-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.yaml
306 lines (297 loc) · 6.71 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
general:
# Production mode
production: false
# Data source settings in pystepsrc configuration file
data_source: "opera_meteo_france"
# Date, time, and its format from which to begin forecast
datetime_fmt: "%Y%m%d%H%M"
# If multiple datetimes given, splits into multiple configs
datetime:
- 202301182300
# - 202301190100
# - 202301022300
# - 202212222300
# - 202201060100
# - 202105181000
# - 202105171500
# - 202303030800
# - 202205302300
# - 202105230400
# - 202106231300
# - 202108171400
# - 202207121500
# - 202106250100
# - 202108111400
# - 202109122000
# - 202109130500
# - 202110151800
# - 202210290900
# - 202211080900
# Number of forecast timesteps
n_leadtimes: 4
# Clip domain to coordinates (local)
# To use whole domain, first entry should be null
domain_box:
# - 2.284e6 # REG2
# - 2.622e6
# - -1.955e6
# - -1.664e6
- 2.6e6 # REG1
- 3.009e6
- -1.719e6
- -1.481e6
# Precipitation thresholds to use for ensemble metrics and plots
thresholds:
- 0.1
- 0.5
fss_scales:
- 2
- 8
- 20
# Export results to NetCDF format (./results/netcdf)
export: true
model:
# Default model optional parameter values (can be overwritten in code)
steps:
manual:
# https://pysteps.readthedocs.io/en/latest/generated/pysteps.nowcasts.steps.forecast.html
# Number of ensemble members
n_ens_members: 24
n_cascade_levels: 6
precip_thr: null
kmperpixel: null
timestep: null
extrap_method: "semilagrangian"
decomp_method: "fft"
bandpass_filter_method: "gaussian"
noise_method: "nonparametric"
noise_stddev_adj: null
ar_order: 2
vel_pert_method: "bps"
conditional: false
probmatching_method: "cdf"
mask_method: "incremental"
seed: null
num_workers: 1
fft_method: "numpy"
domain: "spatial"
extrap_kwargs: null
filter_kwargs: null
noise_kwargs: null
vel_pert_kwargs: null
mask_kwargs: null
measure_time: false
callback: null
return_output: true
metadata:
# Model parameters that can (and should) be automatically read from the metadata
# Value in this list is the metadata key
# Overwrites default values in manual
precip_thr: threshold
kmperpixel: xpixelsize
timestep: accutime
anvil:
# https://pysteps.readthedocs.io/en/latest/generated/pysteps.nowcasts.anvil.forecast.html
manual:
rainrate: null
n_cascade_levels: 8
extrap_method: semilagrangian
ar_order: 2
ar_window_radius: 50
r_vil_window_radius: 3
fft_method: numpy
apply_rainrate_mask: true
num_workers: 1
extrap_kwargs: null
filter_kwargs: null
measure_time: false # own measurement exists
linda:
# https://pysteps.readthedocs.io/en/latest/generated/pysteps.nowcasts.linda.forecast.html
manual:
feature_method: blob
max_num_features: 25
feature_kwargs: null
ari_order: 1
kernel_type: anisotropic
localization_window_radius: null
errdist_window_radius: null
acf_window_radius: null
extrap_method: semilagrangian
extrap_kwargs: null
add_perturbations: True
pert_thrs:
- 0.5
- 1.0
n_ens_members: 10
vel_pert_method: bps
vel_pert_kwargs: null
kmperpixel: null
timestep: null
seed: null
num_workers: 1
use_multiprocessing: False
measure_time: False
callback: null
return_output: True
metadata:
# Model parameters that can be automatically read from the metadata
# Value in this list is the metadata key
# Overwrites default values in manual
kmperpixel: xpixelsize
timestep: accutime
sseps:
manual:
n_ens_members: 24
n_cascade_levels: 6
win_size: 256
overlap: 0.1
war_thr: 0.1
extrap_method: semilagrangian
decomp_method: fft
bandpass_filter_method: gaussian
noise_method: ssft
ar_order: 2
vel_pert_method: null
probmatching_method: cdf
mask_method: incremental
callback: null
fft_method: numpy
return_output: True
seed: null
num_workers: 1
extrap_kwargs: null
filter_kwargs: null
noise_kwargs: null
vel_pert_kwargs: null
mask_kwargs: null
measure_time: False
batch:
steps:
n_ens_members:
- 20
- 22
- 24
- 26
- 28
n_cascade_levels:
- 4
- 6
- 8
bandpass_filter_method:
- gaussian
- uniform
noise_method:
- parametric
- nonparametric
- ssft
- nested
noise_stddev_adj:
- auto
- fixed
- null
# ar_order:
# - 1
# - 2
vel_pert_method:
- bps
- null
conditional:
- true
- false
mask_method:
- obs
- sprog
- incremental
probmatching_method:
- cdf
- mean
domain:
- spatial
- spectral
anvil:
n_cascade_levels:
- 4
- 6
- 8
- 10
ar_window_radius:
- 25
- 50
- 75
r_vil_window_radius:
- 1
- 2
- 3
- 4
- 5
linda:
n_ens_members:
- 20
- 24
- 28
- 32
- 36
- 40
- 44
- 48
- 52
sseps:
n_ens_members:
- 20
- 22
- 24
- 26
- 28
n_cascade_levels:
- 4
- 6
- 8
win_size:
- 128
- 256
- 512
overlap:
- 0.05
- 0.1
- 0.15
- 0.20
war_thr:
- 0.05
- 0.1
- 0.15
bandpass_filter_method:
- gaussian
- uniform
noise_method:
- parametric
- nonparametric
- ssft
- nested
# ar_order:
# - 1
# - 2
vel_pert_method:
- bps
- null
mask_method:
- obs
- sprog
- incremental
probmatching_method:
- cdf
- mean
metrics:
# Calculate Fraction Skill Score (FSS) by default for all threshold and scale values
# These metrics are extra
# https://pysteps.readthedocs.io/en/latest/generated/pysteps.verification.detcontscores.det_cont_fct.html#pysteps.verification.detcontscores.det_cont_fct
deterministic:
- MAE # Mean Absolute Error
- rmse # Root Mean Squared Error
- RV # Reduction of Variance (Brier Score)
# https://pysteps.readthedocs.io/en/latest/generated/pysteps.verification.interface.get_method.html#pysteps.verification.interface.get_method
ensemble:
mean:
- CSI # Critical Success Index
- MAE # Mean Absolute Error
- RMSE # Root Mean Squared Error
- RV # Reduction of Variance (Brier Score)