-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathimage_demo.py
64 lines (51 loc) · 2.22 KB
/
image_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#! /usr/bin/env python
# coding=utf-8
#================================================================
# Copyright (C) 2019 * Ltd. All rights reserved.
#
# Editor : VIM
# File name : image_demo.py
# Author : Payal Sutaria
# Created date: 2023-22-01 16:06:06
# Description :
#
#================================================================
import cv2
import numpy as np
import core.utils as utils
import tensorflow as tf
from PIL import Image
import time
return_elements = ["input/input_data:0", "pred_sbbox/concat_2:0", "pred_mbbox/concat_2:0", "pred_lbbox/concat_2:0"]
pb_file = "./yolov3_weed.pb"
image_path = "C:\\Users\\Payal.Sutaria\\Downloads\\OpenAI Hackathon\\Weed_Detection5a431d7\\data\\agri_0_7656.jpeg" # "./docs/images/road.jpeg"
classes = ['crop', 'weed']
num_classes = len(classes) #80
input_size = 416
graph = tf.Graph()
original_image = cv2.imread(image_path)
original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
original_image_size = original_image.shape[:2]
image_data = utils.image_preporcess(np.copy(original_image), [input_size, input_size])
image_data = image_data[np.newaxis, ...]
return_tensors = utils.read_pb_return_tensors(graph, pb_file, return_elements)
for i in range(10):
start_dt = time.time()
with tf.Session(graph=graph) as sess:
pred_sbbox, pred_mbbox, pred_lbbox = sess.run(
[return_tensors[1], return_tensors[2], return_tensors[3]],
feed_dict={ return_tensors[0]: image_data})
end_dt = time.time()
duration = end_dt - start_dt
# hours = duration // 3600
# minutes = (duration - (hours * 3600)) // 60
# seconds = duration - ((hours * 3600) + (minutes * 60))
print("Inference Time : ", str((duration)*1000) + " ms")
pred_bbox = np.concatenate([np.reshape(pred_sbbox, (-1, 5 + num_classes)),
np.reshape(pred_mbbox, (-1, 5 + num_classes)),
np.reshape(pred_lbbox, (-1, 5 + num_classes))], axis=0)
bboxes = utils.postprocess_boxes(pred_bbox, original_image_size, input_size, 0.3)
bboxes = utils.nms(bboxes, 0.45, method='nms')
image = utils.draw_bbox(original_image, bboxes)
image = Image.fromarray(image)
image.show()