-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathtrain.py
224 lines (194 loc) · 8.79 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import os
import cv2
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.sampler import SubsetRandomSampler, WeightedRandomSampler
from torchvision import transforms, utils
from torchlib.datasets.fersynthetic import SyntheticFaceDataset, SecuencialSyntheticFaceDataset
from torchlib.datasets.factory import FactoryDataset
from torchlib.attentionnet import AttentionNeuralNet, AttentionSTNNeuralNet, AttentionGMMNeuralNet, AttentionGMMSTNNeuralNet
from pytvision.transforms import transforms as mtrans
from pytvision import visualization as view
import datetime
from argparse import ArgumentParser
from aug import get_transforms_aug, get_transforms_det
def arg_parser():
"""Arg parser"""
parser = ArgumentParser()
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('--databack', metavar='DIR',
help='path to background dataset')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('-g', '--gpu', default=0, type=int, metavar='N',
help='divice number (default: 0)')
parser.add_argument('--seed', type=int, default=1,
help='random seed (default: 1)')
parser.add_argument('-j', '--workers', default=1, type=int, metavar='N',
help='number of data loading workers (default: 1)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--kfold', default=0, type=int, metavar='N',
help='k fold')
parser.add_argument('--nactor', default=0, type=int, metavar='N',
help='number of the actores')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N',
help='mini-batch size (default: 256)')
parser.add_argument('--lr', '--learning-rate', default=0.0001, type=float, metavar='LR',
help='initial learning rate')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--print-freq', '-p', default=10, type=int, metavar='N',
help='print frequency (default: 10)')
parser.add_argument('--snapshot', '-sh', default=10, type=int, metavar='N',
help='snapshot (default: 10)')
parser.add_argument('--project', default='./runs', type=str, metavar='PATH',
help='path to project (default: ./runs)')
parser.add_argument('--name', default='exp', type=str,
help='name of experiment')
parser.add_argument('--resume', default='model_best.pth.tar', type=str, metavar='NAME',
help='name to latest checkpoint (default: none)')
parser.add_argument('--arch', default='simplenet', type=str,
help='architecture')
parser.add_argument('--finetuning', action='store_true', default=False,
help='Finetuning')
parser.add_argument('--loss', default='cross', type=str,
help='loss function')
parser.add_argument('--opt', default='adam', type=str,
help='optimize function')
parser.add_argument('--scheduler', default='fixed', type=str,
help='scheduler function for learning rate')
parser.add_argument('--image-size', default=388, type=int, metavar='N',
help='image size')
parser.add_argument('--channels', default=1, type=int, metavar='N',
help='input channel (default: 1)')
parser.add_argument('--dim', default=64, type=int, metavar='N',
help='code size (default: 64)')
parser.add_argument('--num-classes', '-c', default=10, type=int, metavar='N',
help='num classes (default: 10)')
parser.add_argument('--name-dataset', default='mnist', type=str,
help='name dataset')
parser.add_argument('--name-method', default='attnet', type=str,
help='name method')
parser.add_argument('--parallel', action='store_true', default=False,
help='Parallel')
parser.add_argument('--balance', action='store_true', default=False,
help='balance data')
parser.add_argument('--backbone', default='preactresnet', type=str,
help='backbone for classification and representation')
parser.add_argument('--trainiteration', default=1000, type=int, metavar='N',
help='train iteration')
parser.add_argument('--testiteration', default=100, type=int, metavar='N',
help='train iteration')
return parser
def main():
# parameters
parser = arg_parser()
args = parser.parse_args()
imsize = args.image_size
parallel=args.parallel
num_classes=args.num_classes
num_channels=args.channels
dim=args.dim
view_freq=1
trainiteration = args.trainiteration
testiteration = args.testiteration
fname = args.name_method
fnet = {
'attnet':AttentionNeuralNet,
'attstnnet':AttentionSTNNeuralNet,
'attgmmnet':AttentionGMMNeuralNet,
'attgmmstnnet':AttentionGMMSTNNeuralNet
}
network = fnet[fname](
patchproject=args.project,
nameproject=args.name,
no_cuda=args.no_cuda,
parallel=parallel,
seed=args.seed,
print_freq=args.print_freq,
gpu=args.gpu,
view_freq=view_freq,
)
network.create(
arch=args.arch,
num_output_channels=dim,
num_input_channels=num_channels,
loss=args.loss,
lr=args.lr,
momentum=args.momentum,
optimizer=args.opt,
lrsch=args.scheduler,
pretrained=args.finetuning,
size_input=imsize,
num_classes=num_classes
)
# resume
network.resume( os.path.join(network.pathmodels, args.resume ) )
cudnn.benchmark = True
kfold=args.kfold
nactores=args.nactor
idenselect = np.arange(nactores) + kfold*nactores
# datasets
# training dataset
# SyntheticFaceDataset, SecuencialSyntheticFaceDataset
train_data = SecuencialSyntheticFaceDataset(
data=FactoryDataset.factory(
pathname=args.data,
name=args.name_dataset,
subset=FactoryDataset.training,
idenselect=idenselect,
download=True
),
pathnameback=args.databack,
ext='jpg',
count=trainiteration,
num_channels=num_channels,
iluminate=True, angle=30, translation=0.2, warp=0.1, factor=0.2,
transform_data=get_transforms_aug( imsize ),
transform_image=get_transforms_det( imsize ),
)
num_train = len(train_data)
if args.balance:
labels, counts = np.unique(train_data.labels, return_counts=True)
weights = 1/(counts/counts.sum())
samples_weights = np.array([ weights[x] for x in train_data.labels ])
sampler = WeightedRandomSampler( weights=samples_weights, num_samples=len(samples_weights) , replacement=True )
else:
sampler = SubsetRandomSampler(np.random.permutation( num_train ) )
train_loader = DataLoader(train_data, batch_size=args.batch_size,
num_workers=args.workers, pin_memory=network.cuda, drop_last=True, sampler=sampler ) #shuffle=True,
# validate dataset
# SyntheticFaceDataset, SecuencialSyntheticFaceDataset
val_data = SecuencialSyntheticFaceDataset(
data=FactoryDataset.factory(
pathname=args.data,
name=args.name_dataset,
idenselect=idenselect,
subset=FactoryDataset.validation,
download=True
),
pathnameback=args.databack,
ext='jpg',
count=testiteration,
num_channels=num_channels,
iluminate=True, angle=30, translation=0.2, warp=0.1, factor=0.2,
transform_data=get_transforms_aug( imsize ),
transform_image=get_transforms_det( imsize ),
)
val_loader = DataLoader(val_data, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=network.cuda, drop_last=False)
# print neural net class
print('SEG-Torch: {}'.format(datetime.datetime.now()) )
print(network)
# training neural net
network.fit( train_loader, val_loader, args.epochs, args.snapshot )
print("Optimization Finished!")
print("DONE!!!")
if __name__ == '__main__':
main()