-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbikeshare.py
204 lines (149 loc) · 7.37 KB
/
bikeshare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import time
import pandas as pd
import numpy as np
CITY_DATA = { 'Chicago': 'chicago.csv',
'New York City': 'new_york_city.csv',
'Washington': 'washington.csv' }
months = ['January', 'February', 'March', 'April', 'May', 'June']
week = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']
def get_filters():
"""
Asks user to specify a city, month, and day to analyze.
Returns:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
"""
print('Hello! Let\'s explore some US bikeshare data!')
# get user input for city (chicago, new york city, washington). HINT: Use a while loop to handle invalid inputs
while True:
try:
city = input('\nHello! Let\'s explore some US bikeshare data!\n'
'Would you like to see data for Chicago, New York City, or Washington?\n').title()
if city not in CITY_DATA:
raise ValueError('\nERROR: Invalid city entered "{}". Only enter Chicago, New York City or Washington.'.format(city))
# get user input for month (all, january, february, ... , june)
month = input('\nWhich month? January, February, March, April, May, or June?\n').title()
if month not in months and month != 'All':
raise ValueError('\nERROR: Invalid month entered "{}". Only enter months from January to June or all'.format(month))
# get user input for day of week (all, monday, tuesday, ... sunday)
day = input('\nWhich day? all, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday\n').title()
if day not in week and day != 'All':
raise ValueError('\nERROR: Invalid day entered "{}". Only enter week from Monday to Sunday or all'.format(month))
print('-'*40)
return city, month, day
except ValueError as error:
print(error)
except KeyboardInterrupt:
break
def load_data(city, month, day):
"""
Loads data for the specified city and filters by month and day if applicable.
Args:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
Returns:
df - Pandas DataFrame containing city data filtered by month and day
"""
# load data file into a dataframe
df = pd.read_csv(CITY_DATA[city])
# convert the Start Time column to datetime
df['Start Time'] = pd.to_datetime(df['Start Time'])
# extract month and day of week from Start Time to create new columns
df['month'] = df['Start Time'].dt.month
df['day_of_week'] = df['Start Time'].dt.weekday_name
# filter by month if applicable
if month != 'All':
# use the index of the months list to get the corresponding int
month = months.index(month) + 1
# filter by month to create the new dataframe
df = df[df['month'] == month]
# filter by day of week if applicable
if day != 'All':
# filter by day of week to create the new dataframe
df = df[df['day_of_week'] == day]
return df
def time_stats(df):
"""Displays statistics on the most frequent times of travel."""
print('\nCalculating The Most Frequent Times of Travel...\n')
start_time = time.time()
months = ['January', 'February', 'March', 'April', 'May', 'June']
# display the most common month
most_commom_month = df['month'].mode()[0]
print("\nThe most common month is {}".format(months[most_commom_month - 1]))
# # display the most common day of week
most_commom_week = df['day_of_week'].mode()[0]
print("\nThe most common week is {}".format(most_commom_week))
# # display the most common start hour
df['hour'] = df['Start Time'].dt.hour
most_commom_start_hour = df['hour'].mode()[0]
print("\nThe most common start hour is {}".format(most_commom_start_hour))
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def station_stats(df):
"""Displays statistics on the most popular stations and trip."""
print('\nCalculating The Most Popular Stations and Trip...\n')
start_time = time.time()
# display most commonly used start station
most_commomly_start_station = df['Start Station'].mode()[0]
print("\nThe most commonly start hour is {}".format(most_commomly_start_station))
# display most commonly used end station
most_commomly_end_station = df['End Station'].mode()[0]
print("\nThe most commonly end hour is {}".format(most_commomly_end_station))
# display most frequent combination of start station and end station trip
df['Combined Station'] = df['Start Station'] + " - " + df['End Station']
most_frequent_combination_station = df['Combined Station'].mode()[0]
print("\nThe most most frequent combination of start station and end station trip is {}".format(most_frequent_combination_station))
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def trip_duration_stats(df):
"""Displays statistics on the total and average trip duration."""
print('\nCalculating Trip Duration...\n')
start_time = time.time()
# display total travel time
total_travel_time = df['Trip Duration'].sum()
print('\nThe total travel time is {} seconds.'.format(round(total_travel_time, 2)))
# display mean travel time
mean_travel_time = df['Trip Duration'].mean()
print('\nThe mean travel time is {} seconds.'.format(round(mean_travel_time, 2)))
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def user_stats(df):
"""Displays statistics on bikeshare users."""
print('\nCalculating User Stats...\n')
start_time = time.time()
# Display counts of user types
counts_of_user_types = df['User Type'].value_counts()
print('\nThe counts of user types is:\n{}.\n'.format(counts_of_user_types))
# Display counts of gender
try:
counts_of_gender = df['Gender'].value_counts()
print('\nThe counts of gender is:\n{}.\n'.format(counts_of_gender))
except:
print('Gender column does not exist!')
# Display earliest, most recent, and most common year of birth
try:
earliest_year_of_birth = df['Birth Year'].min()
print('\nThe earliest year of birth is {}.'.format(earliest_year_of_birth))
most_recent_year_of_birth = df['Birth Year'].max()
print('\nThe most recent year of birth is {}.'.format(most_recent_year_of_birth))
most_common_year_of_birth = df['Birth Year'].mode()[0]
print('\nThe most common year of birth is {}.'.format(most_common_year_of_birth))
except:
print('Birth Year column does not exist!')
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def main():
while True:
city, month, day = get_filters()
df = load_data(city, month, day)
time_stats(df)
station_stats(df)
trip_duration_stats(df)
user_stats(df)
restart = input('\nWould you like to restart? Enter yes or no.\n')
if restart.lower() != 'yes':
break
if __name__ == "__main__":
main()