-
Notifications
You must be signed in to change notification settings - Fork 0
/
stopper_block_v2.scad
258 lines (215 loc) · 9.1 KB
/
stopper_block_v2.scad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
/*
3D model for a stopper block for a kite control bar. This device works in
tandem with a stopper ball to provide variable stop position for a kite
control bar that uses a twin-trimline.
Print one piece per control bar.
Recommend this be printed in PLA with 3 shells, 80 % infill and no supports.
Author: Philip B Chase, <[email protected]>
Assembly with ball: This component is designed to be assemble with a stopper ball using a 1/8" bungie. The bungie should be 155mm long. It should be routed through the small bore holes of the stopper ball and through the cross bore of the stopper block. The ends of the bungie should be blunt cut and super glued together. The resulting bungie is a continuous loop with slightly lumpy, stiff section where the ends are glued together.
Assembly into bar: The trim line end should be routed into a trim line hole from the narrow end of the block, through the center bore of the ball, through the center bore of the bar, through, a retaining ball, back through the center bore of the bar, back through the center bore of the ball, into the remain trim line hole of the block, and out the narrow end of the block.
Use: The ball is pulled down the trim line to lower the bar stop. The blokc is pulled up the trim line to raise the bar stop.
License: To the extent possible under law, Philip B Chase has waived all
copyright and related or neighboring rights to 3D model for a stopper
block for a kite control bar. This work is published from:
United States. See: http://creativecommons.org/publicdomain/zero/1.0/
*/
// stopper block for movable stopper
$fn=36; // a circle has 36 sides
//bevel(r1=10, r2=8);
// provide dimensions of block from which all other shapes are removed
$overall_width=38; // x
$overall_depth=38; // y
$overall_height=25; // z
// radii of block corners and edges
$r_base = 2;
// block is narrowed at the kite end
$width_near_kite = 25;
// The upper half of the block is mostly cut away by a curved block
// The curved portion of this cut-away is has a radius of $cut_away_radius
// the upper portion that is not cut away has a thickness of $flag_line_path_thickness
// The main body of the block below the cut away has height $thickness_of_main_body
$cut_away_radius=8;
$flag_line_path_thickness = 6;
$thickness_of_main_body=12;
$upper_cylinder_offset = 1;
// Safety line dimensions
$safety_line_diameter=9.5;
// Cross bore for bungie dimensions
$cross_bore_diameter=6;
$cross_bore_cl_to_end=12;
// trim hole line dimensions
$trim_line_diameter=5;
$trim_line_angle=8;
// Define magnet hole
$magnet_radius=3/8*25.4/2;
$magnet_height=3/8*25.4 - 0.5;
$distance_back_from_front = $overall_depth/2;
$oversize=1;
moveable_stopper();
module moveable_stopper() {
// make major trapezoidal prism
union() {
// Build base
difference() {
// Prism for Base
$trapMatrixForBase = [
[1, 1, 1],
[$width_near_kite/$overall_width, 1, 1],
[1, 1, 1]
];
trapCube([$overall_width, $overall_depth, $thickness_of_main_body], $trapMatrixForBase, radius=$r_base, round_z_negative=false);
// Drill trimline holes
trimline_holes();
// "Drill" curved path for bungie ball connector
bungie_ball_connector_path();
// Drill hole for magnet
magnet_hole();
}
// Upper section
difference() {
// Prism for Upper
$trapMatrixForUpper = [
[1, 1, 1],
[$width_near_kite/$overall_width, 1, 1],
[0.7, 1, 1]
];
translate([0, 0, $thickness_of_main_body - 2*$r_base])
trapCube([$overall_width, $overall_depth, $overall_height - $thickness_of_main_body +2*$r_base], $trapMatrixForUpper, radius=$r_base);
// cut away the front portion of the upper
cube([$overall_width, $overall_depth-$cut_away_radius-$flag_line_path_thickness, $overall_height]);
// Cut away for upper section
cut_away_upper();
// Drill trimline holes
trimline_holes();
// Drill flag line path
flag_line_path();
}
}
}
module cut_away_upper() {
hull() {
// lower cylinder
translate([0, $overall_depth - $cut_away_radius - $flag_line_path_thickness, $thickness_of_main_body +$cut_away_radius])
rotate([0,90,0])
cylinder(r=$cut_away_radius,, h=$overall_width);
// upper cylinder
translate([0, $overall_depth - $cut_away_radius - $flag_line_path_thickness + $upper_cylinder_offset, $thickness_of_main_body +$cut_away_radius*2])
rotate([0,90,0])
cylinder(r=$cut_away_radius,, h=$overall_width);
}
}
module trimline_holes(){
// Drill left trim line hole
translate([$thickness_of_main_body/2,-$trim_line_diameter/2,$thickness_of_main_body/2])
rotate([-90,0,-$trim_line_angle])
union(){
cylinder(r=$trim_line_diameter/2, h=$overall_depth + $trim_line_diameter);
}
// Drill right trim line hole
translate([$overall_width-$thickness_of_main_body/2, -$trim_line_diameter/2, $thickness_of_main_body/2])
rotate([-90,0,$trim_line_angle])
union(){
cylinder(r=$trim_line_diameter/2, h=$overall_depth + $trim_line_diameter);
}
}
module bungie_ball_connector_path() {
translate([$overall_width/2,-1,$thickness_of_main_body/2])
rotate([0,90,0])
elliptical_torus($cross_bore_diameter/2, $cross_bore_diameter/2, $thickness_of_main_body/2 + 1);
}
module magnet_hole() {
translate([$overall_width/2, $distance_back_from_front, 0])
rotate([0,0,0])
cylinder(r=$magnet_radius,,h=$magnet_height);
}
module flag_line_path() {
translate([$overall_depth/2, -1, $safety_line_diameter/2 + $thickness_of_main_body])
rotate([-90,0,0])
union(){
cylinder(r=$safety_line_diameter/2, h=$overall_depth);
translate([0,0,$overall_depth-1])
bevel(r1=$safety_line_diameter/2+2, r2=$safety_line_diameter/2);
}
}
module bevel(r1, r2){
difference() {
cylinder(r=r1, h=r1-r2+1, $fn=30);
rotate_extrude(convexity = 10, $fn = 30)
translate([r1, 0, 0])
circle(r = r1-r2, $fn = 30);
}
}
module elliptical_torus(a_axis, b_axis, major_radius){
// a_axis is the width of the cross section on the X-Y plane
// b_axis is the height of the cross section on the Z plane
// major_radius is the radius torus
//$fn=30;
rotate_extrude(convexity = 10)
translate([a_axis+major_radius,0,0])
ellipse(a_axis, b_axis);
}
module ellipse(a_axis, b_axis) {
scale([a_axis/a_axis,b_axis/a_axis])
circle(r=a_axis);
}
// Trapezoided cube
// Philip Chase
// Based on Simple and fast corned cube by Anaximandro de Godinho.
module trapCube( size, trapMatrix=[1,1,1], radius=1, center=false, round_z_negative=true )
{
l = len( size );
if( l == undef )
_trapX( size, size, size, trapMatrix, radius, center, round_z_negative );
else
_trapX( size[0], size[1], size[2], trapMatrix, radius, center, round_z_negative );
}
module _trapX( x, y, z, trapMatrix, r, center, round_z_negative=true )
{
if( center )
translate( [-x/2, -y/2, -z/2] )
__trapX( x, y, z, trapMatrix, r, round_z_negative);
else
__trapX( x, y, z, trapMatrix, r, round_z_negative);
}
module __trapX( x, y, z, trapMatrix, r, round_z_negative=true )
{
// trapezoidal matrix is defined as
//[
// [scale_x, scale_in_y_along_increasing_x, scale_in_z_along_increasing_x],
// [scale_in_x_along_increasing_y, scale_y, scale_in_z_along_increasing_y],
// [scale_in_x_along_increasing_z, scale_in_y_along_increasing_z, scale_z]
//]
//compute deltas for each dimension
dy_wrt_x = y * (1 - trapMatrix[0][1])/2;
dz_wrt_x = z * (1 - trapMatrix[0][2])/2;
dx_wrt_y = x * (1 - trapMatrix[1][0])/2;
dz_wrt_y = z * (1 - trapMatrix[1][2])/2;
dx_wrt_z = x * (1 - trapMatrix[2][0])/2;
dy_wrt_z = y * (1 - trapMatrix[2][1])/2;
// Use differing facet counts between z- and z+
fn_z_negative = fn_for_negative_z(round_z_negative);
//TODO: discount r.
rC = r;
hull()
{
//origin
translate( [rC, rC, rC] )
sphere( r, $fn=fn_z_negative);
translate( [rC+dx_wrt_y, y-rC, rC+dz_wrt_y] )
sphere( r, $fn=fn_z_negative );
translate( [rC+dx_wrt_z, rC+dy_wrt_z, z-rC] )
sphere( r );
translate( [rC+dx_wrt_z+dx_wrt_y, y-rC-dy_wrt_z, z-rC-dz_wrt_y] )
sphere( r );
translate( [x-rC, rC+dy_wrt_x, rC+dz_wrt_x] )
sphere( r, $fn=fn_z_negative );
translate( [x-rC-dx_wrt_y, y-rC-dy_wrt_x, rC+dz_wrt_x+dz_wrt_y] )
sphere( r, $fn=fn_z_negative );
translate( [x-rC-dx_wrt_z, rC+dy_wrt_x+dy_wrt_z, z-rC-dz_wrt_x] )
sphere( r );
translate( [x-rC-dx_wrt_y-dx_wrt_z, y-rC-dy_wrt_x-dy_wrt_z, z-rC-dz_wrt_x-dz_wrt_y] )
sphere( r );
}
}
// reduce facet number to 12 if rounding is not desired
function fn_for_negative_z(round_z_negative, fn=12) = round_z_negative ? 0 : fn;