Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Out of memory issues on both gpu and cpu #41

Open
abtExp opened this issue Oct 13, 2021 · 1 comment
Open

Out of memory issues on both gpu and cpu #41

abtExp opened this issue Oct 13, 2021 · 1 comment

Comments

@abtExp
Copy link

abtExp commented Oct 13, 2021

I've tried everything. gc.collect, torch.cuda.empty_cache, deleting every possible tensor and variable as soon as it is used, setting batch size to 1, nothing seems to work.

I've rewritten the data loader, model training pipeline and have made it as simple as i possibly can, but somehow it always runs out of memory.

Here's my data loader :

class DSET:
    def __init__(self, load_file='', mode='train', batch_size=16):
        self.load_file = load_file
        self.data = open(self.load_file, 'r', encoding='utf8').readlines()

        class EXAMPLE(object):
            def __init__(self, examples):
                self._examples = examples
                self.generator = AST('python')

            def generate_ast(self, code_text):
                tree = self.generator.generate_ast(code_text)
                return tree

            def get_actions(self, ast_tree):
                actions = self.generator.get_actions(ast_tree)
                return actions

            def __getitem__(self, index):
                line = json.loads(self._examples[index])

                try:
                    canonical_intent, slot_map = canonicalize_intent(
                        line['nl'])

                    canonical_code = canonicalize_code(line['code'], slot_map)
                    intent_tokens = tokenize_intent(canonical_intent)

                    python_ast = ast.parse(canonical_code)

                    canonical_code_source = astor.to_source(python_ast).strip()
                    target_ast = self.generate_ast(python_ast)

                    target_actions = self.get_actions(target_ast)

                    target_action_infos = get_action_infos(
                        intent_tokens, target_actions)

                    example = Example(src_sent=intent_tokens,
                                      tgt_actions=target_action_infos,
                                      tgt_code=canonical_code_source,
                                      tgt_ast=target_ast,
                                      meta=dict(example_dict=line,
                                                slot_map=slot_map))
                except Exception as e:
                    example = Example(src_sent=[''],
                                      tgt_actions=[None],
                                      tgt_code=[''],
                                      tgt_ast=None,
                                      meta={})

                return example

            def __setitem__(self, index, value):
                pass

        self.examples = EXAMPLE(self.data)

        self.num_examples = len(self.data)
        self.example_indices = np.arange(self.num_examples)
        self.iterator = 0
        self.batch_size = batch_size
        self.num_steps = self.num_examples // self.batch_size

    def batch_iter(self):
        indices = self.example_indices[self.iterator *
                                       self.batch_size:(self.iterator + 1) *
                                       self.batch_size]

        x = []

        for idx in indices:
            sample = self.examples[idx]
            x.append(sample)

        self.iterator += 1

        if self.iterator > len(self.example_indices) // self.batch_size:
            self.iterator = 0
            np.random.shuffle(self.example_indices)

        x.sort(key=lambda e: -len(e.src_sent))

        return x

    def __len__(self):
        return self.num_examples

Here's the training code :

def train(args):

    train_set = DSET(args.train_file, mode='train', batch_size=args.batch_size)

    validation_set = DSET(args.dev_file,
                          mode='valid',
                          batch_size=args.batch_size)

    vocab = pickle.load(open(args.vocab, 'rb'))

    grammar = ASDLGrammar.from_text(open(args.asdl_file).read())

    transition_system = Registrable.by_name(args.transition_system)(grammar)

    parser = Registrable.by_name(args.parser)

    model = parser(args, vocab, transition_system)

    model.train()

    evaluator = Registrable.by_name(args.evaluator)(transition_system,
                                                    args=args)

    if args.cuda:
        model.cuda()

    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)

    nn_utils.glorot_init(model.parameters())

    print('Begining Training ...')
    print(
        f'Training Examples : {len(train_set)}, Validation Examples : {len(validation_set)}'
    )

    print(
        f'Number Of Epochs : {args.max_epoch}, Steps Per Epoch : {train_set.num_steps}, Batch Size : {args.batch_size}'
    )

    total_steps = 0

    for e in range(args.max_epoch):
        start_time = time.time()

        for iter in range(train_set.num_steps):
            total_steps += 1
            loss_val = 0

            batch = train_set.batch_iter()

            optimizer.zero_grad()

            loss = -model.score(batch)

            loss = torch.mean(loss)

            if iter % args.log_every == 0:
                loss_val = torch.sum(loss).detach().item()
                print(f'Iteration : {iter}, Loss : {loss_val}')

            loss.backward(retain_graph=False)

            optimizer.step()

            del loss
            del loss_val
            del batch

            gc.collect()

            torch.cuda.empty_cache()

            time.sleep(2)

        print(f'Epoch {e} : Time Taken : {time.time() - start_time}')

        model_file = args.save_to + '/' + f'model.epoch_{e}.bin'

        print(f'Saved Model To : {model_file}')

        model.save(model_file)

        torch.save(optimizer.state_dict(),
                   args.save_to + '/' + f'model_{e}.optim.bin')

        # Run Validation

        print('Running Validation...')

        try:
            eval_results = evaluate(validation_set.examples,
                                    model,
                                    evaluator,
                                    args,
                                    verbose=False,
                                    eval_top_pred_only=args.eval_top_pred_only)

            validation_score = eval_results[evaluator.default_metric]

            print(f'Evaluation Score: {validation_score}')

        except Exception as e:
            print(f'Could not validate: {e}')
            pass

I'm using codesearchnet dataset for python and trying to train from scratch

I'm running pytorch 1.9.1 with cuda 11.1 on a 16gb GPU instance on aws ec2 with 32gb ram and ubuntu 18.04

I've re-written the code to make it more efficient as the code in the repository loaded the whole bin file of the dataset at once.

But i can't train the model, even with batch size of 1.

With batch size of 8, it crashes after 46 iterations, with batch size of 1 it goes upto 48k iterations but then crashes.

GPU Traceback :

Traceback (most recent call last):
  File "train.py", line 150, in <module>
    train(args)
  File "train.py", line 98, in train
    loss.backward(retain_graph=False)
  File "/usr/local/lib/python3.6/dist-packages/comet_ml/monkey_patching.py", lin                                                                                                                     e 312, in wrapper
    return_value = original(*args, **kwargs)
  File "/usr/local/lib/python3.6/dist-packages/torch/_tensor.py", line 255, in b                                                                                                                     ackward
    torch.autograd.backward(self, gradient, retain_graph, create_graph, inputs=i                                                                                                                     nputs)
  File "/usr/local/lib/python3.6/dist-packages/torch/autograd/__init__.py", line                                                                                                                      149, in backward
    allow_unreachable=True, accumulate_grad=True)  # allow_unreachable flag
RuntimeError: CUDA out of memory. Tried to allocate 7.27 GiB (GPU 0; 14.76 GiB t                                                                                                                     otal capacity; 10.46 GiB already allocated; 2.98 GiB free; 10.52 GiB reserved in                                                                                                                      total by PyTorch)

CPU Traceback :

Iteration : 672, Loss : 702.1222534179688
Killed

dmesg output for CPU :

[2059991.491436] oom-kill:constraint=CONSTRAINT_NONE,nodemask=(null),cpuset=/,me                                                                                                                     ms_allowed=0,global_oom,task_memcg=/user.slice,task=python3,pid=25315,uid=0
[2059991.491542] Out of memory: Killed process 25315 (python3) total-vm:53312244                                                                                                                     kB, anon-rss:31451456kB, file-rss:74816kB, shmem-rss:12296kB, UID:0 pgtables:690                                                                                                                     68kB oom_score_adj:0
[2059992.056260] oom_reaper: reaped process 25315 (python3), now anon-rss:0kB, f                                                                                                                     ile-rss:74732kB, shmem-rss:12296kB
@abtExp
Copy link
Author

abtExp commented Oct 13, 2021

Can you please suggest what might be causing the memory issue?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant