-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcallbacks.py
193 lines (158 loc) · 7.72 KB
/
callbacks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import os as the_os
from keras.callbacks import TensorBoard, ModelCheckpoint, ReduceLROnPlateau, EarlyStopping
from constants import batch_size, add_callbacks, sample_path, get_log_path
from generator import ImgDataGenerator
def get_callbacks():
if add_callbacks:
# activate ml-gpu
# (ml-gpu) C:\...\SR-ResCNN-Keras-\logs>
# tensorboard --logdir .
# We want to create a directory for each run
log_dir = get_log_path()
if not the_os.path.isdir(log_dir):
the_os.mkdir(log_dir)
tbCallBack = TensorBoard(log_dir=log_dir,
histogram_freq=0, # epoch-frequency of calculations
write_graph=True,
write_images=True,
write_grads=True,
batch_size=batch_size)
save_callback = ModelCheckpoint("save/weights.{epoch:02d}-{val_loss:.2f}.hdf5",
monitor='val_loss',
verbose=1,
save_best_only=True,
save_weights_only=False,
mode='auto',
period=4) # Interval (number of epochs) between checkpoints.
reduce_lr_cb = ReduceLROnPlateau(monitor='val_loss',
factor=0.1, # new_lr = lr * factor
patience=4, # number of epochs with no improvement before updating
verbose=1,
mode='auto',
min_delta=0.0001,
cooldown=0,
min_lr=0)
stop_callback = EarlyStopping(monitor='val_loss',
min_delta=0.00001, # change of less than min_delta will count as no improvement
patience=10, # number of epochs with no improvement before stopping
verbose=1,
mode='auto',
baseline=None)
import fnmatch
import os
nb_samples = len(fnmatch.filter(os.listdir(sample_path), '*.png'))
sample_gen = ImgDataGenerator(sample_path,
validation_split=0.0,
nb_samples=nb_samples,
random_samples=False).get_full_generator()
diagnose_cb = ModelDiagnoser(sample_gen, # data_generator
batch_size, # batch_size
nb_samples, # num_samples
log_dir, # output_dir
0) # normalization_mean
# To include the full list:
# return [save_callback, stop_callback, reduce_lr_cb, tbCallBack, diagnose_cb]
return [tbCallBack, diagnose_cb]
else:
return None
# The "Model Diagnoser" sends sample images to the Tensorboard
# see https://stackoverflow.com/a/55856716/9768291
import io
import numpy as np
import tensorflow as tf
from PIL import Image
from keras.callbacks import Callback
from keras.utils import GeneratorEnqueuer, Sequence, OrderedEnqueuer
def make_image_tensor(tensor):
"""
Convert an numpy representation image to Image protobuf.
Adapted from https://github.com/lanpa/tensorboard-pytorch/
"""
if len(tensor.shape) == 3:
height, width, channel = tensor.shape
else:
height, width = tensor.shape
channel = 1
tensor = tensor.astype(np.uint8)
image = Image.fromarray(tensor)
output = io.BytesIO()
image.save(output, format='PNG')
image_string = output.getvalue()
output.close()
return tf.Summary.Image(height=height,
width=width,
colorspace=channel,
encoded_image_string=image_string)
class TensorBoardWriter:
def __init__(self, outdir):
assert (the_os.path.isdir(outdir))
self.outdir = outdir
self.writer = tf.compat.v1.summary.FileWriter(self.outdir,
flush_secs=10)
def save_image(self, tag, image, global_step=None):
image_tensor = make_image_tensor(image)
self.writer.add_summary(tf.Summary(value=[tf.Summary.Value(tag=tag, image=image_tensor)]),
global_step)
def close(self):
"""
To be called in the end
"""
self.writer.close()
class ModelDiagnoser(Callback):
def __init__(self, data_generator, m_batch_size, num_samples, output_dir, normalization_mean):
super().__init__()
self.epoch_index = 0
self.data_generator = data_generator
self.batch_size = m_batch_size
self.num_samples = num_samples
self.tensorboard_writer = TensorBoardWriter(output_dir)
self.normalization_mean = normalization_mean
is_sequence = isinstance(self.data_generator, Sequence)
if is_sequence:
self.enqueuer = OrderedEnqueuer(self.data_generator,
use_multiprocessing=True,
shuffle=False)
else:
self.enqueuer = GeneratorEnqueuer(self.data_generator,
use_multiprocessing=False, # todo: how to 'True' ?
wait_time=0.01)
# todo: integrate the Sequence generator properly
# import multiprocessing
# self.enqueuer.start(workers=multiprocessing.cpu_count(), max_queue_size=4)
self.enqueuer.start(workers=1, max_queue_size=4)
def on_epoch_end(self, epoch, logs=None):
output_generator = self.enqueuer.get()
steps_done = 0
total_steps = int(np.ceil(np.divide(self.num_samples, self.batch_size)))
sample_index = 0
while steps_done < total_steps:
generator_output = next(output_generator)
x, y = generator_output[:2]
x = next(iter(x.values()))
y = next(iter(y.values()))
y_pred = self.model.predict(x)
self.epoch_index += 1
for i in range(0, len(y_pred)):
n = steps_done * self.batch_size + i
if n >= self.num_samples:
return
# rearranging images for visualization
img_x = self.__reformat_img(x, i)
img_y = self.__reformat_img(y, i)
img_p = self.__reformat_img(y_pred, i)
self.tensorboard_writer.save_image("Epoch-{}/{}/x"
.format(self.epoch_index, sample_index), img_x)
self.tensorboard_writer.save_image("Epoch-{}/{}/y"
.format(self.epoch_index, sample_index), img_y)
self.tensorboard_writer.save_image("Epoch-{}/{}/y_pred"
.format(self.epoch_index, sample_index), img_p)
sample_index += 1
steps_done += 1
def __reformat_img(self, img_np_array, img_index):
img = np.squeeze(img_np_array[img_index, :, :, :])
img = 255. * (img + self.normalization_mean) # mean is the training images normalization mean
img = img[:, :, [2, 1, 0]] # reordering of channels
return img
def on_train_end(self, logs=None):
self.enqueuer.stop()
self.tensorboard_writer.close()