-
Notifications
You must be signed in to change notification settings - Fork 13
/
train.py
executable file
·387 lines (309 loc) · 14.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
from __future__ import division
import argparse
from torch import cuda
from torch.autograd import Variable
import math
import time
from model import *
from dataset import Dataset
from optim import Optim
import constants
parser = argparse.ArgumentParser(description='train.py')
## Data options
parser.add_argument('-data', required=True,
help='Path to the *-train.pt file from preprocess.py')
parser.add_argument('-save_model', default='model',
help="""Model filename (the model will be saved as
<save_model>_epochN_PPL.pt where PPL is the
validation perplexity""")
parser.add_argument('-train_from_state_dict', default='', type=str,
help="""If training from a checkpoint then this is the
path to the pretrained model's state_dict.""")
parser.add_argument('-train_from', default='', type=str,
help="""If training from a checkpoint then this is the
path to the pretrained model.""")
## Model options
parser.add_argument('-layers', type=int, default=2,
help='Number of layers in the LSTM encoder/decoder')
parser.add_argument('-rnn_size', type=int, default=512,
help='Size of LSTM hidden states')
parser.add_argument('-embedding_size', type=int, default=512,
help='Word embedding sizes')
parser.add_argument('-input_feed', type=int, default=1,
help="""Feed the context vector at each time step as
additional input (via concatenation with the word
embeddings) to the decoder.""")
# parser.add_argument('-residual', action="store_true",
# help="Add residual connections between RNN layers.")
parser.add_argument('-brnn', action='store_true',
help='Use a bidirectional encoder')
parser.add_argument('-brnn_merge', default='concat',
help="""Merge action for the bidirectional hidden states:
[concat|sum]""")
# CNN parameters
## Encoder or Decoder
parser.add_argument("-hidden_size", type=int, default=512,
help="CNN hidden size")
parser.add_argument("-kernel_size", type=int, default=5,
help="")
parser.add_argument("-enc_layers", type=int, default=2,
help="Numbers of encoder hidden layer")
# Decoder
parser.add_argument("-dec_layers", type=int, default=2,
help="Numbers of decoder hidden layer")
## Optimization options
parser.add_argument('-batch_size', type=int, default=64,
help='Maximum batch size')
parser.add_argument('-max_generator_batches', type=int, default=32,
help="""Maximum batches of words in a sequence to run
the generator on in parallel. Higher is faster, but uses
more memory.""")
parser.add_argument('-epochs', type=int, default=13,
help='Number of training epochs')
parser.add_argument('-start_epoch', type=int, default=1,
help='The epoch from which to start')
parser.add_argument('-param_init', type=float, default=0.1,
help="""Parameters are initialized over uniform distribution
with support (-param_init, param_init)""")
parser.add_argument('-optim', default='adam',
help="Optimization method. [sgd|adagrad|adadelta|adam]")
parser.add_argument('-max_grad_norm', type=float, default=5,
help="""If the norm of the gradient vector exceeds this,
renormalize it to have the norm equal to max_grad_norm""")
parser.add_argument('-dropout', type=float, default=0.3,
help='Dropout probability; applied between LSTM stacks.')
parser.add_argument('-curriculum', action="store_true",
help="""For this many epochs, order the minibatches based
on source sequence length. Sometimes setting this to 1 will
increase convergence speed.""")
parser.add_argument('-extra_shuffle', action="store_true",
help="""By default only shuffle mini-batch order; when true,
shuffle and re-assign mini-batches""")
#learning rate
parser.add_argument('-learning_rate', type=float, default=0.001,
help="""Starting learning rate. If adagrad/adadelta/adam is
used, then this is the global learning rate. Recommended
settings: sgd = 1, adagrad = 0.1, adadelta = 1, adam = 0.001""")
parser.add_argument('-learning_rate_decay', type=float, default=0.5,
help="""If update_learning_rate, decay learning rate by
this much if (i) perplexity does not decrease on the
validation set or (ii) epoch has gone past
start_decay_at""")
parser.add_argument('-start_decay_at', type=int, default=8,
help="""Start decaying every epoch after and including this
epoch""")
#pretrained word vectors
parser.add_argument('-pre_word_vecs_enc',
help="""If a valid path is specified, then this will load
pretrained word embeddings on the encoder side.
See README for specific formatting instructions.""")
parser.add_argument('-pre_word_vecs_dec',
help="""If a valid path is specified, then this will load
pretrained word embeddings on the decoder side.
See README for specific formatting instructions.""")
# GPU
parser.add_argument('-gpus', default=[], nargs='+', type=int,
help="Use CUDA on the listed devices.")
parser.add_argument('-log_interval', type=int, default=1,
help="Print stats at this interval.")
opt = parser.parse_args()
print(opt)
if torch.cuda.is_available() and not opt.gpus:
print("WARNING: You have a CUDA device, so you should probably run with -gpus 0")
if opt.gpus:
cuda.set_device(opt.gpus[0])
def NMTCriterion(vocabSize):
weight = torch.ones(vocabSize)
weight[constants.PAD] = 0
crit = nn.NLLLoss(weight, size_average=False)
if opt.gpus:
crit.cuda()
return crit
def memoryEfficientLoss(outputs, targets, generator, crit, eval=False):
# compute generations one piece at a time
num_correct, loss = 0, 0
outputs = Variable(outputs.data, requires_grad=(not eval), volatile=eval)
targets = targets[1:] # exclude the <s> from the begin
batch_size = outputs.size(1)
# print "outputs", outputs
# print "targets", targets
outputs_split = torch.split(outputs.t().contiguous(), opt.max_generator_batches)
targets_split = torch.split(targets, opt.max_generator_batches)
for i, (out_t, targ_t) in enumerate(zip(outputs_split, targets_split)):
# print out_t.size(0), out_t.size(1)
out_t = out_t.view(-1, out_t.size(2))
# print out_t.size(0), out_t.size(1)
scores_t = generator(out_t)
# print scores_t.size(0), targ_t.size(0), targ_t.size(1)
targ_t = targ_t.view(-1)
# print targ_t.size(0)
# print targ_t
loss_t = crit(scores_t, targ_t)
pred_t = scores_t.max(1)[1]
num_correct_t = pred_t.data.eq(targ_t.data).masked_select(targ_t.ne(constants.PAD).data).sum()
num_correct += num_correct_t
loss += loss_t.data[0]
if not eval:
loss_t.div(batch_size).backward()
grad_output = None if outputs.grad is None else outputs.grad.data
# print "loss", loss
return loss, grad_output, num_correct
def eval(model, criterion, data):
total_loss = 0
total_words = 0
total_num_correct = 0
model.eval()
for i in range(len(data)):
batch = data[i]
targets = batch[1]
outputs = model(batch[0], targets)
loss, _, num_correct = memoryEfficientLoss(
outputs, targets, model.generator, criterion, eval=True)
total_loss += loss
total_num_correct += num_correct
total_words += targets.data.ne(constants.PAD).sum()
model.train()
return total_loss / total_words, total_num_correct / total_words
def trainModel(model, trainData, validData, dataset, optim, criterion):
print(model)
model.train()
# define criterion of each GPU
start_time = time.time()
def trainEpoch(epoch):
if opt.extra_shuffle and epoch > opt.curriculum:
trainData.shuffle()
# shuffle mini batch order
batchOrder = torch.randperm(len(trainData))
total_loss, total_words, total_num_correct = 0, 0, 0
report_loss, report_tgt_words, report_src_words, report_num_correct = 0, 0, 0, 0
start = time.time()
for i in range(len(trainData)):
batchIdx = batchOrder[i] if epoch > opt.curriculum else i
batch = trainData[batchIdx]#[:-1] # exclude original indices
model.zero_grad()
targets = batch[1]
outputs = model(batch[0], targets)
loss, gradOutput, num_correct = memoryEfficientLoss(
outputs, targets, model.generator, criterion)
outputs.backward(gradOutput)
# update the parameters
optim.step()
num_words = targets.data.ne(constants.PAD).sum()
report_loss += loss
report_num_correct += num_correct
report_tgt_words += num_words
report_src_words += sum(batch[0][1])
total_loss += loss
total_num_correct += num_correct
total_words += num_words
if i % opt.log_interval == -1 % opt.log_interval:
print("Epoch %2d, %5d/%5d; acc: %6.2f; ppl: %6.2f; %3.0f src tok/s; %3.0f tgt tok/s; %6.0f s elapsed" %
(epoch, i+1, len(trainData),
report_num_correct / report_tgt_words * 100,
math.exp(report_loss / report_tgt_words),
report_src_words/(time.time()-start),
report_tgt_words/(time.time()-start),
time.time()-start_time))
report_loss = report_tgt_words = report_src_words = report_num_correct = 0
start = time.time()
return total_loss / total_words, total_num_correct / total_words
for epoch in range(opt.start_epoch, opt.epochs + 1):
print('')
# (1) train for one epoch on the training set
train_loss, train_acc = trainEpoch(epoch)
train_ppl = math.exp(min(train_loss, 100))
print('Train perplexity: %g' % train_ppl)
print('Train accuracy: %g' % (train_acc*100))
# (2) evaluate on the validation set
valid_loss, valid_acc = eval(model, criterion, validData)
valid_ppl = math.exp(min(valid_loss, 100))
print('Validation perplexity: %g' % valid_ppl)
print('Validation accuracy: %g' % (valid_acc*100))
# (3) update the learning rate
optim.updateLearningRate(valid_loss, epoch)
model_state_dict = model.module.state_dict() if len(opt.gpus) > 1 else model.state_dict()
model_state_dict = {k: v for k, v in model_state_dict.items() if 'generator' not in k}
generator_state_dict = model.generator.module.state_dict() if len(opt.gpus) > 1 else model.generator.state_dict()
# (4) drop a checkpoint
checkpoint = {
'model': model_state_dict,
'generator': generator_state_dict,
'dicts': dataset['dicts'],
'opt': opt,
'epoch': epoch,
'optim': optim
}
torch.save(checkpoint,
'%s_acc_%.2f_ppl_%.2f_e%d.pt' % (opt.save_model, 100*valid_acc, valid_ppl, epoch))
def main():
print("Loading data from '%s'" % opt.data)
dataset = torch.load(opt.data)
dict_checkpoint = opt.train_from if opt.train_from else opt.train_from_state_dict
if dict_checkpoint:
print('Loading dicts from checkpoint at %s' % dict_checkpoint)
checkpoint = torch.load(dict_checkpoint)
dataset['dicts'] = checkpoint['dicts']
trainData = Dataset(dataset['train']['src'],
dataset['train']['tgt'], opt.batch_size, opt.gpus)
validData = Dataset(dataset['valid']['src'],
dataset['valid']['tgt'], opt.batch_size, opt.gpus,
volatile=True)
dicts = dataset['dicts']
print(' * vocabulary size. source = %d; target = %d' %
(len(dicts["word2index"]['src']), len(dicts["word2index"]['tgt'])))
print(' * number of training sentences. %d' %
len(dataset['train']['src']))
print(' * maximum batch size. %d' % opt.batch_size)
print('Building model...')
encoder = Encoder(opt, len(dicts["word2index"]['src']))
decoder = Decoder(opt, len(dicts["word2index"]['tgt']))
generator = nn.Sequential(
nn.Linear(opt.hidden_size * 2, len(dicts["word2index"]['tgt'])),
nn.LogSoftmax())
model = NMTModel(encoder, decoder)
if opt.train_from:
print('Loading model from checkpoint at %s' % opt.train_from)
chk_model = checkpoint['model']
generator_state_dict = chk_model.generator.state_dict()
model_state_dict = {k: v for k, v in chk_model.state_dict().items() if 'generator' not in k}
model.load_state_dict(model_state_dict)
generator.load_state_dict(generator_state_dict)
opt.start_epoch = checkpoint['epoch'] + 1
if opt.train_from_state_dict:
print('Loading model from checkpoint at %s' % opt.train_from_state_dict)
model.load_state_dict(checkpoint['model'])
generator.load_state_dict(checkpoint['generator'])
opt.start_epoch = checkpoint['epoch'] + 1
if len(opt.gpus) >= 1:
model.cuda()
generator.cuda()
else:
model.cpu()
generator.cpu()
if len(opt.gpus) > 1:
model = nn.DataParallel(model, device_ids=opt.gpus, dim=1)
generator = nn.DataParallel(generator, device_ids=opt.gpus, dim=0)
model.generator = generator
if not opt.train_from_state_dict and not opt.train_from:
for p in model.parameters():
p.data.uniform_(-opt.param_init, opt.param_init)
encoder.load_pretrained_vectors(opt)
decoder.load_pretrained_vectors(opt)
optim = Optim(
opt.optim, opt.learning_rate, opt.max_grad_norm,
lr_decay=opt.learning_rate_decay,
start_decay_at=opt.start_decay_at
)
else:
print('Loading optimizer from checkpoint:')
optim = checkpoint['optim']
print(optim)
optim.set_parameters(model.parameters())
if opt.train_from or opt.train_from_state_dict:
optim.optimizer.load_state_dict(checkpoint['optim'].optimizer.state_dict())
nParams = sum([p.nelement() for p in model.parameters()])
print('* number of parameters: %d' % nParams)
criterion = NMTCriterion(len(dicts["word2index"]['tgt']))
trainModel(model, trainData, validData, dataset, optim, criterion)
if __name__ == "__main__":
main()