 10n) * b10) % P; // x^(2^250)
const pow_p_5_8 = (pow2(b250, 2n) * x) % P; // < To pow to (p+3)/8, multiply it by x.
return { pow_p_5_8, b2 };
}
const RM1 = 19681161376707505956807079304988542015446066515923890162744021073123829784752n; // √-1
const uvRatio = (u: bigint, v: bigint): { isValid: boolean, value: bigint } => { // for sqrt comp
const v3 = M(v * v * v); // v³
const v7 = M(v3 * v3 * v); // v⁷
const pow = pow_2_252_3(u * v7).pow_p_5_8; // (uv⁷)^(p-5)/8
let x = M(u * v3 * pow); // (uv³)(uv⁷)^(p-5)/8
const vx2 = M(v * x * x); // vx²
const root1 = x; // First root candidate
const root2 = M(x * RM1); // Second root candidate; RM1 is √-1
const useRoot1 = vx2 === u; // If vx² = u (mod p), x is a square root
const useRoot2 = vx2 === M(-u); // If vx² = -u, set x <-- x * 2^((p-1)/4)
const noRoot = vx2 === M(-u * RM1); // There is no valid root, vx² = -u√-1
if (useRoot1) x = root1;
if (useRoot2 || noRoot) x = root2; // We return root2 anyway, for const-time
if ((M(x) & 1n) === 1n) x = M(-x); // edIsNegative
return { isValid: useRoot1 || useRoot2, value: x };
}
const modL_LE = (hash: Bytes): bigint => M(b2n_LE(hash), N); // modulo L; but little-endian
type Sha512FnSync = undefined | ((...messages: Bytes[]) => Bytes);
let _shaS: Sha512FnSync;
const sha512a = (...m: Bytes[]) => etc.sha512Async(...m); // Async SHA512
const sha512s = (...m: Bytes[]) => // Sync SHA512, not set by default
typeof _shaS === 'function' ? _shaS(...m) : err('etc.sha512Sync not set');
type ExtK = { head: Bytes, prefix: Bytes, scalar: bigint, point: Point, pointBytes: Bytes };
const hash2extK = (hashed: Bytes): ExtK => { // RFC8032 5.1.5
const head = hashed.slice(0, 32); // slice creates a copy, unlike subarray
head[0] &= 248; // Clamp bits: 0b1111_1000,
head[31] &= 127; // 0b0111_1111,
head[31] |= 64; // 0b0100_0000
const prefix = hashed.slice(32, 64); // private key "prefix"
const scalar = modL_LE(head); // modular division over curve order
const point = G.mul(scalar); // public key point
const pointBytes = point.toRawBytes(); // point serialized to Uint8Array
return { head, prefix, scalar, point, pointBytes };
}
// RFC8032 5.1.5; getPublicKey async, sync. Hash priv key and extract point.
const getExtendedPublicKeyAsync = (priv: Hex) => sha512a(toU8(priv, 32)).then(hash2extK);
const getExtendedPublicKey = (priv: Hex) => hash2extK(sha512s(toU8(priv, 32)))
const getPublicKeyAsync = (priv: Hex): Promise<Bytes> =>
getExtendedPublicKeyAsync(priv).then(p => p.pointBytes)
const getPublicKey = (priv: Hex): Bytes => getExtendedPublicKey(priv).pointBytes;
type Finishable<T> = { // Reduces logic duplication between
hashable: Bytes, finish: (hashed: Bytes) => T // sync & async versions of sign(), verify()
} // hashable=start(); finish(hash(hashable));
function hashFinish<T>(asynchronous: true, res: Finishable<T>): Promise<T>;
function hashFinish<T>(asynchronous: false, res: Finishable<T>): T;
function hashFinish<T>(asynchronous: boolean, res: Finishable<T>) {
if (asynchronous) return sha512a(res.hashable).then(res.finish);
return res.finish(sha512s(res.hashable));
}
const _sign = (e: ExtK, rBytes: Bytes, msg: Bytes): Finishable<Bytes> => { // sign() shared code
const { pointBytes: P, scalar: s } = e;
const r = modL_LE(rBytes); // r was created outside, reduce it modulo L
const R = G.mul(r).toRawBytes(); // R = [r]B
const hashable = concatB(R, P, msg); // dom2(F, C) || R || A || PH(M)
const finish = (hashed: Bytes): Bytes => { // k = SHA512(dom2(F, C) || R || A || PH(M))
const S = M(r + modL_LE(hashed) * s, N); // S = (r + k * s) mod L; 0 <= s < l
return au8(concatB(R, n2b_32LE(S)), 64); // 64-byte sig: 32b R.x + 32b LE(S)
}
return { hashable, finish };
};
const signAsync = async (msg: Hex, privKey: Hex): Promise<Bytes> => {
const m = toU8(msg); // RFC8032 5.1.6: sign msg with key async
const e = await getExtendedPublicKeyAsync(privKey); // pub,prfx
const rBytes = await sha512a(e.prefix, m); // r = SHA512(dom2(F, C) || prefix || PH(M))
return hashFinish(true, _sign(e, rBytes, m)); // gen R, k, S, then 64-byte signature
};
const sign = (msg: Hex, privKey: Hex): Bytes => {
const m = toU8(msg); // RFC8032 5.1.6: sign msg with key sync
const e = getExtendedPublicKey(privKey); // pub,prfx
const rBytes = sha512s(e.prefix, m); // r = SHA512(dom2(F, C) || prefix || PH(M))
return hashFinish(false, _sign(e, rBytes, m)); // gen R, k, S, then 64-byte signature
};
const dvo = { zip215: true };
const _verify = (sig: Hex, msg: Hex, pub: Hex, opts = dvo): Finishable<boolean> => {
sig = toU8(sig, 64); // Signature hex str/Bytes, must be 64 bytes
msg = toU8(msg); // Message hex str/Bytes
pub = toU8(pub, 32);
const { zip215 } = opts; // switch between zip215 and rfc8032 verif
let A: Point, R: Point, s: bigint, SB: Point, hashable = new Uint8Array();
try {
A = Point.fromHex(pub, zip215); // public key A decoded
R = Point.fromHex(sig.slice(0, 32), zip215); // 0 <= R < 2^256: ZIP215 R can be >= P
s = b2n_LE(sig.slice(32, 64)); // Decode second half as an integer S
SB = G.mul(s, false); // in the range 0 <= s < L
hashable = concatB(R.toRawBytes(), A.toRawBytes(), msg); // dom2(F, C) || R || A || PH(M)
} catch (error) {}
const finish = (hashed: Bytes): boolean => { // k = SHA512(dom2(F, C) || R || A || PH(M))
if (SB == null) return false; // false if try-catch catched an error
if (!zip215 && A.isSmallOrder()) return false; // false for SBS: Strongly Binding Signature
const k = modL_LE(hashed); // decode in little-endian, modulo L
const RkA = R.add(A.mul(k, false)); // [8]R + [8][k]A'
return RkA.add(SB.negate()).clearCofactor().is0(); // [8][S]B = [8]R + [8][k]A'
}
return { hashable, finish };
};
// RFC8032 5.1.7: verification async, sync
const verifyAsync = async (s: Hex, m: Hex, p: Hex, opts = dvo) =>
hashFinish(true, _verify(s, m, p, opts));
const verify = (s: Hex, m: Hex, p: Hex, opts = dvo) =>
hashFinish(false, _verify(s, m, p, opts));
declare const globalThis: Record<string, any> | undefined; // Typescript symbol present in browsers
const cr = () => // We support: 1) browsers 2) node.js 19+
typeof globalThis === 'object' && 'crypto' in globalThis && 'subtle' in globalThis.crypto ? globalThis.crypto : undefined;
const etc = {
bytesToHex: b2h, hexToBytes: h2b, concatBytes: concatB,
mod: M, invert,
randomBytes: (len = 32): Bytes => { // CSPRNG (random number generator)
const crypto = cr(); // Can be shimmed in node.js <= 18 to prevent error:
// import { webcrypto } from 'node:crypto';
// if (!globalThis.crypto) globalThis.crypto = webcrypto;
if (!crypto || !crypto.getRandomValues) err('crypto.getRandomValues must be defined');
return crypto.getRandomValues(u8n(len));
},
sha512Async: async (...messages: Bytes[]): Promise<Bytes> => {
const crypto = cr();
if (!crypto || !crypto.subtle) err('crypto.subtle or etc.sha512Async must be defined');
const m = concatB(...messages);
return u8n(await crypto.subtle.digest('SHA-512', m.buffer));
},
sha512Sync: undefined as Sha512FnSync, // Actual logic below
};
Object.defineProperties(etc, { sha512Sync: { // Allow setting it once. Next sets will be ignored
configurable: false, get() { return _shaS; }, set(f) { if (!_shaS) _shaS = f; },
} });
const utils = {
getExtendedPublicKeyAsync, getExtendedPublicKey,
randomPrivateKey: (): Bytes => etc.randomBytes(32),
precompute(w=8, p: Point = G) { p.multiply(3n); w; return p; }, // no-op
}
const W = 8; // Precomputes-related code. W = window size
const precompute = () => { // They give 12x faster getPublicKey(),
const points: Point[] = []; // 10x sign(), 2x verify(). To achieve this,
const windows = 256 / W + 1; // app needs to spend 40ms+ to calculate
let p = G, b = p; // a lot of points related to base point G.
for (let w = 0; w < windows; w++) { // Points are stored in array and used
b = p; // any time Gx multiplication is done.
points.push(b); // They consume 16-32 MiB of RAM.
for (let i = 1; i < 2 ** (W - 1); i++) { b = b.add(p); points.push(b); }
p = b.double(); // Precomputes don't speed-up getSharedKey,
} // which multiplies user point by scalar,
return points; // when precomputes are using base point
}
let Gpows: Point[] | undefined = undefined; // precomputes for base point G
const wNAF = (n: bigint): { p: Point; f: Point } => { // w-ary non-adjacent form (wNAF) method.
// Compared to other point mult methods,
const comp = Gpows || (Gpows = precompute()); // stores 2x less points using subtraction
const neg = (cnd: boolean, p: Point) => { let n = p.negate(); return cnd ? n : p; } // negate
let p = I, f = G; // f must be G, or could become I in the end
const windows = 1 + 256 / W; // W=8 17 windows
const wsize = 2 ** (W - 1); // W=8 128 window size
const mask = BigInt(2 ** W - 1); // W=8 will create mask 0b11111111
const maxNum = 2 ** W; // W=8 256
const shiftBy = BigInt(W); // W=8 8
for (let w = 0; w < windows; w++) {
const off = w * wsize;
let wbits = Number(n & mask); // extract W bits.
n >>= shiftBy; // shift number by W bits.
if (wbits > wsize) { wbits -= maxNum; n += 1n; } // split if bits > max: +224 => 256-32
const off1 = off, off2 = off + Math.abs(wbits) - 1; // offsets, evaluate both
const cnd1 = w % 2 !== 0, cnd2 = wbits < 0; // conditions, evaluate both
if (wbits === 0) {
f = f.add(neg(cnd1, comp[off1])); // bits are 0: add garbage to fake point
} else { // ^ can't add off2, off2 = I
p = p.add(neg(cnd2, comp[off2])); // bits are 1: add to result point
}
}
return { p, f } // return both real and fake points for JIT
}; // !! you can disable precomputes by commenting-out call of the wNAF() inside Point#mul()
export { getPublicKey, getPublicKeyAsync, sign, verify, // Remove the export to easily use in REPL
signAsync, verifyAsync, CURVE, etc, utils, Point as ExtendedPoint } // envs like browser console