From d6eff382ff073847ad82798c7864eca2d567bc63 Mon Sep 17 00:00:00 2001 From: Kristian Klemon Date: Wed, 25 Sep 2024 15:49:26 +0200 Subject: [PATCH] Update notebooks --- notebooks/hierarchy_inference.ipynb | 445 +----- notebooks/shape_name_generation.ipynb | 397 +---- .../svg_variation_transfer_ui_widget.ipynb | 1219 +-------------- notebooks/svg_variations_icon.ipynb | 312 ++-- notebooks/svg_variations_ui_widget.ipynb | 1359 ++++++++--------- 5 files changed, 908 insertions(+), 2824 deletions(-) diff --git a/notebooks/hierarchy_inference.ipynb b/notebooks/hierarchy_inference.ipynb index df23093..5bb940d 100644 --- a/notebooks/hierarchy_inference.ipynb +++ b/notebooks/hierarchy_inference.ipynb @@ -18,7 +18,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 4, "metadata": { "ExecuteTime": { "end_time": "2024-07-10T08:19:19.147150500Z", @@ -30,12 +30,13 @@ "from IPython.display import display\n", "\n", "from penai.hierarchy_generation.inference import HierarchyInferencer\n", - "from penai.hierarchy_generation.vis import (\n", + "from penai.hierarchy_generation.utils import (\n", " InteractiveHTMLHierarchyVisualizer,\n", " InteractiveSVGHierarchyVisualizer,\n", ")\n", "from penai.registries.projects import SavedPenpotProject\n", - "from penai.utils.ipython import IFrameFromSrc" + "from penai.utils.ipython import IFrameFromSrc\n", + "from penai.utils.vis import DesignElementVisualizer, ShapeHierarchyVisualizer" ] }, { @@ -49,12 +50,11 @@ "First, we will load an example project and select a frame / board from a page for hierarchy generation. The current approach works on frame, respectively board level to reduce the number of shapes in a single prompt but also as boards within Penpot are typically supposed to act as logical separations of sub-designs within a single page and therefore can serve as point of reference for the LLM.\n", "\n", "Note, that the hierarchy generation works for some files and designs better than others. If a design inherently has a clear and hierarchical structure, our inference algorithm will do a pretty good job transferring this visual information into a formal structure. In cases with little inherent structure, e.g. a grid of icons, the generated hierarchies might be flat or of little information." - ], - "execution_count": 1 + ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": { "ExecuteTime": { "end_time": "2024-07-10T08:19:30.149660900Z", @@ -66,7 +66,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Scanning remote paths in penpot/data/raw/designs/Material Design 3: 100%|██████████| 36/36 [00:00<00:00, 532.68it/s]\n", + "Scanning remote paths in penpot/data/raw/designs/Material Design 3: 100%|██████████| 36/36 [00:00<00:00, 322.66it/s]\n", "force pulling (bytes): 0it [00:00, ?it/s]\n" ] } @@ -81,12 +81,11 @@ "metadata": {}, "source": [ "Next, we perform two important steps: removal of invisible elements and bounding box derivation. The first one is important as invisible shapes such as pure group elements that don't correspond to any visible elements can't be visually recognized by the VLM. The bounding box derivation is necessary to construct \"snippets\" of rendered elements that will be provided each separately for guiding the hierarchy generation." - ], - "execution_count": 1 + ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": { "ExecuteTime": { "end_time": "2024-07-10T08:19:40.815981400Z", @@ -98,7 +97,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Setting view boxes: 100%|██████████| 163/163 [00:03<00:00, 52.87it/s] \n" + "Setting view boxes: 100%|██████████| 163/163 [00:01<00:00, 100.61it/s]\n" ] } ], @@ -112,12 +111,11 @@ "metadata": {}, "source": [ "Finally we will retrieve the \"Cover\" board which is the only frame in this document and covers the whole page." - ], - "execution_count": 1 + ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": { "ExecuteTime": { "end_time": "2024-07-10T08:19:40.974091600Z", @@ -134,393 +132,25 @@ "metadata": {}, "source": [ "To now perform the hierarchy generation, we will instantiate a `HierarchyInferencer` object with a LLM of our choice and pass the prepared shape to its `infer_shape_hierarchy()`-method:" - ], - "execution_count": 1 + ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 11, "metadata": { "ExecuteTime": { "end_time": "2024-07-10T08:20:42.204256700Z", "start_time": "2024-07-10T08:19:40.957715400Z" } }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "70it [00:14, 4.94it/s]\n", - "Scanning remote paths in penpot/data/cache/llm_responses_cache.local.sqlite: : 0it [00:00, ?it/s]\n", - "No files found in remote storage under path: data/cache/llm_responses_cache.local.sqlite\n", - "pulling (bytes): 0it [00:00, ?it/s]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "```json\n", - "{\n", - " \"id\": \"1\",\n", - " \"description\": \"Main container rectangle\",\n", - " \"children\": [\n", - " {\n", - " \"id\": \"2\",\n", - " \"description\": \"Footer text displaying version information\",\n", - " \"children\": []\n", - " },\n", - " {\n", - " \"id\": \"3\",\n", - " \"description\": \"Left sidebar circle container\",\n", - " \"children\": [\n", - " {\n", - " \"id\": \"42\",\n", - " \"description\": \"Conversion statistics rectangle\",\n", - " \"children\": [\n", - " {\n", - " \"id\": \"46\",\n", - " \"description\": \"Conversion label text\",\n", - " \"children\": []\n", - " },\n", - " {\n", - " \"id\": \"45\",\n", - " \"description\": \"Conversion value text\",\n", - " \"children\": []\n", - " },\n", - " {\n", - " \"id\": \"44\",\n", - " \"description\": \"Conversion target text\",\n", - " \"children\": []\n", - " },\n", - " {\n", - " \"id\": \"43\",\n", - " \"description\": \"Conversion bar chart path\",\n", - " \"children\": []\n", - " }\n", - " ]\n", - " },\n", - " {\n", - " \"id\": \"62\",\n", - " \"description\": \"Cart text\",\n", - " \"children\": []\n", - " },\n", - " {\n", - " \"id\": \"63\",\n", - " \"description\": \"Cart icon path\",\n", - " \"children\": []\n", - " },\n", - " {\n", - " \"id\": \"60\",\n", - " \"description\": \"Products text\",\n", - " \"children\": []\n", - " },\n", - " {\n", - " \"id\": \"61\",\n", - " \"description\": \"Products icon path\",\n", - " \"children\": []\n", - " },\n", - " {\n", - " \"id\": \"58\",\n", - " \"description\": \"Favorites text\",\n", - " \"children\": []\n", - " },\n", - " {\n", - " \"id\": \"59\",\n", - " \"description\": \"Favorites icon path\",\n", - " \"children\": []\n", - " },\n", - " {\n", - " \"id\": \"55\",\n", - " \"description\": \"Specials text\",\n", - " \"children\": []\n", - " },\n", - " {\n", - " \"id\": \"56\",\n", - " \"description\": \"Specials icon path\",\n", - " \"children\": []\n", - " }\n", - " ]\n", - " },\n", - " {\n", - " \"id\": \"4\",\n", - " \"description\": \"Right sidebar circle container\",\n", - " \"children\": [\n", - " {\n", - " \"id\": \"27\",\n", - " \"description\": \"Menu rectangle\",\n", - " \"children\": [\n", - " {\n", - " \"id\": \"41\",\n", - " \"description\": \"Headline text\",\n", - " \"children\": []\n", - " },\n", - " {\n", - " \"id\": \"39\",\n", - " \"description\": \"Cart text\",\n", - " \"children\": []\n", - " },\n", - " {\n", - " \"id\": \"40\",\n", - " \"description\": \"Cart icon path\",\n", - " \"children\": []\n", - " },\n", - " {\n", - " \"id\": \"36\",\n", - " \"description\": \"Products text\",\n", - " \"children\": []\n", - " },\n", - " {\n", - " \"id\": \"37\",\n", - " \"description\": \"Products icon path\",\n", - " \"children\": []\n", - " },\n", - " {\n", - " \"id\": \"34\",\n", - " \"description\": \"Favorites text\",\n", - " \"children\": []\n", - " },\n", - " {\n", - " \"id\": \"35\",\n", - " \"description\": \"Favorites icon path\",\n", - " \"children\": []\n", - " },\n", - " {\n", - " \"id\": \"32\",\n", - " \"description\": \"Specials text\",\n", - " \"children\": []\n", - " },\n", - " {\n", - " \"id\": \"33\",\n", - " \"description\": \"Specials icon path\",\n", - " \"children\": []\n", - " },\n", - " {\n", - " \"id\": \"30\",\n", - " \"description\": \"Settings text\",\n", - " \"children\": []\n", - " },\n", - " {\n", - " \"id\": \"31\",\n", - " \"description\": \"Settings icon path\",\n", - " \"children\": []\n", - " },\n", - " {\n", - " \"id\": \"28\",\n", - " \"description\": \"Logout text\",\n", - " \"children\": []\n", - " },\n", - " {\n", - " \"id\": \"29\",\n", - " \"description\": \"Logout icon path\",\n", - " \"children\": []\n", - " }\n", - " ]\n", - " }\n", - " ]\n", - " },\n", - " {\n", - " \"id\": \"5\",\n", - " \"description\": \"Main content circle container\",\n", - " \"children\": [\n", - " {\n", - " \"id\": \"17\",\n", - " \"description\": \"Main title text\",\n", - " \"children\": []\n", - " },\n", - " {\n", - " \"id\": \"16\",\n", - " \"description\": \"Subtitle text\",\n", - " \"children\": []\n", - " },\n", - " {\n", - " \"id\": \"47\",\n", - " \"description\": \"Headline rectangle\",\n", - " \"children\": [\n", - " {\n", - " \"id\": \"49\",\n", - " \"description\": \"Headline text\",\n", - " \"children\": []\n", - " },\n", - " {\n", - " \"id\": \"48\",\n", - " \"description\": \"Supporting text\",\n", - " \"children\": []\n", - " },\n", - " {\n", - " \"id\": \"50\",\n", - " \"description\": \"Icon text\",\n", - " \"children\": []\n", - " }\n", - " ]\n", - " },\n", - " {\n", - " \"id\": \"51\",\n", - " \"description\": \"Snackbar message rectangle\",\n", - " \"children\": [\n", - " {\n", - " \"id\": \"54\",\n", - " \"description\": \"Snackbar message text\",\n", - " \"children\": []\n", - " },\n", - " {\n", - " \"id\": \"53\",\n", - " \"description\": \"Action text\",\n", - " \"children\": []\n", - " }\n", - " ]\n", - " },\n", - " {\n", - " \"id\": \"25\",\n", - " \"description\": \"Toggle switch circle\",\n", - " \"children\": []\n", - " },\n", - " {\n", - " \"id\": \"26\",\n", - " \"description\": \"Toggle switch label text\",\n", - " \"children\": []\n", - " }\n", - " ]\n", - " },\n", - " {\n", - " \"id\": \"6\",\n", - " \"description\": \"Top bar rectangle\",\n", - " \"children\": [\n", - " {\n", - " \"id\": \"7\",\n", - " \"description\": \"Top bar text\",\n", - " \"children\": []\n", - " }\n", - " ]\n", - " },\n", - " {\n", - " \"id\": \"8\",\n", - " \"description\": \"Top bar rectangle\",\n", - " \"children\": [\n", - " {\n", - " \"id\": \"9\",\n", - " \"description\": \"Top bar text\",\n", - " \"children\": []\n", - " }\n", - " ]\n", - " },\n", - " {\n", - " \"id\": \"10\",\n", - " \"description\": \"Top bar rectangle\",\n", - " \"children\": [\n", - " {\n", - " \"id\": \"11\",\n", - " \"description\": \"Top bar text\",\n", - " \"children\": []\n", - " }\n", - " ]\n", - " },\n", - " {\n", - " \"id\": \"12\",\n", - " \"description\": \"Top bar rectangle\",\n", - " \"children\": [\n", - " {\n", - " \"id\": \"13\",\n", - " \"description\": \"Top bar text\",\n", - " \"children\": []\n", - " }\n", - " ]\n", - " },\n", - " {\n", - " \"id\": \"14\",\n", - " \"description\": \"Top bar rectangle\",\n", - " \"children\": [\n", - " {\n", - " \"id\": \"15\",\n", - " \"description\": \"Top bar text\",\n", - " \"children\": []\n", - " }\n", - " ]\n", - " },\n", - " {\n", - " \"id\": \"18\",\n", - " \"description\": \"Floating action button rectangle\",\n", - " \"children\": [\n", - " {\n", - " \"id\": \"20\",\n", - " \"description\": \"Plus icon path\",\n", - " \"children\": []\n", - " }\n", - " ]\n", - " },\n", - " {\n", - " \"id\": \"19\",\n", - " \"description\": \"Floating action button rectangle\",\n", - " \"children\": [\n", - " {\n", - " \"id\": \"20\",\n", - " \"description\": \"Plus icon path\",\n", - " \"children\": []\n", - " }\n", - " ]\n", - " },\n", - " {\n", - " \"id\": \"21\",\n", - " \"description\": \"Settings icon rectangle\",\n", - " \"children\": [\n", - " {\n", - " \"id\": \"22\",\n", - " \"description\": \"Settings icon path\",\n", - " \"children\": []\n", - " }\n", - " ]\n", - " },\n", - " {\n", - " \"id\": \"23\",\n", - " \"description\": \"Circle icon rectangle\",\n", - " \"children\": [\n", - " {\n", - " \"id\": \"24\",\n", - " \"description\": \"Circle icon path\",\n", - " \"children\": []\n", - " }\n", - " ]\n", - " },\n", - " {\n", - " \"id\": \"65\",\n", - " \"description\": \"Enabled text\",\n", - " \"children\": []\n", - " },\n", - " {\n", - " \"id\": \"66\",\n", - " \"description\": \"Enabled icon path\",\n", - " \"children\": []\n", - " },\n", - " {\n", - " \"id\": \"67\",\n", - " \"description\": \"Enabled text\",\n", - " \"children\": []\n", - " },\n", - " {\n", - " \"id\": \"68\",\n", - " \"description\": \"Enabled icon path\",\n", - " \"children\": []\n", - " },\n", - " {\n", - " \"id\": \"69\",\n", - " \"description\": \"Selected text\",\n", - " \"children\": []\n", - " },\n", - " {\n", - " \"id\": \"70\",\n", - " \"description\": \"Selected icon path\",\n", - " \"children\": []\n", - " }\n", - " ]\n", - "}\n", - "```\n" - ] - } - ], + "outputs": [], "source": [ - "hierarchy_inference = HierarchyInferencer()\n", - "hierarchy = hierarchy_inference.infer_shape_hierarchy(cover_frame)" + "shape_visualizer = ShapeHierarchyVisualizer()\n", + "design_element_visualizer = DesignElementVisualizer(shape_visualizer=shape_visualizer)\n", + "\n", + "hierarchy_inference = HierarchyInferencer(\n", + " shape_visualizer=design_element_visualizer,\n", + ")" ] }, { @@ -530,8 +160,16 @@ "If the cell above finishes without errors, it indicates that the hierarchy has been derived successfully. The underlying code performs a validation of the AI response to ensure that the response format is correct (i.e. syntactically correct JSON) but also that the generated hierarchy is valid, i.e. all shapes are covered and no duplicate shapes are present.\n", "\n", "We can finally use the `InteractiveSVGHierarchyVisualizer` utility-class to visualize the generated hierarchy interactively within this notebook:" - ], - "execution_count": 1 + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "hierarchy = hierarchy_inference.infer_shape_hierarchy(cover_frame)" + ] }, { "cell_type": "code", @@ -545,23 +183,14 @@ }, { "cell_type": "code", - "execution_count": 69, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2024-07-10T09:51:36.410464900Z", "start_time": "2024-07-10T09:51:35.724011700Z" } }, - "outputs": [ - { - "data": { - "text/plain": "", - "text/html": "\n \n " - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "hierarchy_html_visualizer = InteractiveHTMLHierarchyVisualizer(\n", " hierarchy, svg=hierarchy_svg_visualizer.svg\n", @@ -571,12 +200,12 @@ }, { "cell_type": "code", - "outputs": [], - "source": [], + "execution_count": 1, "metadata": { "collapsed": false }, - "execution_count": 1 + "outputs": [], + "source": [] } ], "metadata": { @@ -600,4 +229,4 @@ }, "nbformat": 4, "nbformat_minor": 4 -} \ No newline at end of file +} diff --git a/notebooks/shape_name_generation.ipynb b/notebooks/shape_name_generation.ipynb index 74c4c92..70494b9 100644 --- a/notebooks/shape_name_generation.ipynb +++ b/notebooks/shape_name_generation.ipynb @@ -19,32 +19,27 @@ }, { "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/var/folders/_b/jrvj22sd3c709mpf5fsmty5h0000gn/T/ipykernel_45067/1278738917.py:4: DeprecationWarning: Importing display from IPython.core.display is deprecated since IPython 7.14, please import from IPython display\n", - " from IPython.core.display import display, HTML\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "%load_ext autoreload\n", "%autoreload 2\n", "\n", + "import json\n", + "import os\n", "from itertools import product\n", + "from pathlib import Path\n", "\n", "import matplotlib.pyplot as plt\n", "from IPython.core.display import HTML, display\n", "from tqdm.notebook import tqdm\n", "\n", + "from penai.config import get_config\n", "from penai.llm.llm_model import RegisteredLLM\n", "from penai.llm.utils import PromptVisualizer\n", + "from penai.models import PenpotProject\n", "from penai.registries.projects import SavedPenpotProject\n", - "from penai.registries.web_drivers import RegisteredWebDriver\n", "from penai.render import WebDriverSVGRenderer\n", "from penai.shape_name_generation.inference import (\n", " SimplifiedShapeNameGenerator,\n", @@ -74,18 +69,9 @@ }, { "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Scanning remote paths in penpot/data/raw/designs/Material Design 3: 100%|██████████| 36/36 [00:00<00:00, 215.66it/s]\n", - "force pulling (bytes): 0it [00:00, ?it/s]\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "project = SavedPenpotProject.MATERIAL_DESIGN_3.load(pull=True)" ] @@ -99,51 +85,9 @@ }, { "cell_type": "code", - "execution_count": 55, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Files: (name, id)\n", - "- Material Design 3 (3c46b0c9-0a64-80b8-8004-7546b11fafc1)\n", - " Pages: (name, id)\n", - " - Cover (3c46b0c9-0a64-80b8-8004-7546b1453d7d)\n", - " - How it Works (3c46b0c9-0a64-80b8-8004-7546b1608c94)\n", - " - Components & Variations (3c46b0c9-0a64-80b8-8004-7546b240409e)\n", - " - Samples (3c46b0c9-0a64-80b8-8004-7546b7587ac4)\n", - " - Versioning (3c46b0c9-0a64-80b8-8004-7546b7587ac5)\n", - " - Main components (3c46b0c9-0a64-80b8-8004-7546b75cd4c3)\n", - " - Page 1 (3c46b0c9-0a64-80b8-8004-7546bb300815)\n", - " - Page 2 (3c46b0c9-0a64-80b8-8004-7546bb306911)\n", - " - Page 3 (3c46b0c9-0a64-80b8-8004-7546bb306912)\n", - " - Page 4 (3c46b0c9-0a64-80b8-8004-7546bb306913)\n", - " - Page 5 (3c46b0c9-0a64-80b8-8004-7546bb306914)\n", - " - Page 6 (3c46b0c9-0a64-80b8-8004-7546bb306915)\n", - " - Page 7 (3c46b0c9-0a64-80b8-8004-7546bb306916)\n", - " - Page 8 (3c46b0c9-0a64-80b8-8004-7546bb3086a1)\n", - " Components: (name, id)\n", - " Typographies: (name, id)\n", - " - Label Large (3c46b0c9-0a64-80b8-8004-7546b149a54b)\n", - " - Title Small (3c46b0c9-0a64-80b8-8004-7546b1505e57)\n", - " - Display Medium (3c46b0c9-0a64-80b8-8004-7546b167098f)\n", - " - Body Small (3c46b0c9-0a64-80b8-8004-7546b154cf15)\n", - " - Title Medium (3c46b0c9-0a64-80b8-8004-7546b14fc3d8)\n", - " - Body Large (3c46b0c9-0a64-80b8-8004-7546b156b0b5)\n", - " - Title Large (3c46b0c9-0a64-80b8-8004-7546b556eb89)\n", - " - Display Large (3c46b0c9-0a64-80b8-8004-7546b14d6f65)\n", - " - Headline Medium (3c46b0c9-0a64-80b8-8004-7546b154cf19)\n", - " - Headline Large (3c46b0c9-0a64-80b8-8004-7546bb31acd0)\n", - " - Button (3c46b0c9-0a64-80b8-8004-7546b72bdea5)\n", - " - Display Small (3c46b0c9-0a64-80b8-8004-7546b16428c4)\n", - " - Body Medium (3c46b0c9-0a64-80b8-8004-7546b154aff6)\n", - " - Label Small (3c46b0c9-0a64-80b8-8004-7546b5dd89b7)\n", - " - Label Medium (3c46b0c9-0a64-80b8-8004-7546b15107a5)\n", - " - Headline Small (3c46b0c9-0a64-80b8-8004-7546b162f50a)\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "print(project)" ] @@ -190,20 +134,9 @@ }, { "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABFEAAAJJCAYAAABiTKhrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5wcR5bfi34jM8u0942G9wAJECQBmqF3QzPkkBzD8X53Z2fNaJ3uXunq6r7Pk/Ske7VXK61WZrU7u+O95wxnOEPvHegBgoT3rhtotDdlMuP9kVXVWVnpK6sNWD98GlWVGXHOiYgT5pw8ESmklJI66qijjjrqqKOOOuqoo4466qijjjo8ocy1AHXUUUcdddRRRx111FFHHXXUUUcdCwF1J0odddRRRx111FFHHXXUUUcdddRRRwDUnSh11FFHHXXUUUcdddRRRx111FFHHQFQd6LUUUcdddRRRx111FFHHXXUUUcddQRA3YlSRx111FFHHXXUUUcdddRRRx111BEAdSdKHXXUUUcdddRRRx111FFHHXXUUUcA1J0oddRRRx111FFHHXXUUUcdddRRRx0BUHei1FFHHXXUUUcdddRRRx111FFHHXUEQN2JUkcdddRRRx111FFHHXXUUUcdddQRAFrQhC8+NAnS/C4K12RFqsorUSELfKSdpHBg43TNfh+PNJ75PQiXhAwgQ3CqlkTx1mfwxPHxLfIOWT2Rc7lRmhXMJ0Zx62Jkag4dJALDWavaGtRGPFocgyBWKYQw+3nxMw7yDpgXZY8DxUKEKVDEuaGOaChVcZk+m/o9o/6idFsWLkpZ+F74lBIkEqRAyuJnMY+c4VVGZw4RpQ/75RHC/V4VsHcFKxfpcK143e2a072aoMTMo95ExZfK7PjPkGHLU7M6qCBqSiicb8bCzl5HvlxCV1o0ub2GcFeKoQriS80zh5NOxcciukzxyuGeKVQdROYbrDHjL7Nz5kD9JZZu6k7EY8iLyMe7juPl50jZ/CXglo82BMoZOBJFOIwgJltp+YsB0kZJOHx3m1H9Ktaexs+54krExjs0jXcPqquWeqWePwjRlrOyKo6K4MLNL+11kWbOLcDzGPWqnQeQM80gzF9CyNJaoGzJVrgmBIiSwVhY2NnWHmXLCIchYcE3/SyNC17LJ/s1p7RBR2N73vClK3CKWC9By+m0tHX7DG2fW1HFHCs9/qpBVfkDC7Hge2b1OA+rYF4Wqcbr2HlZ5gWBeBsmsBNF2r6bfzE3o/nQBzCdNtI+KFbDzmmQjTTgyqpnDH+2xcLHg1CUasA33IPYGB1ysVJaQIxCyBKv2AGWwkEYypmPeLXBi2FQTsGkiab7NYJTn44p+sSv1ua87NXAXsCojbmgK2HhwO0plbA4PmYcHmbDlq45ravEzN/MA6NKum6yBDHcY1GNKH05SJ7COkQU0ooYBuMgDhArG786jOIUKT5zi31dVBovirpVqLeAc4vb0rR6B5BDnqBTnUX0mfK4E4jDqRLHEj18pug5XO85G00BOIWTL3QVFJU/MJto9eXLJpKChLMk4uUb7Km7rPhSQNW2u3ufc00RzwTjfyd2PpUE44tC8e8xYabUwNt5Kqe/GGqtaCxZn/LIslvuYjiJ4HYvkKgByxPBQPWsrRo98fEfq4szY4RQ4JB8A3TBmvGuCeYLI6dBWnoniQ8BZfNQfjcK8TseasMp6Do0driGk1fXl61NZv2N5fqC8gf4CRu2QAuq8O9mVDasvWuUtiQIWXClGKWok2L8iUnCzCRF4aosXXGkb+1Ddims/cotqNYK6XHfaqR4fQal5wWzGor1JMP1AyEQxe1UNq9TNU4BNzphyhwmikV4/HbLJAWUtpKVSVouRHm7Ca/U1my+9SYDpguEUnkoL49DRbiVx3o/JGtXuOm6Yybhl6AiUWC4sbPPqZ6JA1GsXiZf28iRjZs2ucsUiI3TAOmL4JkC8Q3MO3jFOdaWU3cJrW7+DebkSKneAeFeYVZHShkfR+WPylPUkI8zv6CIeLBsTKtJYVmnhB3TvFYrtVrsRqQ722vvUPxm6Ym0c64FhvCFrIJBSAdKgCzVIYBsTooQQaZ4ihFEK8NziqbrMaB0WIMH5wh92aksbuWbdz3WS/ggws67AtURG3zCREyjfmY8E0W3ihAzkSlCWCJRCosMUdgO5McypK8hrCrajXqn63b6Xs+dgiHKYG5xIkg5E80SQ7St07Lea4YKW3a34SWSreeRxto2ImAdO8kRcOUQHW6VavurLI+syBK3SIGG/ECM45Mu1DJolmSrjk28qwInYz8GKtFyxNLs/noeT5mdiAQkFJt6OxOSTrdrWbezYff7IEQkSgwojK6eZXVziLi51EPNam5CRb8dOmkNoz5mM+IlGrXaTQJVOyGDMpoVBtLzp1vq+CIFAsgWd7+IjHhLP2d2tb1/zvKBr/PCnxC1KeeF8HXMB5Spjq0PWX+WfYdCNKyk+Li96FSRFudJ4YKNUfG6KIsqsKPcsIxh2eIBJx5ukS9+ThcvmtFks89tDrXlM/aZ7VUphd2J4OdUCNIeUYaiSFErxa+F6BVHiPKvTlEeQcseWLYoeSrKU7joktF6VG31+lWJiigQr0Z1DFOwSldBsfayhQ9j8ZUjXjbRZbLmdK16X3LhM7k5UuKNFHHO7Fnm2GxZ5+iUEr8aRIpYr1aQj6WM5UQc9djahrWaYG2YvVccW0d1N8dZ1MVwJGWwCeFkUcxjB0ooGc4TB8qsUZ9TB0q4pPEbwgGoBJDJq5vHh3hKPzuyOjGWuD6RrXJbjl955o3fwUnYeSNcHQsRxUAS84eouFf2vcwwLUajYDpNhKw4L8XVCSGKH6byei1vnJZCTk5Np8gKp6WJUzCuE98w8FtKxcmrkog3FRkgjS8LyusybBSLG4r1Fnk+CThomzIH5+BmNEdY6oaDy7hervvlfcbeP5xIRRXBl5D7IjoGSQKwi6R84bWt9mzC15Fnjtg7U8AcNV6LOPKrIU9Z8SUuftL1V22K4z7Pxkk/CGobiWKdnYoRKF4rhSKsMxG270737GmC3yi/HbLl/QedQooaP1X25D1b/KrMNTvU5oJBQEZeK5xgFCLKEYKRx0p9PgxmYSnEF7njxjje/l8i63K95uUJggDqVUcNUZxTrb+hct4saxevRJbfQgTIY0MtXr8bNI+fJ8BSB6WvDo+2SksYyxpmJpklQ4GAQJYiJYS00C3+dpDLawkS9NMvTRxP+t0iWuz3wyKSXGWH3ATTmWqiWMLUZc2GPWn/Kn113xq14rVs9ipX8VrVD3cdBKgwh0R57zLvlssfJYKmRN6PjlMlVVSMV+uGjwzxlc1NJldK1csSmI1nhEq4kAevtU204oXPZG8PXzs1FH/3safsruPFMHDn61gcWYsonJl2L7sTqR7d+FXqV+lXbHy8UfNIFKfJqASnQtnbwWk0jwP2mSNuWCe1BehAmQ9Y2KWQ+Gj/TBKPlY1XkngQgrKs/Fkb2XzqLWYu8RKVVESXnO9vwgmgx3XEBKd6drL8ytIVddL225e47bd06pc+WlmrN8cEyOP2NhnXaBRR/GrGpFjPRhGWVbywpC9b9dpX+hJksX4K54HIYhJbFdoXfHG8CccOr9ZzUiGntH5pqpGrOiLBqMgQaX3puHxa69PJn+lHM7wwDjnL1TBw1IrdLJmT4VtKpJyRQ0aQJOg8GZiqvYEjcw+eMx42s2B7eNZJpNoOjkgkg2eSFV/CkAmfybEq4xkgfUnG2zru1OItn7t+1aYeKxFfJEph9HUSPLTs1gx+jpbAhBwuh5gprJOi+3gxW2rowi+mt3PUInUYSrPxFKfEqCaEPe75FCyQngVC9Yzc2iW+9glRb1VSixXne1TJvBRqASLYpFH+sziG+43lZbeCjvv2NFEac2EpQEXVOz2CA2beIiPKIk7MLMU307hErJS+S8vP4khp5eQ+F5SyF9rdc/FeUUhhkdUli22u81pEey2PrNfsxrZ9fgg6vbpFPdQUQfqYFR4HFQdZRgaplzgihRwFK321XCiNM5VS+OlB1HYOi8qmmZF3hq/7k+igsnm1m2eQhWdip5VS+JqKxMYxkSeVQHKEYhO94gLl8ixeTBEi1pSBIoQCV6k/bw/Vj8DPiapz5rIUjgWOgkpCFZJ4VnIUXiaRipquwYAVbySK02hrv2dP71eoyJUa0DIMScl9LRzv4jIStVlzoMQHr8XcwmAUgoiHSkoC6lk1jJxuRxA/nvaJj4q97mqKWXCg+N2rKealUPMY0uOvlCZIImtaQurZ7DaMV2nsJZMR84T588tjlbuI0nJCiPKlRdmKzhp1IsvPSimmKAtlsdOPstioJo9EOpZ85pKwflYJNxL29bA1rddn1HE88rwUpq6t/TJEPruOOkV5xD//BxGsWB47M/9WCFqemkDav0oL3wo3ZZzsIiS2X4inZnzZuF2rUpZQbKqruOpyRKriYDrvmTJy0wbLGKjdQ/EMSCC2TuVMSHrfjpWfrAGf2CJRJNT2SaWv5gZ4Th5mzgyUqAYDYo352fkGazJ7iupcebVfIMwxA6fqcljTxi9HNEa1qa5wGuZHpeaowRa4eGogJripyrwQbg7hujIRzgliPt/GCz6SlBClCWej2aMYt9UY0YHT2govLf+LkiEmZ5paMLMVx7rJoBABMufbH1w5uywiARk4eglKGuilNLYoZKf6cDK2naUsH5rcVht22rMSveL03Q1CBHYmYUsTJMojaLpA8LPQXJyF9tSzov/WZihUwMw5Q14SRKslv2nSMzLBPohXJIomW3xs4pWljIK94jzJutVy8AiRCt7+JBwoBsvkWebQfK0Zg/ONJ4LDXeCy9WthuqveFHSuuYpixGZyOpfP+ma+avlEj0SxjJrSSZu95nS7oLGMvC7DeITRPVDS2T53pEZPwKNRncdGcU0YSHwVSdqSOcjklSQehGdUey1+91no9qqfsxoIoJPnffM4NUZF2Z0qyaXiYh6HfUVzl6TsfhTe7za4rY+E5YssfFp3bwhmfs+ck2LN61ybVhpB6tutS9amrcJQLc4r1gHFYZ1l+Ysj0sXG3bF+oi4lZ2X4k9EjI+xLar/PmkPCTBTOzJ9bCd3axemzqunJTshG0EnaKOuwSONvqEVAPGvqeNhUr1Wy4ksQsl6aUEWOSMUJnyk+vsEyRqvjQBQdr5YdqxYLP3dSteEj/flEQORIFBnEaeKaufBZ1SM2D4ZuM1AAkSpv2O7M5pt2wu7brZZfxNReFGr2wNtOrOYMHK4F1KvqRaueUe2qK37djO3pWgWjAif7uRMe+90dyVADdQsLuyUxL4SaBXgpi9d4KW2ZAnv+/UVwQ9Bmsd8735twXqDssVfxPBSHJUnhglVdCu/fKfwsH1Oq6YJh89ZkjPTkFuRa8Y7w7o9AhfS2n0490+3Tfs3e95zqyZ6+JnAcZxzg8cYg+2+3lvCK2Im1fE4WToBHul7t45S7KrldVa6ce/lpR9HhVoZwidxqJqbIECc2nomsN8K3hmMpAlWUE6VQGSpzRCpO0JHEPUf0pgxWUb51HGNkimuKqgcY58qJn4+VyAyxMj4Rulz4SBSv+dDJ/ex0PUje0Ciudij/XOhY4G/aWdjSV4dZK3sERguhXWomo71PRehj88aB4vT73YSKughSGbNTYe/mZpmvcF1mWIxYt2Wk4xK2sHYR7olKl/0cAX4OAS/ZwsCLb3yINinFGcFilcKtrMIhbVRa/jmjIWhuP32SVClJQIUr6mtQnlEdj5HKIst/WJ2msdRRbJgfUpgIL0ttnbsxrdcCkQm/2CqlcAoSmD8KVkdMDRHOiSI9WBeVw8mR4uZM8Ru5XMtoN4IK/0WsE89s9icEsxEVEvLwsqr5VZHaDVHDbAMhlK7ExSBcEqcFcayyOPUbj6S1QXTKkbp9JEbSvT+FeC3mvPHNegkw58LVCBXK4jBxRBovvfM4TU+zttivY9YhSv+Zn/YtPSWHiQAhhLvDxLJ4thqUXvAaB8M4X6rl4Zc+NDz7ZeUsIC0VVs1rnq3Z7LaM05QZtk6dlrpVwWue8oF1aR3e5AvhPAjYlGbd+I+tdpKz5sgo1HG586acYxz8I9noNeqJ8bAJ3jJefS08XzvC9zzXIJvAvK093j9TMTDWMWXM4VWexalKdbwzu9ZpDfhJ/yQR+HhE/4XgE3g7jwyqeG73Is86AUsTotDWKnTv2PENXLXm48XbP0U1Achh+M1XBj6E7bcdqise0eJhVFtt8gvC9c5dE9i36EQlE1OaqhFvt5yf8JvpQ7el/+LCCVG2T7wrYF9jOK05/NJUo8e1yiMsST2GMfvlmVceF7frCIf00uIxkZYblsNFJaUDMIMa63aZ7LLFoZP2SBfhcD3M0s2+1Au29JOWj1KNlt1yxkyjlg7/tT/38uXtL5k9IslO062M1jYLHsnvI7HtwV5Qe9iti4SRL1B5SsajdB7Lbc5Je39y4ueEancQVPZB6aA7zlyC8nZrSVcD1LXTubVccMTHJrosdhnKbjgpqCPZQCUJniNwcfxGXudoxooyu1ZCEPhndlpeVaQMPhjhVseefKJOHh4KYJ0PqufjxMskEtZVEdvbeSrgNtO43fNBsAm1mMYyeBePFHbIF3ZytU8glfktBbTIED8fa2JbWaWtxzgRK/u0TCGFhYiVqWVNY6PrwLcKeJV55npV06YDxwhJpPuteGUJxqiKLuUDr6VZME7xyuPHbFa5xYugq+CFDKcZ1zVt9MKHyXm+VbErnBYZTpauWz57Hq+1pN/vIKhVHj/ZrPNngIG1tLSwOY7Kk9sqOuwKzUVUp6W085zpzDLQ2iIGWGcMNxnccwXlIMqXeFbCERbY0WT2p+d2L/zaf2Y1VDqbJ8C5Xk7mUFj+sTiELATMrzMnk9h5OWWzN6+fLOHkNRPP8HGWrVq4ymQfWz1ZRxxMasImvCwVOdzmIF/hwiFQjuhVG45sjfjEi+DaUrobSsH8eFdmduQTC4q9PjiCO1HcZlynGdzpd9B7ZQlmCmMYebK5UaYyY+SyOQzDCEIoFrhyCcy+Rh09Djgysk23QWZOWfkzjkWapmkkkynSyXY0NY0QSkGkML0yosPE4Xb1ZXLJXbGgD57Ug2pAzI7RWhVqYFjPhhExa9bKbCOoU2QWIoRgAVexW78PUyDHtHbrUdrSRGmXiHlCt0zt85ipfSY2m8U588yh4GgxcJ4mhUCWPTyxeVqkMz/TGK6k55QOqIhqsab3+/RLE0UN7fJFSRdtve0gqdd6tOzhz4ws0kEov3rzc1aVWLrcj14Hslw2t37pEbUStN3DOk4C29xlXy0XhCit/O0ODLusQWQL76Sy142c8Zg60HOKTAvIpgIVeX0TufXS8A6N6tlI2w1/TXDK4UnWka9bwmCORdccduECUwte5uKFUg7XSvDj553Js16jdJAS3B0cZeSjDeye/Cr4RC6PE7/gRII7UdysyCDWZaiZ2Lr0kBh6ltGJ0wyPn6CpKUF7RyvJVAJFSQYWPQzP+Yh5J121q6wQyOfyTE2PMXjuBEY+QXvLMhpTnUihBHSkBBDOJ4mTukeDS26ny9I/STyovYFbNWpkhNdU/viUZv6gor8H6VvhCh9kOvHKtyAQRCl9C2SpKc/2cCMUpcbO1zyFTylKDhDn6U3MrNQkFgehZdFl8TOVmRFCWrqC89Jd2m75tWZx+4qr86WKxaTdWLXfc3IeeNlZQVvH4mryfWbj7h7wQbEhSg1iefIYcrFvryf7p1PZ3VhUZWe4Cjhj+AeNVrHKYp/GgsgX1ulSKYQsdS8vSk6yuX065Q0lnyXCu7JuyqlVU/ZAdmAFA7eRojptCsTGM3d4fq68nRIHcjKEdya5+mcCk6qi7qN0uBCZSncj8fGk6CpRPHycidSWTzBE285jnensPN3uec6klTckkM2Oc2Z4L+2dKa7YtJn29jYSiWTYN5JGhK/QoamdV5jFAkkpmZqaZmDgDIcOH2NqdJjOllWgaDZHio9QAVZ3tWntaIzmi+bZDdua+c0inG9il21Wcb51auk1iBeuz9KbjOZN1UayCG31KAhRb2F7mXca+3rCaZEeVrIwmM95rDCdDrJExL4Jd+bZuJWfLAxVoox/eFkqKYfJVXydsLRdL/ekOOmkC2FLFlH47eQI8Pq0pw1i2FrT+i3x4l0CBpibI0StOC2PvepA2D7jhITyMcjxrBJnt5RXOdwQRxncnY5gRqtUymT/rNqhUyaQ49cyq7TC6WrLHsZJaIerQ8M++ASn4gtfNk7zoyeV4DIEqgPXsgemEjxHqGK4zeHeDsGKu/YGCATvMjtKJh3IR+Ln41Cpio83P1c+NfYXhHeiBBmR3GbSIIklSAHZ3ARnR/eydn0fK1euQNNUAPNU/KoQZslo/YxOyZvKHCPqynMWCySEoLGxgVWrVtDb28OuXbsZHD5IV+taUFQin5Uya5aaLPvwSzknDgEXuC2g4mPgQC2kA8X+vaaYLw0TFxzL41bI8O2yIOFVAN95zO6eCOt4Ct/L3Bwlbr+teaJIFgbzOY8XinOKLK6eLQZ0iZ8AaVjs0ZKzrOgGkBFki7v0Ttpg9Yo46K3dWVDIUjJI5Uz5w0ropHd2Q9fN6RLWGI7NeAZrA9uqzsYhAMMg5Qta5shldJt3Q6yv3dpQOlyLHVIiLY4Ut7HMrY5jd66Ima8zlyrPU7GvWWLR51BEo5c6EJuKG16tEk0GV/KByYbn75gjUF2Hy+TqTAnELzhqt0bzF7JmY8Ic8Qn3imMrqlpnS8tf5R1Dz3F2aC9r1vaxZs2qKhwo0uEvGqy5q6M0x4inOmYdxbZvbGzg4os309CcY2T8BDPh1A5wKatTW0arDif98mAUUMTqmiV6ieLrLXbC0v1vrmULwmgh9ZcKxfaod2lP7E7Srb/MyyoKIqRXPQXPRGWp7TUgI4kUuRjBashR0nczioaV1SortlzZM+/iq43tz1hcliazEzUbFk4zTaVmSetvWdiOJC3Xi+/wdPkr7nwSNuV07iHOvUhSbiC75XVC/FXvxM1W6Iox1vZno+TW553uhZEqMiLO1fb2KqKmD4SK0VeWz/Lxu1I2cK7j6mWp/LPKJCw3wh1b6csmQqJqZg1nNq7k8UrkW5JwfH1vevEPx1d6XgxDKRgvR36h4J+pIkVk1fBs+LI7sio+TtRkxZ2IahYY0bbzWAUJPUq6JLaMvqOTp2nt0Fi5cgVCiBiiT6qDdPlex+yiqAepVJJNmzbywguv0aT3kFAbEMLWMgEaqiZt6UTUQ+WLEIBQQEsopJsUEgmBqgmEAoYOui7JZyVTEzr5nHRZ01Q3Oc83zLpM87ESwqBiZehRIFmR2JGU37V5g+L8EUbISGft+C9ErIga7TGv6/o8hVudl2IPbI1Z2baW1its/5itl4ZZlk8hckThEuSamLkjbV3TqYNE4Fq8HjR6pUhjVleSFe/RFuWFCSiMV3nK2PmQDK8jdgI2ri7rcvsYFiaqyO++q0xW2UqZvanY74Tm7Sub5auFqLRwi0MvA9GoKJRdg6ortSt5u/EUcwf0JBmKX7QRNHx0SvQMjnUcuj79M8XHJySBqvkEJBuzHlb/imPfMtiHUo+UEqTUmcqe5dLN60sRKDUQahYozBOcNwUpR0tLC8tX9DF4eoD25pXmxQDOimjw8RpW4bARgJYQtLRrtHRoJBuE6TTJS/S8xDAkSsp0qKiaQFEhM2kwOpRnbFhHz4dzr1Zr5LkTdqHi4QD1qpOaqm3wIWl+oEJGh8VsxYI9GNl5WwWB55UihLsOxsg2qlOkjoWL4nEY5jaWmRY1g/VF2ZYfL/0QlL/QpxbbHWpgp0SUogizlM51UnQq2MxAv0p04WS326yfczfOOUno/BPAevaKW0N6OVC8nBN43I8Ep/HWYb73axdX8j73vWWr+GIhZj3hSFQ449x4V91nneZxi2NFlAtZPXk7NbdlrHBKEF4WO/loicLL4JnDt1LcEgd3bFTkCO0ZC863IqXT4ObL121EFGUprFdLO/0iq4i7gGXLcWlLUVVH8y4PeJongRHdiRJoVvKYQKyXLQXJ5idIpQVtbW0mm0hbeOoAztuqEEKgKLB0yWJOHnsbQy5FdVHl+M0qGZiw3+JN0wRtXRrtPRr5rGRsOM/0CYNMRkca5WsUIUAokEopNDSptHVpdPYmGBrIMTqUR9fdBfIStaYOFL97blmqECUU0fncP3wXONa09uWpN0m/a3OCQI6teDTZvgiuO0XqAA/Vc/E8lx02W1Aqabsgim/lcVEcu/HmZ7i5fQZ52h96be8hR7icQe8VK9E7S8WCOKBA9rou5Xf5nBNUhiyYHz7VUkznpysWsrUpY8hzVUrZKG+fIOZF6HYqZZAWHuY3N/+CNVtNdMPW3E7nqFTDz1VepwIGzx2dr2citxVK+BHHM0c04cLzjVR9EXqnyzAaLpN/SssLqqqEs4Cuc29VnlQfPjF06OojUQLBZUh0WPtnMmO0tjehaeqcbuOZuycXdQRFQ0MDqmZg6DlUrVaqHE0T/HI0NCn0rUghBJw9mWN8tBhV4kJPAgZM5nUmJwyGz+VoadPo7EvQ1q1x6kiGzJQRWs65RL2P1VGBSAoRXJPq+laHL4pOEgFSCqxv7QHLPetviw4W3CdIJLJoFJccLxZHS7mtbMnrDfuyyZ7f/ulkSNvpBVlpzce+U61MbnUZ1LHiVXeR1+cxToxO5cF2zS0PLvfjgr1e3fTYrf6rdXx5VbGTM9P6vTb1Ipg5h6j8KfrcWUJ1VIUaNZ4nyciDTsi7s12umOjH7UQObnnaubuOQG7TtMdtCzLZadpTyRAOFLtQtTF6FwzOm4J4w4xGMbe4GEa586C6KnDJHUD3fTS/lL2pVaVvZZLJMYMzJ7Pksm4Su1/X8zA8mGNiTKd3aZJla9KcOpJhclz3zFk1ik+aQh4KOytYiLovK76YKNZxgDIFGpZnG5HnCt9MDhRk6LLPm3qqY16hzF/i5KWosPgsW3osC2ZZGB+LzpSKBFAWdGCF04NFp+t+CPo0v/gZNCqjGsPVib9wvBKitBKbV8slWRXCOhn8VnJ2qQVR68ZlbnUsmyj7sCYLshax3wviLArU9gFfpeyn10U+QRyCgevaUb2s8havBKMYql68iBS/lGSTFSrtJFNU52dFPtdE9loOboK69WTX4BNX8oFKUMHbNYevUKGE88zhL4zTDavWOyf2lCxyxwjGrzo+3vxqzUc63ZE23QiJaG/nCTubB14FSHRDR1GCiuVUJe/i5fG7rOhFR5uUMqbWD+AdCeFAcUJTm8rilUmGz+Y5fSwTwYFSjlzW4NSRDKPDeRavStHYrNZGDRzf6uKThVlSyVljFBMkNpmdFs1hnAiuVGYXFeXCQSinRE5pqmRTxxzCqX1lwL8wab3yuMnioXtua2TLAx1f41iWkyhxEnY5XcT2K04IuM2JgewHj/RhePnBagDM5I1QYK89U4U7xbcE2c+g98pj/fRz7URppso8YajIsg8RQVeckvu1pSSMbeYyt4V44w8O/PzawXcK8sgsfRN5o6q5yDo0SPvl6rTFns83r2fFhV+f+OYMRT58yb2WW+H4BS97oLL63gjeT0LpeiCKAVPEpfRzzScC/eCRKFGVOszsWtK6uKcqZwrz6sltGCxIoWsEGU7FHAl4/AyQIzDSjQqLliUZHMgzNJArPa2MimJuw5CcPZkFCX0rkhw/kCGTqWJrz3w5x2ROGcUA6+lVVbT1nBXZydoKPav5j7KB2NRBpZVfzUwWbx5nycqfnXpJH38e6Zpm5rdLeSpCFgqRTrbkM/TKL5aiWUShxiy27gwJJ60vEnQwU72aKmBTFmUqfS+wsc+fQeZTa5pqo1Gi9ndn3v4LZVkstLVx7JQsylJq+wo6lRyDRv+EifoIRM3yIKmsoYtXAxzwHrYNYpE/4uG0WHjY+XhFqQSSzcmiEgIhZUEPnJ9ol/fvmFBREFn6OsOv3MkblbwjDTflrjJEwJdvIPL2Gq8yOiZUcYIndk05W/wCVbYflco6dloKRo/ocG9Lx/JEnnQC8JGew2UFYjpIwmXYiDyaVDstB0N9of5uxNy0uqYJFi1LMjGqM3wmugPFKZfEXIsM9ufQkoJFy5OcOJTxPGy2kkjdcRILHBtoHtetG2O31bFvItdMAa763zv/YV8huPV4r99B+fjfLZfE2cHhRdVp0eonfZQSR8szY5CU33cy7DBfrWPNX/SNullODtf8TXz7bzf3USCisbLxI+m2thXC/FOQlYtTK1/h8RkrnBsrSEROpUgRhHMKq4haVjkz/xuF75b/LOmCWQZWx4RVNLuYAcQqyyMEaCo0JiUNaUlSk2gqKIq7WG5VUhOViAQ3hTXvFd9mUjxWKYi9b73tRtlLCi8UdUTXBVldMDUtmMoKcrpwfkO0m3COiapvFTsFRYGkJmlMGaSTpr6oCijK7KwQQpfGd9wKTtGvvWsCITAM0A2BbkAmL5jKKGRyCroRknMkdfBUsPKrVTtSvPmEmVOrcKLEp8iVlLyWXHHyWWBY8AWYK3hUnE+d2m9H7betnZp5iOzpHIbh35CJpEK6QVAcTqcmDXI573y6Ljl7MseytSla2lWGB/PuiSNGSYRZSIWGfQUxX1Eh2wJ1krgKIV3uuZvDfgu8dwfiqoXyXuaXM0odhzWG3H4HwXxvfzf5yiJPCk0iLVEiJePSq9kdAgKthqqX38D8DNICUTXAg2xENpKC0wRJOgktDZKuVtNwVgQoIgYjwO7Jm3OLOqipGzdMXoY0jZ5cHs6NKoxMCKZzomD4WJNbZCub922yeaiG3TniV/0KkEpIetokizoM2poM0ilTDxDhnvjWUT2KTW4YkMnByITK2RHBwIhKJqeURc0V4dpEFYnsF8J3TgmoiqSlwWBRh0Fns05Tg4Gmzjhj66gtijqg64LJjGB4QmNgWGVkUrOMKc4NUTaiVG08OWuhtHyp7rXL3nyCIqITxWWiiGBheScNYdxJc4FTfMKvFEbpYqebq4VcUR4pJUKI6G8cmu8r0XkLD12NkDNKMyRTgvZujTMns+RzwbbZdPclWLw8RS5nkEgKjh3McOZk1pd/NmtwbiBHZ2+CiVG93PHitj/ZA3HVgS9q4zeNB46OhwXoOPG8Ft6kjmKEL3zE70ZwWgPIMHNfeIHOw3aJAQ5rl9Klwhfra42dh06bYeqyyCu+LtJpyeQXkFFpmkTVgJArUF82pqOkKS1Z3GnQ1wktjZKEJhAVT4/PJ2tI2j690tSCd3GNCSt6JRPTcHZE4eSgYHRSqXSmFBOX0RAzUga0fb10FCCpGvS2SZb16nS2QqJgbdQN4blDse4VBVQVGtM6PW3QN25w4qzCwIhGLl85uvg2WUUie5/wb3QhJM1pgyWdefo6dRrTRYdsoOx1xISSjghJqyZpaczS2yY4M6Jy8lyC0Smt7GGCExzv1sDhHd9rl210Q6QN4UQJSDaicVoNpITJyQmef+FF9uzdTWNDI5dt28amTZvRNG3OO+Dhw4d5c8cO3n/XXWia5u1IcTTY6giGAI/JouWsSo6WjgS5rGRiVHfNoagCw5BICYoQNDapjA3nOXkkw7I1KRqbFIQC0ig8zVOE63adseE87d0Jmts1hs7kfB0l3tLHiPmsz0GcClZrKgiJAmrelQONGc6mehCywXPMdzgt6KI7w4TttxuixKHUMT8gbT9kYSVYXNhXPhWzvKa09N1GSDproN8yxa2bh33mO2P0Vm7Pqox8scJbk1OaZEm3ZOUiSWuTaaTNrHXqVlBtMFOvQkAyAYkEtDUZLOqEE2cNjg6oTGWCapfzzyIDt1hE66dAkk4YrFlisKJHkkwWzh+qq8C8QrFrJjToaTejhNoHDQ6eSjCVLYQKFWB3uTo2pX1Qcr1ZmUgIg+5WnXVL8rQ1SRRFRn/gXEc8KHRZIaAhJVnWk6ejWefwQJLTQwnKA+or28rRbe6pI15wd8JX6GRwv50Hn+CZo72dx8rL/j1EtjggJeRyWX52//08+Jtfs7hvMVPTU/zPv/9f7Ni5w+QoJYZhoOs60jAongwuDQNZuK7reimSxZrGMIzSdcOQFWkNwyjRLqa1pgHT4NU0tSSzPX0ZHaOQ15ChnkbW4QJp+fNIUitGiiJoblUZPZev2MZTTJ1IKqxan2b5mjStbRp9yxK0tKuMj+lMTuiMj+p0dGksWpKktU1j+do0K9am0RLOHV3XJSODOZrbVIK+6CpANdUB2GsoSL3VpE6dGDs6gtykc3cEhcsx3+FUGvvSPxgVe46g/WVh1tu7FG5rpzIvhUTaX4Xi5NkQ0jGsuczglOXXJZW6Zl3WBTWFw2p4sPTOdwXQ2ijZtNJg8yqDjlbQtHrEwZygsOVBUaGlEdYvlVy8Ok9Xi4EQMvCY5YjCWlVYFVWW30dKmlMGm1borF4sSSULjrS6LsxfFHQmlYAVPQYXrsjR3GBgt0BCmXyBlMzUJ0UYLGrLs2lFjo4WiapQd6DMNwgzeqm5UbJ+SYaVPVk0pYqXV9QAjsvf+Ki5Itp2HrcVpUdS74ek1S0zT546xQsvvsAf/P6X2HLRRWSzWb7+zW/w2uuvc/GWLQyeO8dzzz/HyVOnWL92Hddeey0N6TT3//IXtLa0sm//fjRN5Y7b7yCTzbB33z5uveW9aJrGU888TWtLCxdvuZgdO3bw6uuv0dDQwHtvvoWenh6efuZpxsbH6e/v5+73383oyAhPPfM0+XyeKy6/gsu2bUNKSSabRQjBxOQEL7z4Ivv27qOzs5ObbryR3t5ennvheUaGhzl37hxDQ8Ncd921XHrJpSiKUnzuVUcZontFAulktTIUkEwrqJpgakJ3zCGArt4EHT0a2WlJz+IkSMnAyRyD/TkMaZ6joqqCJatSIAXZrEEqLRgf1Th72nJIrWWf89SEQeciQSKpkJmqjICJrw5cCFsLOF+sSGn7EuI8mJrVVxCmgRMEj5Jx20ow/+EmrV9JpC23rEeIhC1QFGVZwHmc/CKmxSErd0Ngj+soXjfTF9MUtxgX/ekVLwLygFt/dVqO+cV/lDlyLGnD9geBeebJppWSzjZZP7dgHkEIMxqor1PSlNbZe1zhxFkFo8r1ZMXDPTlzvSFhsGG5ZGmPuT2jrgwLCAXnW1+ngSpyvHUkwWRGIIXiqDFOY0XFjh6nQaWQyDzrWNLblufCFXka0vXok/kOAaSSsKovi5SSI2eSGFIx+3pFynJUpPDP4gHritydB9KSokaqFTwSJfzDO8fslTeqf0p44sQJmpqaWLF8OUIopFIpPvHxT/DBez/A5NQUX/v619i7bx/Lly7loUce5he//CWZbJZHHn2UX/7qAbq6Otm9Zy8//dlPyeXyPPzII5w6fYqRkREefvhhMpkMr73+Gt/6zndob2/nxIkTfOWf/pHR0VGefe45fv3ggzQ1NTE+PsbXvvkNdMOgtaWFb3zzGxw+coSTJ0/yxBNPkM1meeCBB3jo4YdZsnQJBw8d5B+/+k+Mj4/z+muv873vfx8JTGem+ea3vsXQ0HDoen53wElnpPMtj5y1dqAANDYr5HOSXM45rijVoNC7JMHQQJ49Oyc5tHuK/W9PceLINPm8JJlUyGUlxw5Nc+DtaQ7unmLfzklGBnX6liVJpCwjg6UvZacNDAMamma6uOPDo1Bl9oETsfliedodKBDagWL/XlO4D5hUtqJ3Jq+U86V5vOFVZmsa5xxuuRdG2auAWyX4VaUXvXdLHnsdlfytsnLYKOztEaLgFLF4JYrbf8r2/1SheF4uxOKnvW9bP/1GDfs605WWNP9raTC4cKVBV3uVZ77VUROYTi1BSxNcsMKgp11HVPnQ0glSShKqZO0Sg8XdssS3joWFohO0u91g3eIcCVUGXieBsxHrlMgkadDelGf9sroDZcGgoB8JDVYsytPTnsNsUHtCf52JZxQKQaVGC75w23lCyuvpOJHhOqc7fcnY2BgAiUSitApob2uju7uLY8eOMXDmDJ/+5Ke4++57+PCHPsT2l7czOjoKCD547we478P3ccftt3Pm7Fl6e3rpaG9nz+49HDt+nKmpKdatXccLL75IR0c769etZ8tFWzh2/Bin+/tRFIU777iDT378E7S0tDA9NUVnRwc33HAjv/e7v0dnR0fh1WKmnNtfeYUPf+hD3PP+u/n0pz7N2bNnOXT4MBLJe97zHj7xsY/z4Q99GCEEIyPDkevn/EOA1b/DA5Jq7QZnCt6UrCmTKdOJIl3eyKOq5uvlGppVkknB0GCOkaE8jU0qG7Y0cNHlTay/qIF0g8rwuRzD53Ik0woNTeZJ6uYBypUwpCSfk2gJUe263buQ1VVubWAdX0rjjLeQcdqa3rL5/VnHRWdpvBwC87lZZhDEuncuc/Ac8xx+BfFKEzRP7MJ6XfP6HbQgtc4TtjzuqHiKBlTEokjLF+lAM8aiF4c4J3XwL413HudPSUoz2Lhc0tVGwYESgEkds4+CD6+pQbJxuUFLo2GevxYrE0lfh87KRcXtGLESr2MWIYS5rlzSLVnapQPGTLRzALhNSdb7UkqSmsG6xXlaGusOt4UGISCdlKzpzdGUymM46of/QqTibqS1i9s870DSTSmrQPQzUTzgKVuEt4H4pWlubsbQdTKZTIn+yVOnOHjoEIODgyiKQnt7O6qi0NfXx/j4OLlcDiGgsbERVVFobmpCGgaJhMaVV1zJy6++wvaXt7NlyxYaGhrp7+9n8Nw5Hn74YXbs3MG6tetQFPPJS2NjE6qqsqh3EZ/+1Kc4fuI4f/f3f8fzLzxfNjhkMhmGh4bo612Eoih0tLejqirj4+MANKQb0DSNhnQaVVUxHI9VfzchoEUQu9Hgxyw4FA3yecM11+S4zv63p8jlDFaubyCZUtASgqWrUwghOH0si5YQLFudQtMEyZTCqg1ppiZ1DrwzxbTHVh0jL1G1GkxOs1bXIRDGWoiepYYIZ8RZc8yvcrghYF8upY2SYx7By073EjZKY0ZSgCBOBDed9HJIhNdjf9niyhOyPMLiFJGWD+G8VBP2G9YgQVsO11G52qK7OWZCknLLZp7xIhEYLO4yWNzl7sivYx6hEAnV3iJYuUhHEYXz+Aq3/QxfPNIZUtKQ1Fm1SJJI1B0o5wOEMM81Wt6r05i0nBcZML/nyColoNPblqerrWITZB0LCM2NkiWdWQR6xZmPMwho81e7bPBBrfjUxIky21i+fDmTU1O8s2cP+bzO6NgY3//B93nq6afo6Oggl8vR399PLp/nwP4D9PT00JBOm5nLQm9BCIUtW7bQPzDAyy+/zLat20ilkvT09HDhBRfwB1/6En/0B3/IR+77CEsWL8G6HBoYGOD06dP87ud/h9/7nd/jzR072PX2rpJjJ5VO097RwaHDh8nn85w6dQpd1+nu7l4ollAdISAxF5iGy1t0imkmJ3SGzuTQEubpN4mEoKFR5fSxLKeOZeg/nqWxRSGRFAghUVXB4ECeqUndU1/yeWk6+uIu2HxDRR34l3jOupmjaOGkOe/bs44aY7a1fz5rrEddWN+uA4VQZlH67kRJWkmeh3O6GSgnSScNVi4SaNFO1atjDiCE+Wa/xZ3Q3myY0bEejhQ3lKWTEqRBX4d5oHA9ouD8gcB8RfmSLgMhiw8Cq49gMpCkNYMVvQaqyvyeHupwhSgcNruow6A5XXS0zblUs84xtinQte4cDr0MTcPznmDJkiXccvMt/OhHP+LFl15kcHCQTCbDvfd+gGVLlrJ+/Xq++rWvsmLFSvbt38ddd95JU3OzGYJaeKmfQKAUXmXSt6iP5cuWcfLkSTasX08ymeSmG2/iW9/+Ft/89rfQdR0hBJ/59KdRFIFSmDiEInhp+3beensXTY3NpBvS9C3q48zZMyhC0NrSwi033cwvH/gle/bu4fjx42y5aAvLly0rRbUUoSjvxpjIYitHO+4ynv4bL1/D8N/rmUgImppVcz+qAnpeks8adHRr5POS9i6NXGZme46iQFOLwuiQQj5nuNaaoojqwnbtGefyFNIKvrYLHuOL11PVWIvjyWiu9LnW8JNyppaDlmdeHHYbl9JEKogMycg/bWVXtjkIXFPauYR3+EXLEw61yWM3G8pPHqk8zk0WxiEbYQsj/7oIUpKQ6wInchE7mSwYzYu7JO2t9TNQFiIa0rCiVzI0ZiCl4tiGRfUojkRO9wF0KUkqeiEiqUrBCg4d3TDIZrMApJJJ1AJhQ0qyuSy6YZBMJNFUNZj+FenqOplsFoQo0a3rrwcK23oWdUiO9OtkdIFAKbzlSdiTBkLx7aftzTptzVU63QrtmslmMaQZta8IhWQiUbLlagIp0Q2D/rNnkMDint4SPyklw6MjDI2OsnRRH6lkMlAZdMMgk80AkEokUT10WxoGA+cGmc5mWNrbhzaHnuzi6497WnOMTKjIgk1dqRBuk9DMXeuUJOxZAqtJRD5VqGEste85FxeNmxq6qDRV5d577mHD+nUcOXKU1OaL2Lz5IhYv7kMRgi987vO8ueNNRkdHueGG69mwfgOqovC5z36OtWvWIIRg3bp1fPQjH6WhIU0iofHxj32ciYkJmpqaEEKw9dJLaW9rY+++faRSKTZv2kxnRyf33nMPXV1dCCHoW9THn/7Jn/D2228zPZ3h7rvuYs2aNbS1t/PZT3+GVDLFHbfdzvJlyzh+4gSXbbuMzZs2kU43cOt7b0PTVIQi6Ojo5BMf+wSLFvXWrM7mN84PBwqYDhHVo5el0gor16VpaVM5dSxLNmOg65KTRzMsW52mo1sjMy05dnCaXM7AMAT9J7IsWpYklVI4emCaTMZwlEXVIDcZsWbC2VezDAdBQjpQ/O6FhiejYJyqcyHOBYJIGc6BEjZtrAhenFlgHL7GwuWYnTH2fMhTdlirlK4ZhcBy9lXBoVLakVvmSZl5QwX29VtUJYzBsRIgk5QGCdWgrwPUGOyU4jaBXD4PQELTUBQFWTBUzC3NprBCUdBUFTAN4rxuoKpKIGNaSolhGOiGgaaqptEjpXl2mK6jKor5JkQvOlKiG5JcPhfMUCsYSNlcDlVRPA2j2UKRfXebpCFlMDFtrs+dDB+nQ4qx/i4YxI0NBi1NVSpDoa7Gxsd5YvsLvL77bQSC91x8CTddcRWaprFz724eeeFZxicnuWD1Wt533Y10trVVyGevYwmMjI7yyAvP8eaet1FUla0bN3HLVVfT2twy520SGoU+c3Z4iKlMhiU9vTU1pJsaoKXBYHpEIrXCeVCifOQKZoea/U2g09liVL0NUAKTU1P84DcPcPz0aTRVpSGd4oLV67hm62W0tdSubaemp/nG/T8F4J9/4YukUylTJsPg6Vde5hdPPMK//fKfs3zxEt8yTExM8Pj2F3jlrZ1IJBet28itV19DZ3uHo/y6ofPjhx7k0Ilj/F9/8Cd0FPrAXEFRBB0tIE7rSENBqtGi36Xte8X5YjE1pePUVwX9yD3Pdw6OyWniS6Uw0icTCbZsuZgtF22heJJWsU5ampu59pprzXfci5kGfs+VV5bI9PT00NPTU/q9csWKGRbCjFJZu3Yta9asLQsQMfnNpFuyeAlLFi8p8QLo7emht0A7kUxwySWXcPHFF5dNXBdcsLFEp7Gxgcsu2xagdhY6ouuIvcPVWoaoBm4uK2ksRJmUvxbT/KGqguZWlXNncgyczJJMKRgGDA3mmRibIJFUyGYMcjlJukEFKTl9PEuqQaG1XUNR3XlrmiCfDyDtfLHYHSs52BP2mjseAjHyl2DO7PRACP+UPI7n6rHBHjBQM+HCxzwUnRZ+ohVFWjiOtHcDrM/lZ65QHNOdfLoCiwPFGdZ2DvJZzGOXyhrtY0/nvi700jCnXCYHw5A0NBi0NVfvEJBSMjU9zfYdO3n9nd1IQ3L5RZt5zyUXo6oKL7z+Jq+//U5JpjXLl3LbtVczPDrG4y9u5+jp0yzp6eGWq9/Dkt6eihJZ5ZOG5J0DB3nxjR3cdOXlrFu5AgkcP3Wa3zz9LFdsuYitmy/0lhfYf+QIv37yKT565x0sX7zYsUyTU1OMjk/Q3dHOxOQUP/rNQ1y4dg3XXrZ1XhjsQgjSKWhrMBibVFCFLKiDzflgcfRVQBYdUzotjZJ0svqtPNIweOqVl/ibb3+di9dvZDIzzZNffYnWpmZWLl3G33zr62RzWdauWMlXfvIDdF3nU3d/AEUITvb3c6z/FJdsvJCGhgYLUcnU9BQ/euhBfvTQr9myfiNTmWn+9rvf4NzoMF/44EdQFIV8Po9hGKiqilpw1OV1HQEYhtmRNU0zHXG6XkpnFOoAaaZTNRXVsigLSrdYd4ahk9d1FKGUHCN5PY9AlKXP53L8/NGH2HPoEP/yi39AT2cXhmGQ101npKZq/k7BABBAQpN0NEtOD+kohoJUnEcjP9euGcRmoCo67S1ViVXCdDbDg08/ybnREa66+FLeObifnz7yMF+872N89t4PoarqTBtoGqqilNpMU4v1q6MUbDzDMMjn8yAEmqaVdhkUr4vCdUPXOX32LCDJZjOFN9YkTIfd+ChHTp4gm8/POG91HcRMuxQrJJvN8sBTj/O1n/2YC1avQQJ/98PvcvJMP1/+5GdJJBLouo6u6yiKqRNSSs4MneN4fz+6YW6jKaVRlVK5dH3mLBul4CTO63mkIUv6GNd41JQ2aEzmGc+oCBk0QtF7lrLPddEiU7z5SNuPUooQ9GvjvpwtB0oRxe00lu8VSagc5MO0QzGvr27I8vR+9N69iONJ6Ow8T63GYTM1odPWpaFpglyuMvfUpM7Z/hydPQlUTdDappHXJaeOZhk6myUzmkdLKvT0JVi8IoWiwNiITku7xsCJLJkp55V6IilQE4LpiQAr+fkAq9NEQlgzclYcKI6M4nGczB38zS172jDlmTXHVhSmgYUL76orzyErrvvlm986826DLPsofpW2a05ZvB5xOTnMvNrffs0trZcTbkYaLw1zdttIKTGkQUujJJWqfv1iGAYvvbmT//sf/pGVSxaTzeV5+PkX+Lf/7I+5+IIN/PbZ53j+9TfYtGYNqqqSTiWZmJzie796kN8+8ywXb9zIU9tf5sjJk/xvv/t50qkU05kMB48eo7uzg0Xd3TPMBExnMnz7lw+Qy+dZs2I5uq7z9Cuv8e0HfsXG1asA0/BASoTFADWkREgwpEE2l2Nscoq8xUCRhixsfVAwdIOX3tzBzx5+nP/99z5Pc1MT45OTTBe2pxTTS2mU8Si+/aT4aY1ykYaBUTCE4nqNtKZCdxscPWugSKVsXVvSS1nhVykIZP5nFMphvp62apEwpKS9pYXPf+DD3HntjRw8foy/+E//noMnjpHXdY6dPsX/+ft/yKUXbGZoZIQX3nydD956Ow2pNM+98Srff/BX/O2/+v+wPG0+/RfCNOxP9Pfzyyce5eYrruLLn/os2WyWv/vBd9mxdw9j4+OcGT7Hb599mmOnT7Fx1Rref8PNpFNJfvzwb8jlcgycG0TXda6+dBvHT59i39EjXLRuAx98723sOXyIp15+iYSmcXJggC3rN3LPze+ltbmJvYcP8dCzz3DiTD8Xrl7L+2+4iXQqxbceuJ+EqjFwbpBMLsu9N72XyzZvYXR8jIefe4bX3tlFb2cX995yK52tbXz7gV/QmE5x8swZpJR84OZbGBod44EnH+fU2TOsXraMj995N6+/vYvHt78AQnDd1st473uuKXcoRUHhOW86CVIa6NJARbUHouA0zpU5UAr/DMNA03SSCaUifSQUlotbL9jEv/7Slzl9doD/42/+E9vfepMP33oHp8+e4cFnnuTkwADbNm3mzutvZP/RI7zw5ut8/H3vJ5VI8OOHf8vKJUu4buvlPLH9RZ559WUURXDt1su5+T1XM52Z5uHnn+W1t3fRkE7zvmtvYMOq1UgkR06e5L9882tkclluv/o6rrl0W6k2wHSoPvXyizz/xmskE0nuuuFmtl64CVVVkcDZoXP8/LGH2bppM//yd78EwNd+/hPePrCP4dFRQPKbZ55m14G99PX0cvcNN7Nq6dKZ4kvJyf7T/PbZp9l75DCLe3u558abWdK7iF8/9QSHjh8nr+e56uJL6e7o4IGnnuDc8DAXrFnLvTe/l57OruodbQKSCUhqBsaUgaIqSBnmbW3uc6RrCv8skfhEQSgniudyOw7HydyfShMNC1Ts2UctXB61ebYfS5NKSXbaHOVTDQq5nF6h49KQnDmZpbVdJZEQnDiaobVDZeX6NEIx7/UsSrBsTZqhs3nGR/J09iTITBmc7c/idiB2Q6OKkYdsYavPvNJRWfHFK5FvyljgysB+w92Qnk9VPAOvp83l3iE/+eckqiSWtEHrwC+HDF0H81MnaginRYJ97RKnormFbLjJEiPKjEyj3KnheOaMRZ6golmLFCZKye5gCR/xMsOhFIcjTYO+MWUeUFotpDT70/tvvIEP3/ZeTp05y7/4679hz+HDXLh2DWfPDXH55s186eMfobmxkdbmJs4Nj/D8G29y83vewxc/+mG+/+vf8PCzz9M/eI6VSxbTPzjIf/iHf+Kem2/kE++/05S/4HhYtWQJa5Yt49VdbzM6Zr4R8fnXX2dJTw8XrFnF2/sP8OT2lxkeHWPLhvXc/J4rGZuY4IEnniKdTJLJZrlowzramptRFZWJqSmee/V1Xn/7HVLJJDdccRmN6TQ/+s3DvPDGmyzu6eJjd95Ba3MzDakU0jA4cvo0T29/hZMDZ7hgzWpuvsqMhv71k8+gqgoDZ8+Ry+e4/bpr2LxuLcf7B3jomec4deYMa1es4PZrr6a70znMPwyEMM9GQeoYUkGglmIJynSn9EDD/BDFZxwFh5o0dFIxvQFQVVWuumQbF6xey8tv7eCxF1+go6WNC1ev5Vj/aRRF0NfTS2tLM71d3bx9YD8nB/qZzmQ4cvIEgyPD7D54gKnpaVYtW26eRyElp8+eYXBkhMs2b6GtpRVpGHzpY59gdHyckfEx/ss3v8bQyDAbVq3hRw/9mpMD/Xzqrnt46NlnGB4b5aotl7D9rR08/MKzvOeiS8jkcnzlJz9gWV8fJwcG+M6v7ue6rZeTSCT4+x9/D01TuW7b5fznb3yVsckJNq5czQ9+8wCnz57hE3fdw/2PPYKiKFx50cU8/+ZrnBzo56/++b/k/sce5ieP/JYt6zfy9Ksvc/jECb700Y/zk4d/Q1tLC5duvJBnX3+FgXODfOKO99OYbiCZSNDW3ML+I4f5z9/6KuuWr6QhleLr9/+EJT2L2Lb5oljaRlEMyyAgKZ39VAZpe5RvjihFPTIMM2JCFQaqUGJxvBWRyWY5NzLCiYEBxicn2bByFWeGzvFfvvU1hkZHWLaoj3/66Q8xdB0pBA88+Th3XHsDTek0Dz//DFdctIXO1jb+23e/yQWr1yAUhX/66Y9Y3NPDif5+fvibX7F53Qb2Hj7I7kMH+Dd/9KcAnBzoZ9OadZw6289ff/Or/MeOjpJM+Xyex196nv/+vW+xac06Bs4d4+0D+/l//7d/yYolS6GwJevEwAAfvvV9dLZ3IKXkc/d+iMHhYRRF8LWf/5SnXtnO5Zsu4vnXX2X3wQP8f//4T0o8xifG+fr9P+O1t9/iiosu5sntL7L30EH+xe/8Pk+/+jJPvfwSV1x0MResXstPHvktp8+e4ZKNF3L/44+QTib51N0fiMUpKwSownSsmvpByPnXPrN5R42UIlMiO1Kc+URZMgR2okiX7+aF6peKC3axuWAFn23E78gIRnGOHCgF5POS6SmD1k6NiVHdkfbUlM6+t6fQc5J8XnLujGDtheZhs0MJhaYWlZHBHEf2meeiDA7kUBTITDtHmSgC2roSTI7r5puB5pOOBnKguGSpFQI7UNwTz6cqnkG8TqqaljF24uFLNOd1MB8R3Ifona9Wnie7tyBolw2xm6W4vClLLguOBquRKa23K4mXLQKl+24ftwiVMAHSfvTC0CjaTsUzRJIxxS+rqsrV2y7loo3reXv/QZ5++RUaUinWr1jBVGaasYkJjvf387ff+g4dra189I7b0TSVsfFxVi1dQkdbK6uWLmFscpLBoSEUAYePnWBgcJDjp05z6NhxOtvbzLMRgLaWFq6+9BK+/+sHOXLyJKqisO/IUe6+6UbyusHffe8HTExN09rUxJPbX0ZVVfq6u/inH/+UtpZmrr70Uhob0/z80ce5duul7D9ylL//wY9YvWwpJwfO8PJbu/i9+z5UilLRDYPR8Ql++8yz5PM6a5Yt5T9/7Zv0D55jRV8f//DDH3Oiv587b7ieH/7mt0xnMmxev44du/dw5OQp/vUf/j7f+Nn9vPLWLi5cu5bv//o3jE9O8vsfuy8Gw0egCAnSAEOCIj3CrAvaU1pKFA4WNQyQkoQagzVc2Gaf0DSmMhmefPklXtz5BisXL6GjtY1DJ44DoCgqAoGmKuTzOZ5+5WV+/tjDDA4PMTgyzF997SusWLyY//Bnf8mS3kVIKZmYmsIwdBrTDWZEuqKwuGcRfV09PP/Gq+zcu4d/9ft/yHVbL+Pvfvhdnnp5OzdfcRUA12+7nH/2yc/ytft/woPPPMnv3fdx8vk8f/7//nuOnDyJpip0trbxxY98nPbmFv7Ff/krtu98k+bGRvYdOcT/9Qf/jMs3b+Fvvv01Ht/+IrdefS1CCG647Ar++BOfofGHaZ58+SVOnznDQ889QzqZ4vJNF6HrOq+9vYvj/adRFIVbr7qGz937IRCwY89uLlizlos3bEQ3dN571TUcPXWK8clJGtNprr50G++5+FJ6Ojurb5cCFIEZiWJIFNVjLCqoStGFXLbJpxC5panmGybjgmEYvLTjDf7lf/krjp0+SWdbO/fefCuHThzj5V07uOu6m9iwchW7Dx3gpbfe5KJ1G0xnSmFg13Xz9byT09NMTk/RkE5z5ZZLyF+ylZ6OTlKJFHffeAuqqjAyNspr7+xi4NwgAJdccCH//PO/w/6jR/g//ut/Yue+vaX5YjqT4dEXnmMqk+GyTRdx5NRJHnjyMfYeOWQ6UTDPVsnlczQ1NJSOmujt6qa3q5sjJ47z5PYXuf2a6/m9+z7Gb599ir/+xj/xzoH9pbKfPDPA9p1v8pHb7+Tjd9zFL554lL//0ffZd/QIhmGwcfUa/t0/+3N0w+Dnjz0MwAWr17B+5SouWLM2tjYwI/EM07Fa8r5a5sXAjpSQiOxI8UkRQpTo02HdcVKHI6JXjv2p2WzwjrUpnfqElIwM5lm6Ok26McfUhF7JV8L0pF76mc1IpiYMepckaWxWaWpROXE4Qy5nDlDZrMcWHQkNLSoNTQpnTmXmLrgrxFu5SlkKn7FHPHgZSwGdOjWTLRL8C2T3qEe1hWNBLIz8iAQ/d2Qmx3xoSw/YFwiB9DggohZ+XldYCATxLwZwyBTXi179S5YacsYYdaVvGS5LZ1IEyOaEyliz8r5hjXCxpndzusjCU2gtpsgDIQTJRIJcLscvH3+C519/g1VLlrC4t4dkIsHVWy9haHSMpnQDDz37HKPj43z8zvcVDpQ19/NrqophGBw/3c9Xf/IzDhw9zrHTp/nZo4/x8lu7+OwH7uHum28EQNNUrr70En700MO89OZOmpsayWRzXLP1EpoaGrjxisvIZPNMZaZ5/Z3d7D5wiO6OdjRN5RN3vY8P3XYrL+3YYZ4rAPR1d3H3TTfQ2tzMq2/t4ulXXqWxIc2t11zFviNHuO/222hubCCf18nreXYfOszOvfv4P37/97j8ok387be+yyPPv8jlWy5C1w2u2Xopf/TJj/FPP/4pL+14i7PDw5w6c5ZEQuOqS7Zw8cb1LO/ri6fuKU7NpuGjSNUnMmBGIyQgMUrnPRiOe35CouCgG5sYJ5VM8hef+11uvPw9/Mev/j3PvPYynW3tSAm5fA5DSqYzWRrSaa66+FLWLl/Bk9tf5NGXnudLH/2E6XhpaTXLKQTtLS1oqsbQ6DASMHSdnfv3cvrMACPj40gk3R2dtDQ1s3LxUjK5LFOZaYSApnQDzU1NtLe0kk6laG9tJZvNkk6myOt5NDWJpmm0NDbR3dFJT0cnY5MTnDl3Dt0w6O7opLmxkbXLVvD0Ky8znckghKClqYmWxkY629qQSCanpzh19gyqovDSzjfJZrNcesGFptNICFqbmmlubKKzta1g/Be3dymoqsb6Vav4nQ9+hO073+Qb9/+UZX2L2bYpnigUs31AGgZCMR1nnsoiC2OX9bPYxoaBrhuFMsQ3jqxetpy7briRHz/8Gzpb21izfAVPvPQCo2PjHDh2lInJCZb29rFy8dKC/hblKqwZhOlc+MzdH2D7zh189Wc/Zs3S5Wy9cDN7jxzkF088ytrlK5icnsaQEl03EIiCfjTT1d5BYzrNxOQkiUQCgFw+z/GBfiYnp3i5cGjs1gs2lQ6hRQhamswotXPDQ6Vte3sOHeTwyeN0tbUxNDZKd0cHzY2NLOtbTELTGJ+cLNXzyNg409kMvZ2dNDY2smbZckAyPmWmaWlsYlF3D/l8ns/c8wEefPpJfvjQg6hC4Q8//qlY6r8Io3DQtDQMpKJYA9hsTxCCUHOaUSvvCiymRij6wfgEwdy9G8kH8XWxGHG+LCDnIeyLvQUHD0fB5LjOxGiezkUJTh42LG9wcMfgQA5pSIQiGBvJMzSYC+SLUFTo6ksyci7P9KTPeShxw9HoCOac8LtWE5QmcmeOcypbJFRK5yZvTcsRG/EATwwozhOy7Fo81OcAdpUMIuS72RkyZ5hx2EUZJ1zvu02Edq9o8Zq3LVOWTFLJ12ttWyGjMB0peSOelZk0DCanp0kmkvzJZz7FDZddxn/91nd4+uVX+eT738dH32eed5FMaGRyWZ599TXGJidJaCrZXA4pZenNN4u6uvj4nXdw4OhxvvrTn3PVpRdz29VXs3HNqoLspswrlvSxee1annrlVVLJJGtXLGfj6lWMT0zy/Os7ODs0THdHG7l8nlzhYEhN01i+eDGd7W2lw0GlNDjZP8CDTz1DX08PYxMTZv0asvS2oIQ2c3CjlJIzg+cAWNbXR0drK+tXreTFN3cyMTmFUATtra10trXR3d6BYRg0pRv4yB238ZOHHuG7D/yadCrF5z94bzx1j7m9wtCNgvvZjC7xblk58yHNABbz1azxvE42l8vyw9/8mp379vAHH/0kTQ0NGBJGJybYtHY9iiLYsWc3DckUh04cY9miPtauWMmFa9bSP3iW1955m6su3sqKJZY3ogjBkt5FLF+8mEdffJ4L1qxjYmqS//G9b5FMJPjY7XcB8Nrbb7G4u5tdB/bR09FFV3uHi5RFujNfJ6emOHrqJBNTk5wY6GfL+g3mW1mE4LV33qKjtZW3Duyjt7PT8iaVooVpfjak06zoW0wun+e+294HEgZHhli6aJGrAJqqMZWZZmhkmLGJcc4MnePTd9/LwWNH+fsf/4Ade3ezdsXK8A3hgLxhkDckCadBxAn2+avgSDH7rESPcWkqhGDV0mV89PY7URWV//G9b/PCG6/T3dFJZ1sbW9Zv4M7rb+J4/yl6Ojo5euoUk9NTHDpxjJamJoZGR5BSsv/oEYZGR/n8vR/i7YP7+cpPfsg1l27lzb270Q2Dj91xFy/tfJO3D+43Iy6QDAye5fCJ4+w7coixiQm6OzoZnTC3CiYTCVYtWcq54WHef8NNdLS1cfTUSTasXF2Svaezk/UrV/HUq9u57KItSEPyDz/+PsNjo/zlF75Id3sHb+x5mxsvv5Jd+/aSSqZYumgRr+9+GwR0trfR1NDAK7t2svXCzbyx+x0zTW+53gyPjrBjz25uuOxKmhsb+auvfYWHn3+WGy6/Mp7XQUvIZk0nmdMcIzwvBGTgs8WnOvrREc6JYn26XAUW1PptQQk7lwhfUbNdtdX7HO0Eg5VAGpKz/TlWrEvT1qkxPJjzLfzYSJ6xkbwLQefLQkBHt/nq49NHM8jZ8KHIii/Bs8SNCsLBZ/v51c3DO3fwzBEjqmIQ/Bl6mCOj56ztvJtpBmEbZn4pYx2Cwt6bQoNXjPveDTbz/N5CIyrcVqg+OuPsELEIaEnj5+DJOhyQHgXZfJ6fPPQoO3bv4Y8++TGW9vWahsm5cxw73c//+O4PuOriLVy99RKGR8dIp1J0t7fT3trK7kMHGTg7yN5DR2hraWbpol6W9i1i2eLF3P/4E2zZsJ7br7+mbNuLAJobG7nm0kv4q69+DcOQ/PnnPkNjQwNv7t7L9p07+b0Pf4hN69ey+9BhjMIEKix1VJI9l+fpV19nfGqKz9z7fnbtO8D+I0cL2xVUDEMyOj5OsvBUWghBT1cHum6wc+9eutvb2X/4KB1trXS2t+HAgrGJCQ6fOMnt111NS2MTf/vt73L/Y49z45VXkExWb/johiSnS5KqDDfmWKILDAlTXpGxIaBpCdYsX8Evn3iU//Nv/xopJUt7e7lh2xWsXLqUa7dexnd/dT+/fOJRMrkcd1x7g3nWjJRsWruej995V8VrbQXQ193D5+/9EP/z+9/hX/6X/0gulyeRSPDlT3yGSy/cxB3XXMf9jz3Cky+/yHQmy2fu/gDd7R0kEwnzzTmApqqkEknzTZ1CkEokS29BOTc6wn//3reQhYOHb7v6OrZs2MgtV17FD3/7ax5+7hmms1k+d88HzYiWZJKEZjrjinQ7Wtr42B138ZWf/IC//vo/kkwmuXD1GtYuX0E6lSq9qSehaSSTCVRV4YI1a3jwmSf55i9/xp3X3cjOvXt45a0dIGD5oj7WxeRAAcjmQNclBXWODAlkcgZ5XfoGtASBEIJUIkFSS5BIJLnpivfwm2ef4ldPPc5ffuGL3HHN9Tz20vO8uWc3Uhp88q572LByFd3tHfzXb3+d5sZGRsbHSWgJUqkUb+x5m+0730QCa5ev4MK165jKZHj2tVf462/8ExNTU0gpGZ+cIKFpHD19in/3v/4bQ6OjXLB6LZdtvohnXn2ZdDJJY7qBD733dg4cO8J/+943aW5ooqezk6su2WrKDnS2tfO5ez/E33zr6/yf//WvS4dV/959H2PDytV85PY7+f5vHuAv//r/YSqT4a4bbmL9ytUktGdIJhIsW9THvTfdyk8e+S17Dx9ifGqKu2+8mZVLlpLUEuQTZoR7IpHg3OgIT/z8R7Q2t6CpKldsvig2B4puQDZvlOS3N26Fs97Le+/FyCNx2XQWiX4FlUAI7kSxLhyq2CNQXx+ej5gPDpRZiHiQhf9CbFEpZstM6Zw5maV3aZLstMHkuPP5KNWgqVWlqy/B6aOZmQNla4EIzor5HPkwf8Ykt8fQflf971WNqomH6Z/zp0UqEM5+Dp6mjnmDmWVU4ewH+13L+F98MFt0lJiXy2Oj7K9BntneE7PAUfMEWnDOJJqeNmIxgDRFoa+7i+/u28e//pv/br75p6mJa7ZeSltLCw2pJF/96c/4xeNPcPrsIB+69RY2rF7JLe+5kh/+5iGOnern9Jkz3HH9tfR2m2+ZaG9u5q4brufCtWsdDQRFVdm6+UJzG4WUXLHlIlRFoau9jY7WVn75xJM8/tJ2BgbPMTI2hpSgKmrpVadCCFRFJaGprFq6hMdffIm/+94PGB4dJ5vLMT41xfLFfWiayj/88Cd84cMfRFUVVFXlwrVrufLiLXznl7/m0ede5MzQEB+/6w7aW1pQFRVRkFdRTB6KonD05Enuf+xx+rq6yGSyXLR+HaoaR+SHJJeT6IaceTYqQYry7VwuWQv3zYiCkTEd3TDf+FMNFEXh+m2XmQ6mo4dJaAk2rV3H6mUrUBWFL3/is1xz6TbGJiZYs3wFm9dtMB0mQrBl/QY2rV1XcjZYkUgkuOU9V7O4p5d9Rw6jqSobV61h/arVaKrKlz/5Oa659DJGxkdZtWQZm9atR0r48ic+S2d7O6qmcePlV7J2+Qq629sxdIP//QtfZFnfYp57/RV6Ojq577Y7SCWSrF62nIs3XEBC0/iTT32O67Zdztj4BKuWLmPT2nUA/OUXvsjinl5UVeXmK65i/YpVdHd2cOf1N7FiyVIOHTcjJLas30hrcwv/6ot/wMrFS0loGndcewNbL9xMa3MzN1x2JY1p8+07Wy/czL/54z/lnYP7yes6F6xew4bVa6prEMyxS9dheFwvnYtUukeYUUyWCE5lJBOTBq1N1b+hp7mxkX/2qc/R3NiIoigs6urmX/zOl+gfPMvinl7+7LNf4IYrrmRkbIylvYvYsuECkgmNf/PHf8qBY0fpbGtDUVSW9PaydvkK/s0f/RlvH9yPlJILV69l/arVrFi8lOV9ixkeG6Wvq4eJ6Uk2rlrD8r4lfOCWW5maniaTzbJlwwUsXdTHtVsvY+miRfR197By8RL+7z/7S/YcOoimaWxas47FPb0l+VVV5eqLt9L1J+3sPnQAEKxbsZIL1qwlmUjykdvfx4ZVqznRf5pFXd2mTjQ188FbbmdsYpyeji4+9f572LxuPafPnmFxTy8Xrd9AY7qBz9zzAfKGgaIodLS28eef+QJv7HmH4dFRli3q49ILNsVyqKy5HU1nbMIoqUftgkH8KccX+RIMQspg1uDzvx4LK0WZKJ4PSywinB7cx/I1DWzYsG5uXwNcX/g6IFBrOuaqxVPyXC7Hc89up0FZRzrV5Mi3akRwGLrlUBToXpyitUPlxKEM0xM+jpQQrBtbVJasSjF0Js+5/my8Z6FUnG/i35rRNCWILOE5ufGfmzMx5qje3JhVzcgvc7ioklnHPBatjrlBSSWsBkPROVKyBWTpRRVFJ4k0TKeL+Wm7V3DAlxwqAsc3q1nf6uO/+rHv7QmWKwok5taPbDZDb5vOLVc0kEhUZ8xLKZmenuaN3Xt4e/9BVFXhko0b2Lx+PZqm0n/2LC+8/iaDwyMs7+vjPZduob21lZGxMV58YwfHT/ezqLuLa7ZeSmd7mxkwVNjio6mqo0EtpSSTyfDsq69jGAY3XHEZqVSKXC7H62+/w1v79tPWYj6pbW9p4YI1q3nxzR1cftFmlvYt4vip07zy1i6u3bYVVVV57tXXODs0TF9PN1PT02zddCF93V0899obDAye47rLtvLOgYMsX9zHBWtW0z84yItv7GB0fJx1K1eyddMFSCl55pXXWLpoERetX8vug4c4fOIkN1x+GWMTE7z45g7ODg2xuLeHa7deSntbW9Vr43ze4NV3pth1SJJOp0kmEyiWE0O9HCmmXhtkszmmpiZpbdC57apmWpvV6uSyvOZZFrx0xcM2KchTfMpddDgF4ieLPcp8e4jpd1HKylk89FQoSuApUUrJdx64n+/86n7+57/+t6xdvmJGLge6fihtuTOMUtmd7ttlgJl6KNadUihH1bsGpGRyyuCxlycZnkzQkE6TTCQRquKtI7brUppv5pmaniabmeSStRqXXtBQtb4Emr5tbSAK8hhSms7RooMUi44hEUIpv+bSjtY2sLdROc2ZNKV2sZRBGoXItyg65FRGFzmK+lGUp1pIKTlyMsezO/IkUw2kGxoKWxmDzQ/C+iX0NOaesOJOyKLe/smWYBLUnShuMs0d6/mL8CZeLY3COXGiBIhCsd+1ll1VBd2Lk7S2q/QfzzI2kncnF6QAAlo7NHqXJhkZzDPYn8XQ/bOFgt2JEqIO6k4UO+aZE6XmROaRE8Vpgg4r2twoTR2zjOLitfS7OAQiCkZkuRPF+hvDch3ztyFlxbAZ1Inivq6cRSdK4VDITCZDSstyy+UN9HQkqmNXNCCk+SYbIcSM8ceMQWkUjUKLkSILhxiK4vWga0VLBFERVmPFKMghxMzBiFJKRwOJgnxlxovVmDUMFHUmPMNqJEsJikNEiTMP83XC1jqo1jiemNR59KVxBsdUGhrSJBLJMnm87BkpwZAG+VyOqakppJ7h5subWLU0Nbdr9lmGlJI33tnFG3ve4d6bb/U/R2UBQkrJyf4sj786BUraNJATWuEtSYU0VDrd3Jwo09PTTE1NsaTT4JYrW2LZllbH3CKfk7zyzhR7jgsaGxtL28+CjgXz04kiuP2TzYFS1vRg2bAOFHu+OcOcCzBfYV/W1SJHdYjXYHeg5uI88OJrvafrkjMnM+QyCXqXpWhoVhk6k3PefuPVcQQkUwqdvQla2jTOnMoyci4X3zkoZXwLghSjUELUwazY6RE5zV43D+d0888REyI7BMKUZ44HU+skVLJiiF72+txw3sNvLDeNePcEEoqPO0HOOEX8dkSbKlnZe9xU1WmzUaUpAyFXjx4w6U1MGZw+m6OrXSttc4kEi0NAc3jKKgChqtjvCArOiij7+S1Pne00EQLVSQ7bGRtl91TnPSxu8hXL5CliBQ+BUlEL0SGl5NxInqExHSG0GY6WPVpWfavQPQFCilK0RCYP+45Os7Q3STL57nGiAFyy8UK2bLigdODw+QQpIZeTHDqZIZODdLroxDPXgNIWJVT8LE61ZRACBCjC3MIzMJTn1NksKxa/uxxv5xuklIyM5zk2kEcRSRQlhEMbm57YPW/hclfKVhX94Au92N2A0vLnKk5ZHKwDgbmAk+B1FCAJWkH2lLNZpVXxKX+s6LFKLucXpXyGAUNnc5w8NE0yrbB8XZquRQmSKWGuu6wzkg1CgWRa0LM4yYr1aTRNcPzgNMODMThQyiwEtxaU5UkdUsSCCsL+mjWXuucngdudmsnnxdCXuVc5ZDSSccGLqZ/aek5KddThjHLnx8zcUNqqA5X6ZPsdZO3mRqK49rOrr7Clmfksvm2lqPaV/2ZSB+/JxSu5vGT/sSkmJvV6P1pgkFKSzUr2HZ1iOmueQ2JG8wDF7Wo+A7mQpk2sFCKHEIJjpzOc6M8QMLD9vIDArD9NVWNzU84vSM4MZTl4IgcoKIoy4zQt+t0sqb0emAoK0VyKQFEVJjPwzsEpstl3j76cb5BSks9L9h/LMDouC2dHWaLlAqwMfZf53hL4ZnKkj2PSyJi3rzieVdT7sQcWRuXMtpTV8pMSJid0pg9O0dyq0d6doK1TI58zD6HN65h7660LFk2QblDQEoJcTnL6aIbJMR0jjuiTilEmQNI44UnUm+P80FB3KWZdvkgMg9TxHNe0F/v5oQR1nAdwjfyouFh4LayDI6XybTyy/GcVcHacVH5605BlIfjOYpVTEswk6j+X58CxKbZsaEZVz08T8nzFqbNZDp3MoSgJi2Hs0IYuulqyPwqRO4qiMpXJ8tb+SRZ1J2koRCyc9ziPyyilZGra4O2DU0xMS9INKmrh1d1B2tbuXJHSjGBRFPOQZaEonBjIcfRUhrUr0ijK+VuX5yOKc+GZc3kOHM+CkkTR1IJTlUhznONw4ztfBl/4lUg5PY2oArE5UQIVJeRZEjVDkVF9f7sN4StjwVdfFeebVMfX/DB0GB3OMz6aR0sopBsVGppU0g0CTRMoqkDXJXpeks9Khs7myEwZ5LJGtMgTu7PkPDnfpPaYR7LF4iSZh2eVFFEfl6PDqqbW33ZEqeN3SR7p8qO4Q2fmhihLVuZIkTbXhC1sJKyoYRwkUWi6nWlQuiaAwlNGRVGYzkp27p9gUVeSvp7ku8NoXuCQUjI2nmfnvnGmMqZhrBSjUCqsCyhFplh+lpYNFB7sFA7wzeVUjg1k2LF3nG2bWkho4nz2MZzXkBLyecnuQ5McPJFFUZJoqlq+VcPuNRbCdWySgBDmSKKoZuSOpmpMT+d4bfc4rS0qvZ2J+hiyoCAZG9d5fc8EY1PQ0GC2qaIoKK5eCfviJGCK0I4Odz62RxqVw14EFZy9SJT5GOY3D0Wqo8aoUg+ryu0xyxg6ZHWD7LTB6FC+cgHi8LQzOn/rI9PgDoE4nUdhOM2948T92sJynFRNMD7MY9HmNZzWB/aVAfjXYZQ6flflsViLpXSmYWhI62AsKofVwj1p+e3IynFF5w8n34+bDymKb8kuVvG3aTgrKKqKoqicHc7w4o4Rbr6yg7aW4AcJ1jH7kBIyGcnru8c5ciqHqhUMY9Uafl+RizKltCmS6VBT0TQVTUuQmc7z5t5xWptUNq5uwtzpU9eJhQTzAGk4fGKa1/dMkMsrNDRoqGrhMFm39rScp2PFjFNWFLb0mJEoWiKBms9xZijD9p2jXL+1jbbW+hgy71E4DHw6I3ljzwTHBvJoWgpNS6CqinnmjW8b+ntFKlKEdqS4Z7Ivk6rVuMhnokjbX2UCSZjzJWoKX2Hf7QhWMdZUC6oqI55zUnX57BUWIp80bH9hBSoVwlp2byKxdhEnZZH2m5WcXLPUHPaWn2XZnFj7MnLP5Hd2SezwYjQrAiwQeDWKfazwqje3PHVUBen2QxZ6VcGBUgo0sTWMvRmktJ5BUkwjndvNq90tfxVHVuF8zUmeoJDMOE6KEThCgFp8kqyZRtWR0xle2TXKxKReen1mHfML5jkoOm8dGGPXgSkMqaBpiVIbOhmu5RrtNJgDhagkTdVIJBJoWoKpDLy4c5R3Dk6Qy9X1YcGg0Hfzecn+I5O8sGOMiSlIJBKFttVK59940bCus4vu5ZLmCIEiBKqqkdA0EokkQlE5fCrLs2+McG4kX3bmVB3zC8U30I1P6Lz2zji7D08DaklHVE1FKG4O2QpqVExWfikirR+D8alIHgK1iUSpd4IFhGBt5bTWmy/wlCeELsZuFNeEcBje/oxrZlCHlGVu9WuOZXMi6svIPVMQGWum6zVltABgL2/YUIB3jVOkWED7viN7iI1XmiB5qoO0dX57dEkA33R5hrIN45IKOaO0e9Dxw8v+sUlUoYYCkAJFKGbkQSJBQtfJZAx2HZgkmzV4z8VtdLQnztNDNhcgCk+Nxyd03twzxo79k2R1hVRSQ0toqIUtGkXFcGr78rasVCpFESWnWiKRQNd1hsdyPPPaMKPjeS7e0ExTo0cEQx1zj4KeTE7q7Do4zht7JpmchmQqOWMgF7fzhKEprHF6Zk4hhOmITWgkdQ09nySTkRw4nmEqM8yVFzWztDeFqtajmOYTpDRfiHF2KMer74xz+FQWiUpDOkEymUTTNFRFKd/uFVxZfBNXpAhFP4IEIebhUE4Uz+VJHI6TuJwv5/0CNArCV8qCq8YI+hNLGeeqohwNtuAOgZrKUjZaOHOdvWpz4zQjW81lCe09D19vNT+z5t1wVol9No3LKVITeDkRnFPM/A5/Jk5t8tjvSYcqrkwTPk9w2SQgpPW3GYxeyFTxdF0W0sjCGRLWKLBCFstv61X7SSQ1hlVsDz12dKCUvgtUVSWhaRjJJLqhk8vm2H14kvEpg8s3t7C0N0Uy+S45XHSeohhVMDCY5Y09Y+w/No0uTQdKMpksGMbmobK2F64EGuJmdMM85yKR0JBGEl0aSCmZzOR55e0xBs5l2by2iaV9adJJpX6A6DyCGfQhyWQNTg5keOfgJIdPZcjrgkQiQTKRJJkyDWRFDbJNw86A8oi9op4VopfM8UNiSEk2IzkxkOXx7cNcsKqR9SsaaG/VUNVwr8ytI16Y27skYxM6B49Ps/vwFIMjBoqikkwlSSZTJJMJNE1FCNvGFqe1kzsn/Pa22qevAFlcKDhnqqAfEIGdKLV+Gms+pHE/nKiOOtzxLnAQucIyGIQ43yRW1p6cwpo2s4n56kCpzBSERM0dgvOr8eKDm6fBK+2coVzYogYLH4dgpdshypg5W3nCI1oe91zS9kMWV2zSfnMGZW/psXRjafOTSFl0zNi51S6ipgJhHYFFA0iAUFS0hBn+Lw0DJGRzcOTUNIMjWdYsa2DT6iZ6upIkEgqKqD9VrjkK0QRSQl6XDI/m2Ht4kj1HJhke0xGKGXafTCZJJJNoxTdpuEShlMharrudxYMwo1FkIoEhDTDMVPl8nv3HpzkxkGFFX4o1yxro6UzS2pxAnWFdx2xDUjKMB85lOXRymmOnM0xmJIpQSCQSpFJJ0qkUycI2DcWl//q6gB0MR0FhW6DUSCZntkjmchmGx3W27xpj/7Ep1i5Ls7Q3RUdbgnRKCe3DKcf8V7a5l9AyI0rI5iXDo3lOncly4PgUZ4by6FKgqRrJVJJ0Kk06nSKRSBQOqK62BHZlcadXuhs8iwuf6lH9dp4qokecnwFFh+k183pliSh5wq1PoaQhyet5DN1ALYYlWdMV9gsG299p4TEvFg7B63TO7YMaIfZyzVVFyYovTjddU1TN23E15W2IzG7wgjcnpwVgzR0PATPVTDY3tl4r44WOoOWxl71mA0XwiKfivBQ2gmPevGlpgcNpTVJsi5IjBWxnkMiCo8XWDjJoqxeTS0v7B89r1RXnFUcM65CSGCY3VVGRCVksOgA5YHxSZ8e+cQ6fmGJxd4rli1L0dqVoTCukUgqJRD1CJW7kcgaZrMHUtM7gcI7j/RlOD2Y5N5LHkJiRQwXDOJlKktA01OJZKMLNbT8Dp/tlQ6cQCEVB1VSSJAqXzAiCvJ5nKmuw58g0B45P09qk0dGqkUqazrXiG1EXFkTFNpWFAInp3zIMyOQMRsbzjIznyesAAlXTSCQ0UskkyVSKRMKyTcOFZuTSFxxvJE3JhBDmeRq5LPlcnjPDec4Oj9GQmqC9RaOlSUNTQCh+B3lGb49Zacl5ri4SUz90Ayan8wyNGkxmDAxpHiqe0MxItlQ6RTplOlDU0mvSZ2g4xno4emD9pAngSAmexYVKIGFcUZ0TJe6zT6ogJ6VkcPAcjz3+GNPT045pGhsbufW9t9Le3obEdLgMDAzw4ksvcezYMSYmJujs6GDt2rVcecWVtLS0IIVE13Wef+F5Dh0+7CtjS0szt773VlpaWqIXJja8SxbWxYXsbPGaCwRwWgRPEZF36TO4DHOtgcHN0BowCJjY3yUWE5wcBnPdQHEhikOo5pVcvBLGkS3LPuuYA0j7T1O5BGD4Pfopc6ZYtwDhusAr75Zh3C7lebxSlASJAabtbW7rKdjMheuCXC6HbuiMTBiMjE+y79gkDUmF5kaNhrRCQ9VPlGcLflutZnQCyocfp0/ni9VDSshkTUNnYlJnMqOjF4xiM6qgGIFibs+wnm9R5kEJv1OjrCiCgkdESyIw39KhKAq5XI5cPoeuG+iGwbnRPIMjOYsO+A3cs6AsriE2tWcZTB1iVJpy7xdCMftx0dGWTCZK271Kh8kiCuebmPCTO4ikAhCKQENFJJOmvhQOKlZEtvRQeyojmZjOIs5kbfK7PXby4Bxzm9aoSztw8b8UF6fSqFbq2MVzsJTSYcCmM9aMUtJUzQw4sA3q9qVmdJFnw5HiTDcoojtRanH+RJSCW4iePHWSb3zrm2Smpx2fdnR2dnLpxZeYThRD8trrr/OP//gVDh05UiqPlJJEIsEVl1/BH/3BH9LX10c+n+fZ557jiSefcI1GKUaqLF68mPdc+Z45dKIEfeplYsE+iLY/FvFJEguf2UbA801iDyqoIOKvLbNXTf6LrZraxp6V7CVbeOMoFGJVgHkA++I+SLlqoPwzYgSNEJnBgm0Ot7oXDmn8EKUSap3Ha8C0zSXFIbgYcl4WwSpn1vOyeMH0tOD4iF9Y0oYQNwisRXGzi60RLuH02E5JgJAoKOYKsnCuhqqYrz/O53Louo5hGBhSMj5tMD6VnfdPYecWdlPM3zxzctKIoiGqzrx6OJkw/9REIQLFcphsCU6q4NNeZYaSAAUBqkARWiGyQEFVNdS8ip7Pk9d1DN3UCRnodYO1NU8rWAVIEloax8Si7NZsdouirgjFPJ9GVVTUgp6Yh8hqJUebatMTu2Fc/IzqSCk6cbRC1JJQzPN1NE01nbH5PLqhY+iy9JYz+9bIcAUPfDk02RBH7oamHf5mUOqVlVlscSFACAVFLbySWtNIaEVnrDmWaIWxxDS1/Z0dFaIHduB6G3uOU3gA+9CZSviKrc3beeYIY2NjZLNZurq6uPaaa9G08uI1NjXS1tYGmA6Xf/ynf+TAwYNs2rSJe+++l66uLvbt38f999/P8y88T29vL3/w+19C0zTef9ddbNu61ZGvYRg8+vhjvPHGG6xYsYKOjo6al7UOC2bTUpmHltHsizMPK+HdjHpT1Fwlqznbo95b5hlcGsOrjcq29Dg1bNmnmUYKQfGsCmYu1wR2oyaIiVodJ4EQEhUFoQrz3BNFmE4UTTMNIF03nSnSqGnZZxuFZnX8rIIqlY6T4BZj0ThWhIqqmltrEpppFKuahqaqhXML4t0/UyatEAhpGuiJRPH1xyqarpLP59HzesEoNkydwKXIpQLFC7sjvNyVMQeI6COqKgJCCAQFR5tiGsimE8V87bCiqpa3rIgZhi5yEEAWLxlFQSZVNbeXqZZXZufzefL5fElfpCHLM0auhEoZfHzpIQkWB4SqKYVjW6HfJu+y6glQX4KCU1xVTWdswYmiFnRELY0lwjLmzU0/mg9rq2hOlIhbJ2IvsIWYlJLh4WEANm7cyJd+//dJpVI2/qbHU0rJm2/u4NChQyzuW8xf/NlfsGrlSoQQXLxlCwlN43/9w9/zyquv8KlPfJKOjg4u3nIxWy7a4ijGmbNn+dn9PyeVTHHrLe8lnU7HWcoQCF67YR7wzhs4CGu/VPPy1JJBxeLcu8fY71YlWkVmJ2rlFsN80Z2iNLUcXzyvleAsQc23ZizIzmyDffEc1hKMUfndSJkiRXemzBnsdetkqATRdbuhE4Z3GMxlHtuawvws/kfBGVA4C8SmnxKryopy/XUaqGu07vSqihlxvCus3D/kdHBx4ZowzzNQhQpCQVN08pqKoWvkdQNDNw1nWQrbCYlZDEbwYl17Eapwooji02ObYVzYpqEohdfTCvvgWvzuggDsK9S7YDgKBJomCvIoaJpmGsPGTIRSSSdciurG2po0nErZGZW/dWs29czOxpl1ubvHSVQn499LeyTMbJtRVDPSQDEdb6J4toWwxVW4eAidhjT7NbujxQ3FVx+LYhSVoaLrCQxDR9cNpKFjBB1DQnahmjrThJ1y7RSsfDqfKZW0JRKS0vYsWX6rBEVRSpGFpTFFUU2HOQUdiehAqWiSwP3OWwcdU4Su7vCDQHAnSkTHSYVd6JnK/t0nqQ1DQ+cA6OrsQtMShf18Rf4zFWPoBnk9z8aNG9l04SZWLF9emmBUVWXduvU0NTUxOTnJ0PAwHR0dpYOyykQpHGT74osvcOzYMdatXcfWS7c6pq0NFuCCPixCCBxL2Wa7gmTFF1cHSk0cBGVs/DlEsaOiwZlDEAMhRnahEi9oB95sIIj8NejE7k6RcK/snbXqD9vJgqZ1coqExULXQRdUFMvBKpj5KkoXisfNznhQis4WlzHCb6kTpC1nYWlRqSqVTuqyviMEqiIK0QgKaBqaYWAYBtIwSm8kcpx3vCy+Ghq3zgbezLdy59HcPGktg4coZnSBQAjTEFULkQZm4Il5Ds1MdTq9GcrOyOF2mEf2ApACRQFF0VCkRKoSWXgF8sxWuPJeFdgpEMhQrmGbxa4W7oTKilo0yiP2DVFwkJjbvgSI4muuHZwnVlhDrkxCvvK6/S4jWyZ+IaKtEA2jqhIsDjdZjOorOXXKHYFerkGvanK8V6rbcqqikNqtG4TyB7i2YTkfJ3qR+AQQQhT/F0UdMbd9CUTZNkCbJexC2x2ujhS3Bqzg40zfaR4P71gJ16lmbTtPrQ1cKSWD586BlLQ0NzMyPMx0ZppkIkljYyONjY3mu84xvWx33Xknd9x+e8ELq5bRGRo6RyaToamxiVQy6SnS2NgYjz72GLqu895bbqG9vT2OkgbAu8CBEgLnjQOl8qZriur5+skQRLK4EczVOkssAyeeH7LNQ8ya1y18f5k3h7dW28nmSTEWKpwWXva37JSuFwxA05qR5vkn0kajuPguOVksT7xDCxMwzRw4VpxkEEKgShWQKIpSiNiJclxuGVnLEj/QajsaYjCM7caUV4md2URkLsqNn6KxXDSMrT5B/2K63HUbp7wcKZj9wDTYAZSSIexUR96muQvDKtvNyZ71JufpzXL96cUjWB04UC4MQ9KjShx7TMlhIsocbJ6weoA99q9Z+YV2XljkU4VAKgLFPr5a0znwjNx9RflXq6sxjFPGi7z04BOGntfY4nSvyKfklgmg7MVAAGtAQJzTjKMjJXrumBFcmJo5UYKJECBVoCSml/Ls2bMYUvLiSy/x5NNPMTo6SjKZZOXKldx5x51cd911pJJJhBDmflEtgZSytHdX13WOHT/Gz++/n2w2y0WbN9PT0+PMs+AZffX1Vzlw8ADLli3jyiuurHEUSvCGXfDr6tkqwJzx8WdcG8eQ8/AaO99AmCWHSZjZxiWTdQEy97LNI0Q1+kJm8iMxq9Vln7/nlXCzg5lX6opAv73S2BE2QigoHy/ZHI1yl8V7iYakPK3lUsnZgrTxLd+vHhvC6ldMfghH1S4Yz2Z0BDNRKFUwCmroVr209jUuCjesryupBZsCQpWn4ECxEhYzt8ocKVbazg4f6cDXRRI/C9cihCjVmyiTLRAE7vUuKhJS6XTzd9F4ymTj4eeosPfyogHrxMO3DixMKvgJ87W/5SUUFn7lfKHS/xFJ/6xOlQhvZwnS7iXHoI8sMy4hnx7jcsupLb20RXjoVVFNnXiEq4cZ+k78AneHsmuiMpFwoC8CjDy+SfwnGKueeDpUHEk49bqAUsQw9xVREyfKXKwX9bzO6OgoSMmhI4dpbW2lpaWFc+fO8frrr7N//37Gxse45/13o2rqzMJGSh5/4nFefuUVhoaHOHz4MENDQ2y99FI++clPkfSIRJmYmODRRx8lk8lw9VVXsWjRohqW8Dxbhdsx28Wbk+r0ZlozQz0A1/mkXbNqDHtccJJj7mSbR6iJbJWzWhg2Na+usI4Te955jjCOB6uDw+7scPrtl8dNlijy+8ni/dvDmJCUW59Fp0mZ86TcsVIcx0tnq5SWsTE7UKLAbuXYEVBEz5YSM0ZeNWWuNDYrzIGKtPauGoq7r3UvAqQJQ77SCANT7krjODyDqI6lynwhLA8X+0ZaZHNb53i6PgJ5Gxw+fR5s+rtZnO+7O19EWdtJFxncHDCuQrrys14TNn6VFIM68PBJM5NYetaxk7MprE4Ky5eZ+nJrkfB8KmpL2GV2q20PWV1++9900yznsSIaj+B8iqioT9cKDuJGiwPB+ZTuxixabE6UYMueYEZkVGzduhVFKGzZsoUbrr+ehoYGTpw4wXe++x3e2rWLn9//cy7fdhnLli0rq7hDhw/zwosvMD09jWGYp4b39i6iuakJwDWy5O133mbnW2/R0d7OjTfchKZpMUehRFlMLiBUK2zQ/HPmoCl8KdtX6ZLU51p43t7UZtdhE7zsNWDjkbiy9DWri4XUMd1krVpZgjjsanBAsLMY4cszR23o92rlqJEbcTgegmDebJvyhSg5PKDQ3BbRK6JPXFA6dBZbculfE/PCwQLe1q0XAojvZDiGE6cyl3Ck5u5sCY1AVm5UzMhtPUq03JyJ5tUqOi286tnKR9quOxm/dnOynIqLLHbCHjI5JK24724guyiujagodmWbLPGZezOnCJWMfY86sPKtVobSKFPGz72m3PiFlsEjMsWJn51v4HJbh2Fh4esSDRO5Pi18pMX6nmknUcbHes+BVBkqHBEVN4JQdedRkcN17IqBTyASwfi41lPgsTegIyV4Fl/Mz1ccS9tnACRTST7zyU9z34c+TCqVIqElAFjct5iGhgb+3b///9Hf38+ud942nSgFCCG49+57uOaaa5gYn2D3nt089NBDPPrYowgh+Gd//GXS6XSZc0RKyeTkJA8/+ghTU1Ncf931rFyxIo6SV4WFslSNG/Oq3I5ekblyIvjzrW3duVOPlW9o50n595o6TmbHS1U9gsgYuhyV3oqasAkjSs0ZxYMwzovz27ExO7DXRtn2f0sCWfyTFBwuonTR8eURdjq+crg5zGJ0CERF0M4bzd6vKo/14FtRljqmGrNPGw5kwzqFnNJbT49xNglDlsejCpycJvZ7wblFbHgf2ey+q2gtasslLbQdCDo5jkRlsoB83WVw4usmQ9XwIeRW5uj8pKMjxYtfZD4VVMvhpkvh+Mxkmvlazi8MzZr1Lb8cnqRi0LYqSATSgUD0Z9eRUrUTxb/gkdU2MIpPb1RNpbm5uewawLq161i+bDlvvPkGA/39GIZR9uaevr4++vr6ALj8MjNS5b/+7X/lhRdf4M733cnmTZsqeB44eJBXXnmFxsZGbrv1tgpHS3QEr68FuwyeLcFnnc8sOQ08idqNr9lC8JGgxmx8E1ea9lXCi8h86aRONlkMsgV7VWoNKqFG5YkC+xkX9vKGixRZKF638xG2ei+9DcJsv5IzRZYlsZi99nuyLF1wKdw9fk53wujXrES62I1ke7U65fEx8MKyn3laXJk7lgNqHYSquORD0s2A9BoByt+sE4KRQ5ZKB443Vb92qIVsXjKFM/YrlVLamVkY2PnH48ywMbL9tLd77LwlM5QEntE4dr6ReonPG33iLV+RoCwjZtZppcsjEk9p+2oJwyjyicWR4qj0DkoagL5jDl9HSnA+jnrhO7T6jTQB6QeSzJl+TFUMmFsuIyPc5Fa7haGUkqmpKQb6BxgaGjbHC8uqRdO00tkm2VwOwzAYGRnh9OnTjI2NAZS94vjii7bQ093D2NgYp0+fquCVzWZ5+JGHGR8f55KLL2b9unVxlcTlu3fKBQFp+Tsf+Fj5lX+pPb+K8rktOeYecydZpTPJXm2z79SZZXj1harkDt7JYq2empUniigls7rsd5AtMn6U65gjFP0ghQNQZMUNq/qVrxTLxhVpu1LjJg33mu5yPXXT2dgQlHTAOdtrbWsf270cEeWfYftoQLiQ9LMB7DaI/2gbQXaJJ2Gv23bZvCWJsBjzkMkum/26swxulBxSu2R2cyj58QrcZtKbllMZo2ls+VjmJEoRQdz5vjLY3+gTgE7Va0aPoddLb6rnE34UqUgfaG0TXmJHEv6NVx398GSi0Z9jhHKiOCmge6ro3TwKXnv9df7wy3/Ev/+//z0TExOmJIVOOz4+zujoCIqi0NXZhWFIvvf97/GHX/4jvvntb6HrepnTRTf0UrSKps0E6xTTHD12jO0vbyeZTHLzTTfT1NRURRRKOINkdmu1CsyqGsiyj5qjVC7vAsZW9Ao2TpUrXe/UBs6c3CWrkrxrgeycZsyCWOrBrUDzrSPGKpu1Hp2MrhoV362OZ6GuK0vr/K+Y1pqvjgUMR+NFzPxvNzYKf6VX9xbnAUllZLnlU86yPgeBmxPQT/dnxeniMv7LCHUXdGXmV/ZIDedTDjdqXlyc7lXKG1LZQmSx3gpqaEeSzSGZX30FkcWbUSVfIStTB+Ep8dM9J6Xw5u3FLzgcOlkxpE46pypuZ7LzDh/NIS1/lVIFrVt/PlaC7noWLx/zgvTgF4iEW6Lwufxz+JKJqRy+hfPn41DVAbP7048wspcQKRKl+k4cgHZIJr29vSSTSfbt3ccLL75ALpdDSkkul+O5F57n0OHDNDc3s3rVKjRNpaurm/HxcbZvf4n9Bw6UHCnZbI6XX36ZgTMDdHR0sGJ5+Vknuq7z5FNPMjg4yJrVa9i6dWuVDpQ6YsFsVWVABZUu36Pz86c2e9okK35VMwg5Egsth6y4EossQa7NJZxWHlURcq/Hmj2ttbf5LNWxk1MkaJ46zjMU7RdLX7J/d2t7a+RJZRSLz/rU6W+eImjkVQyMgqUJWF9ew3jRQPSnUaMByoeU2+3wQ34EmX3qeNZl82lvaztG70qVuSQ4+RhKPO18nakEZV+5tiqNTQ68o2ulR69wuOW0zPBr/0Ay+CQOEvXky89nzW53EEUulyz/GmVI90xf67mh1ozDVGBsNMMljuJ/CHwmSnGyidOEcxquorojli9bxvXXXc/9v7iff/jHr/DO7t0sX7qMo8eP8vQzz5DNZrn5ppvYuHEjiqJw9VVX8fgTj7P/wH7+n7/6f7jpxpvoaG/n0OFDPPPss+Tzea6/7nqWLl1axufUqVM8+9yzqKrKzTffTFtrW9Wljj/HHGJBCRsA1v2c0rkXxFZkK3mBKz8739qdouA+bcfCz4m8b6Lyq06722ORZT6hRpVt7mEP/2aXSKxn4aiPoOWxpqk7Rd7FKK7hy1bPsmxtL61ppCgYVLLsgSoWbaKCXoVdFEiuQLAPfrE8Kg4Ppz4kbOOLU7+M7XwWv/ElwrEc9uxF48b7rBV7joDlc2rDAMe1BDX6rDJb2yMwIzcZwfXtP06y+dsPAWWyE3W47JbcyskdHgxc+pj1UvUzigMjaZPFpdxOZQvQupWpS0SFZxO41WVw7bcMthHeIBSYj3VNLax6Zu/XcfEpZjC/SGZecB8Uju3mopqh+vIs0nc8DsUzayjNmUkZeO6raKAqJDAR6mDZ2httEekKSKVSfPyjHyOfz/HU00/zywd+Wbrd1NTEne+7k09/8lOk02kAli1bxh//0R/zne98h13v7OK73/tuKX17ezsf/tCH+eh9HyGZTJYiTaSUvPzKy5w+fZplS5dy7TXXoChKzK81rmNeouRMoTbK77oi8mc2G/2yHDXiFIFk3QSuDrPmRJg1NkH6i5lmVhxIdcw/ODW5xVniNASXgrQ9LDUprc65iKNkmExulus8gL1fLeR+5mYgKwJSCUhooCrmnyg7obBSF5ycS7ML+0LD+lajylYSmI4SIWc+ERZb1ELJvyRuKSpreMbstNyzW7r+9pCrFE4kpATDEOQNyOUgq1NeOElFH3PTaiejPJiYLowqUkmSmpPueTPx87dWyhhXv3V2MRadcKZ+yYocXk1st/f969dG0W63FW75+WODtKOUoBuCvA7TOY95wy1/uORV5fJHMJ10Qriu6eSudqfrfSEIwrpLnCGkDNa8z/5qNIBA4WGfak+f3c+KNY1s3LAutHNCSkkmk+HAgQMcP3GcoaFh2tvbWbxkMevXrqOhoQEAIUTpadLo6Aj79u/j9OnTTExO0tXZyfLly1m9anXpMNqiHIYhOXjoIP39p+no6GTjhg0RnSjB62pBLT1mWdhcLsezz20nLdaQTjbHz0BWfPFOFhs/94uzV8XunGKVIRCxGtfBfOxkNSjkrBVzlh0mdWdIHaFhd5aUnChyxplS+CtekxKkYbkOSMPiXCldlyXrQErTGJwbg9kF80QMYO7qJCJbgek4aW2C7lZJdxs0piGZECQ1B8OsjgUDw4BsDjI5ydik4OyowrlRmMgIdB18vRMul+xOi2iRDgIhJJoKzWlJZ6uku9WgKQ3JBCQ1iVDqujdfYBiQywumsjA0pjA8oTAyrjCdExgyfDtV5PAkEQN9zxu1lj9YouqrwDvR+z7dGoRI9a84juqdiolUBVKpFJs2bWLTpk1IKSscHMXfohDS1dbWxuWXXV5Y7IBiSV+ZF9auWcPaNWtc07gjWOHsju95jwUhZACEcG3GUmRffjMaMFeOE3eJYiHvkaBGZY+9QDEgVmWapa05s4D6OSXxIpjq+z39DK9f8y6PtKYt1EJpT4IspZHlWcocJ0WTp3yrT/nTRmn7NPvmPPFf2K26oKiB8F5bgezXYmYcIgTcRCoBi9olKxdBe4vpOFHKThUUdR/KAoWUoKrQoEoa0mb7Lu42mM7AwBAcP6MwPAG6Yc1laWx7WASVY4hd3azjgXC5XoSmSjpbJMt7DLraJKmkRC3pnpj5v65/c46iLqmqJJ2C9madvK4zlRGcPqdyclBlMiMwZHD7sUK97Bek180I9K03Kkg4TRzBI0eCi+idyHMIj4F+UFTpRJlfi1c3h0mQ9EGUOdq2nWhRJ/OrZl0wX4ScpdCE2NgEctjMduX6R3vMjgNl5ntNHSixM4iAmL1xs/LWjBqj7hCJDv+ak7Zv4SzpKG0zH/NY37YyEzkyc8+8JBxfVSwLThcprXkKEICcoWluRxCuhtOcIko3C+FwqAZObWm9FutZKgGuKYoZdbJ2KfS2QyFAuW60nkeYWdrPNKimQnMjNDVIejsMTpyBwwMKk9M+G3Q8OnnQ7SDW9C2NktWLDfo6TaPcHFWEjUhdEecL7GaiwNx2ldAMmhski9p1jp41nSm5PIUtRFW0n+dYHsOMU+tJqwr68a0WowtRhRMlykLn3YJojpN5D6u3c0EJ7gGf3Wyz6ziZjSquXAnHarg6LbRnu+zzSTejPvWtIOL2K0bUiHDdMVKJsgdHzNSRsEQsBK236NuZ3mXt4lFcaf1i9ZtIyqNQjPIok/JtPLbppOR0wfWhtR3ebWk13soX3nPinAmiPn77GCKxrWRsrbdivdh/R4GqSpZ3wwUrTYNaCCcDto7zEVbHSnOjZN0yaGk02H1MYWSivC/aclbO+8L5IalXv1UEdLUYbFxh0NkqUZR6pNOCRGm4MCPX2loMNqYlzSnJgdMq01ll5myYAOQ8fdmOY2242cGVhCtT11ye9MtIOfSXALk86QvXC145w3ewiE6Ud9niKxTO07pxmgEWIuZC9pBOBPcUsQsSL6dA5P0dApEkisVZETOk7TMGUrFjPtXXeQ735+vCdiWcU6TupAoAr4Gm9GlxX0lmok1KjpLy809mfhQcX5btQKbRVPgdYl3m3Zb2sbN80VfpmAvNPn7YJ7VZiF5xOtQ2vCNFoqmStUtg/TJBQzpqJHIdCx2iEHKkqrC4W5JKGOw6LBgcM2NCKlEaACouVdB2YigBRbKow+DCFQYtTcI8ZqCufgseRV1KJmDFIp1kwmDP8QSTGSXe0LYKfQs/+EYbrqsY5GNexkSrgvDyh3CihCthcL/R+YQwC98FgAUhZADIii8FOO+zi4+fP+XaVXEwfpH7ZSjB/R0nsfCfK32NxUlSTiS2w1K9HmrXQO5KNuffyC8dvnnBvy3t92ZJkcOyiaIz8y2Pxdnq5OOc2aUz87+sSCgr8hTZl8jb89SsG1R6j4NoU7lO2rZBxyhdBYK0UY2jV5xeu1wWvSJBVSTLumHDckE6VY8AqGMmCqmzDS5cafDmAcHopGqJNLDC3i+Fo+5LYeu9EsCgq1lywXJJa3Pl9pA6Fj6EMM9NWdwl0fU8u49pZHRRpkvSolV+KuA4XFr1TThe8IWDFlfSdmQcU+SLK5lgE8RsOFIU/yTx4Hyxx91Rd6AsPMyScT/rDhRnxOZ38M0kbX/2X1ViPulmVbKYNeJ3BkBV5KPcC0zen8hCjpKo1OJiecJp8pzVgb0ATgUKS28h55EOX0sNa/F6SCxv5ineroxCMb+Lsvul9HaZYh0A7QhPVHoIV1NRg6DG9TbzGmpZds16ik1PG1ywUphnUNSN2DqKEKY+dLcLNi6XpJMG7i84tSuyc5LysUjSnJZsXGHQ1lKPfjqfIYR53tKSboMVvXlUYb76zWm4C7qUC2eFBksdbeiNacCuxTI4EM3gjGN4O09U1vHmraAV4sXcfgOVlJJ8XkfX8ySTSZTSkexRFi/zGPNauAgIoAO1MeqdjOLZQg0dQ55Pe535njfnm0QqUGWmmtpQMW9nqll0zBzCKn2Yc0fseWOHvQ3DtOV828Y2H2F1oJT7S0oXrLt3Zpwntmul38X+PHNwrHBzoHjIUoGw7R473OcPr/4/E8lR46AbN1j7TRUwpKQhabBumUJLU5FwHXXMQBSe6i/uhnOjBgdOKRiy/M2eRZSrpH32sV+WKIrBykUG3e2xi13HPIQQoGmwcpHB8DgMjAgUpRiOIgvDWrkGBYlKCX6kiItOOskahEy4g1Qq4ErGM6tjrooUVYrmilidKNWu46KWw8lhIqVkcPAc+/bvRVEUNm68gPa2NiYmJ9m7dw+jY2OsW7OWxYsXoyiKqyNFSsnU1BS/+OUvyeVzfODeD9DW2oqUkmw2i6ZphfwuslnK5ls/UqIbBvm86aype6EDwN47AiphbDaHrPgyB7BbXWaFzGyjtd731kTHO8Llu2uiIFksFodFNGtovIDKcNdqEdZALSJQHfhnEk5NJcuV2Nme9hA4kmwOsPUlUQxBtggiZCUDJ+2y2zTBXHtRPAjhYJfebbtRmSEd91MV50opvxaGZd2BEh2WYajCUVJqC2lxnlA6K6XkFrXVf4jnN67yhE5bgy0wley85o2Z3l5jMdwEKP+MwlyCkJK+DklPx8wcWkcddggh0FTJ8l7oHzIYnVKQQpQN7WE2GkgkUko6Gg2W9piHytZ1790BATSkYWm3ztC4Qs4QKIV9PaU5BhF6aohbfQLxr4KxtH0P5kjxzBWXaJ6IzYkSxzquqrWHlJzu76ejvZ10Os3Q0BD/83/9D5pbWpianOS555/ji7/7+/z05z/l6NGjtLe388CvHuDP//TPWbZ0aYkGgGGYIXqqqiKlZN++fezYuYNPfuKTNKTTSCmZnJzkwd88yLZt21i9ajUg0HUdIUQpUsUwDEAW3huuoOvmbyEEQpiOGykluqGbjhjg8OHDvPb6a9z9/ntomK1Y0vNlEe7j0JhNx0lw/25VApRBCEEyrdDQqJJICVRNoKoiBgHmSEFiYisU07DJZRZIHMWcCmkyVxRBIiXITBlzKUwF4nGxOFGx/C58GAbkcwbTkzrTUzqGbtOfoELYWS0IJQwGv/aI6q+MK0/JR2lFWTOXb9OxbuEx/SNW7wkV7Wg/+2TOmjasftXE6VLpKg3ytqFZCKhxYluRXkpJOiFZsUghoS3MrRTFNWyxX5bKYNkmUHb9PIJr2WsGQVuzpK/DYGxKgCGRSuXDEHfjTZZ9VdFZ2iVpTAtX534t4BW1fz7qiSNk5Sg1a32nMEn1tEN7k87AiAKqsI3P4S0K3xwV43/4CcExRyCHhz8fR0eKb9ZgjpQYil5CLE6UWBYOEYkUBwBd1/nOd7/NPe+/hwsuuICh4WGWL1/Bhz/4Ifr7+/n6t77B0NA5stksn//s5+np6ebf/vt/x8BAP8uWLjX3NEvJ0WNHeeGFF8hms1x55Xvo6enhgV8/wPDIMIPnBlFVFcMweP6F53no4Yc5duI4X/js5xk8N8iLL71IQktwxRVXsGzpUp548knGxsdobGxky0VbePrppzEMg5bWFrZt3UZvby/bt29n7/59rFqxks2bN/PrB3/Njp076ezo5Oabb3YMEYwV58uCftYdKMGTxFvFldQUVdDcptHemSCZVlAUkAZIY44bNyb21oEvioGlJQTZnMG5gYyDRRUznIQtfHrcqmHshZOM0nTOWj9tEqSbVNq60gyemoi1yuxz1dxpqFUSW0sI83WSiipIpVQ6F2kIYGpCZ2QoSzZjhBN8AY2xfs4QJz31Kl6UoseZx0l3peWmdMgsCw8+ivdK/hOLU6Xstcdl/MxaivZGmFmEn9MlJtGDHKgsLQxnpcYcFNlsc4PWRoP2liqXxYW15NDoGBNTUwhA0zRam5toSKeB2hmnUkoOHTvGwWMnuPKSLbS1tJjXgf6zZ3nt7d1svfACFvf2uNIwDIORsXEmJicr7JbGhgbaW1ssW9rnD6SUHDlxkr1HjnDFRRfR2d5WU37m4aCC3nY4dFonpwsUScWDT7fozHLZDVJJg+72wiHGVaiHlJLxiUlGxsdL9pEAmhsbaW1tqbAppJTs2rufs8PDXLb5QnYfPIxuGFyxZTOa5tEXCuNnJpvlzLkhcvk8nW2ttDY3Fx4UByyElwMjLKTEkJL+s4MIIejt6gysq4ZhsHPvPkbHx7lyy0WkC31VAgeOHOXg8RNcdenFtDY3R5PNAwJBKgndrQYDIzrSEIiiQ86mNOHdKQ6wj//BvCDh6McwxEUj4+9IiZNh7GeizDaklJw8dYozZwY4fvwEu/fsBgErV6zkU5/4JIlEgpde3s6i3l76+vr47Kc/Qzqd5tDhw6TTaRYt6ivRGh0d5atf/xrbLt1Gc3Mz3/rOt/iDL36JZcuWo+sGq1auLHXulStW0NnZwbo1a1EUhUcfe5QlS5YwNTXN177xdf75n/0FTz79FN1dXdx4w4386Mc/prm5mbVr1/KjH/+Inu4eDh46xBNPPsF1117L408+AUKwatVqjh0/wYoVK989XuCFgore52z6zpZBLITpPOnoSZBuUDB0MHISvRrmC8jgCwpDgXxOMjGad04QixdDOnyrklzsihQ8EkcChiEZH8vX3O8UBTOmKtR0+48wX22ZTKk0tWgsWtbA5Fie4cEsen4eVkyNsBBLKqSH3BYnSel30TFi+ZPW6xYHipXOzNeZH/PagVJHJSSAQXcbpJIhDEAXZHM5vvfAr3nipZdpSKWQSBb39vDJ99/JpRdegKqqsYhth2EYbN+5i589/Chrli8rOVEADhw9xv/49vf4V3/4RU8nSjaX41dPPMkjz79ILp9nejpDKpUkmUhw/WXb+PyH7iWZTNZE/mogpeSN3bv59i9+xbI/7a25EwXMmae1WdCU0jk3biCEWhE8Ll0+Sw8SpMQwJK2NkqYG96MFgkIaBo+/8BLf//VvUFUFRVFQFZVbrrqCj7//TlK2ttN1nUdfeJHX3nmH5Yv7+Pmjj5HN5bh44wZPJ4oEzg0P8+1f/IoX3ngTXTfo6erk03ffxVWXXuztgLEhl8vx2tvvkFA1LrlwY6i8dkxPT/PdB35NQtP4/Y9/hMaCM8QPuq7z8LPPc+DoMTatXTvjRJGS7Tvf4se/fYS1K5bVxIlS2L1DR4tEU3RyhoKK6jCL2BxgFVccSdcU0ehXIVVMBYqrXiJramyGQpUwDIOdO3fw6uuvcvLUSZ59/jmOnTjO5z79OVpbW3hr11u89NJLfPLjnyCVSgEwcOYMP/7Jj7j+uuvpW7SoROv48eMYus6NN9xAKpVi+ysvc/LUSRYvXszE+ATLli4rDXBLliylvb2DlStX0tTUxGXbLmPvvr0MDQ9z8uRJ8rqOpqq874476e7qYnh4mI/cdx+9vb28+eYbGIbBq6+9Qj6f59Sp02SzWU6cOM6WLVtob29n2bKlsx/mupDhELddEx2tFZ9AzGeuaqqgc1GSju4Ehm5uVYn0dHxWQyDmErLyq7XsvnUwkynWTUExP8aP9fyOWdILxy4WgHksbiufrFJK8gbkc3mmJvOkG1Tau5IsXtHAmVMZMlN6dN4hUbH4tvx2L4ZzrmiHBEfLE759YsjjMBzODNuiLIFhdZxgef9S2fXyLiHLWMnSNftTQrfXCDtJbxE9QI4aw6n6vZqlamFl6f+gB9hWxdbmpDakQWNS0tlWvRFr0pMcO3Wa6UyGj7zvNsbGJ/jxQ48wMTnFf/iLP6WtpZmRsTEmJidpbGykvbUVQzcYGh2lqbGBxnSa0fEJcvkcHa2t6LrB4PAw2VyO1uZm2lrMp/2TU1MMjYwigc62NlIJjVw+z8TUFINDw2iaRltLM63NzeR1g8npaXRdR0pJJptlaHgEQ0o62tpoSKcKZ32obNu8ia6OdnYfOMR3Hvg19932XrZuupC2lhbODg/T3dGBqigMj44VDEBzO7uu62Tzebra22hsaABganqa4dFRpITO9jbShXX41PQ054ZH0FQVVVPRNI3GdJrh0TEURZDL5ehqbyen6wyPjAJm/oZ0monJKSamplCEYHJ6mvbWFpoaGsjndbNORsc4evIkjWkzcmZ4bNw0UttayefzDI2O0dTYQFNDQ3XtLSCZELQ1wdlRw9yWXzzILQBkQVekodPeLEnE8FhbAgND5zje38/vfviD9PV0I4Rg+eI+xicmGZ+cpL3VrIfh0TEaUikyuRzT0xkMaZDJZslks4xNTDA+NUlHa2uprYUQZiSSMNvnZw8/xm+feY57b7mJ7o52fv3k03zlRz9h+eJFtDQ1IxRBe3ML09kMo+MTtLe2oKkqw6OjjE9Mkk6n6Wht5fSZs3zr/gdoamhg8aJe+rq7mM5kGC7qdkFvpqYzjE1OoCoKU1PTNDSkaUw3MDxq6nFXewealuCyzReiKirSMDh95iy6UZynBa1NTTQ1NpjROmOjKKpKV3s7AsjkcoxPTdJ/dpCp6Wna21ppTKfJ5fNMTU9hGGaU2eTUFMMjoyiqQmd7O8lEoupxQwhobBBoikE2L0GRM1FNpeFQlhwuMuBY6DaUVySKGI1in/NKX5wWdt65gtEPlNU/kWu9BC86cB5Eoqiqyu233c5NN97Mf/iP/4GPfPg+Ltp8EYqicODgAX7285/xvjvex5o1awEYGhri+z/4PmtWr+H6a68reyJgnoViLnwMaSAQqGqxigqLT7uXWUpGR0f5xS9/wZVXXMmSJUvYuXNnKb2maQhFwTAMMpkMyAIfIJfL09Pdw9q1a1m5ciVLlyxmfHwCkKVXJsa6kDqfjeVaPC6XFV/mvA4lkEgqLFqaoqVVI5sxkGGPrXB5knpew8lZMldOihrV+QI58cUFsbhEgrOJYKdLw9zSk52epr07Sd/yNGdPZ5gYy9ewTf2uWaNxwueqXpp5mCeAY6yY0Fp3pW08suhAsbxuUtr+Sh+ytOiya7C9xp3dX+4ie+eYA/g5fGMSNugBtna2ERiZH1IiDUlSkzSmRKzH0PV2dXLbNVeTTGjsPXyEfUePMDY+zjsHDvKdX/6KE/39LOrq4osfvY+u9jb+09e+yYduu4WbrryCHz74Ww4cPcpf/u7neWr7K/z4oUeYmp5mWV8ff/Dxj9Db1cnXfno/r+16m1xe59ptl/I7H/4AAGeGhvnP3/gW45NTrF+5gi9/+hNYFXd4ZJTvP/gbnnzpZbK5HNdt28rv3PchujraUVWVTevWsmntGlqbmvn5I4+xbfMmbr/2an77zHP8q7/+MX/xhc+yqKuL//er32DF4j7yus6ru95GUzWGRke47rJtfOmj95HN5/nmz3/Bq2+/g67rXHPpJXzuQ/eiKQpf/en9PPPKq7Q0NSORXLZ5E7ddcxV/841vk83laUin+PQ97+eZV1/ljXf2oOs6N15xOZ/74D0888pr/ODB39KYTjNw7hwXrFnNH3/y40gkgyMj/N33f8jo+BiLe3r4w098jCdfeoXTZ8/wL774uxw8doyv/OinfP4D93D9lZdX3caqCumUaTMY0nxfV5BItJlxRSKlTjIRn+5JoCGV4qqtl7B2xfKSNP/r+z/i3MgIf/GFz3L05Cn++3e+z6fvvqti/WwYkudfe4MHnniSL3/6kyxd1MNf/ePX2bBqJV/82H0kNI2RsXGef+NNLr1wI5/9gHmG49JFi3jshRc5e26Ib93/K1qaG/mjT3yMV3bu4hs//wV/9rlPk8vl+cqPfsLJgQFam5v54K23cPDYcZ5/4w2SWoKVS5Zwz8038P0Hf8urb+3CMAyu2Xopn/vgvby5Zy//+KOf0NLURP/ZQTrb21i7fDm79u9nYmqKj9x+G/e+9yZefGMHyUSCxoY0X/3JzxkcGmYqk0HXdT7/wXu5eOMGvv7z+9l7+AiKULjzhuv4yB23gpTsP3KUf/s//xeT09NctnkTX/r4Ryz1Kjk1cIZv/PwXvLzzLVRF4Z5bbuKj77udhnS6akeKeYShUbBFK6Oaio3rcL5/9ajCkVKRI9QUXsUoHruRbKEbEKE2NlqfxFSF2AhROshV01RWrlhJc3MLqqpy7tw5/uEr/0AqnWZ6OsNL21/ixIkT/ORnP+HAwQO0d3Tw6muvcuDggdL4sXz5clRN5ZFHH+Hhhx9BUQSrV61GUBneqWkajQ0N7Ny5g5HRUTLZLBOTE7zz9jtMTU2RzWahcFp3W2srvb29/Pah3/Lo44+yZ+9eFEWwbetWzpw9Qzab5eixo0xOTdPU1Mz4+Dh79uwJ9ZpmV9gWfuczHNa5VRBxpxQLH18BnPlpqmDR0hTNrSqZ6RAOlHeRHjgi8EBrVlLlvyqrLob6d5KqXMJ4ERfFmaK7yV1VpZQ7yPz+rPkiQtcl5wYyDJ3J0t2XIt3gHJofTLTKNiz/DFOgOejgQcQLUow48zjIaD8AFgkSYa5GJYUz0cppmtOAKOUvI1GcIwqLuAr6npXlVXnl18v7iHu/D6olNYVbH4tdqMoeBE61E5yNlAYJVZJOxrsiHzh3jsdf3M4PH3yInXv3sX7lSqazWf7xxz8lk83yyfffxbnRUb7/6wcZHB7h0LHjjIyNYxgG/YODHDt1mtNnzvLTRx6jq72dL37kPoQQvLXvAIdPnGRweJgP33Yr1267lAefeoZ3DhxCSvN1u9ds28qn776Lt/bt51dPPEU+rxfKKnnq5Vf46UOPcO3WS7n+sm386smneXnnTqSUM+dZiJnzOYQARVVZ3NvDqbNnefWtt9lz+DA79+ylp7ODweERzgwNce8tN3LjFZfzwBNP8dzrb/DgU8/wxEsv88FbbuZ9113Lr556hsdfeIkX3tjBr558ihuvuJwP3nozZ86d49SZs0xMTXHg2DGEAnfdcB1T09MMjYzx0Ttu58otW/jlE0+y59ARBkdGOHrqFO+55GLuu/1WXnpzJ7955ln0wkshtm26kPtuv43dhw7z8s5d9HZ38trb77D38GFe2vEW/YODnluawkAIUBWQBd5mJQfLW3wrj5QSRZGxbuEfHh/j2794gP/27e/y1Z/8nOOn+zl15gzHT/ej6wYTU1McOn6C8cnJiryKIujr6eLkwACv7drFnoOH2bV/P0t7e9EKD55HxsfpPzvIskWLaG5qRFVVrtxyEX/++c+wbHEfJwb66T87aG4Lnpjg0IkTDI+N8eDTz3DyzBl+574PsXbFct7ef4Brt13KpjVruHjjBm684jIeef5FHn/xJT546y287/pr+dWTT/HIcy8wMjbKgWPH2bR2LR++/Vb2HDrM2wcO8NE7bqevu5vfPvMsA4PnODlwhv6zg/R1d/P5D97LZz9wD+lUkmw+x7LFi9h/7BjZXI7P3nsP61et5P7HHufIqdOAadvdc9ONvP/GG3hy+8s89+rrhZeEQDab45ePP8ETL23n/TdezwVrVvODB3/DviNHY2kz842axYfoHko0MwmZ+UpjYYgxzyltxfjsN7m6iOaUw5NEcNqeMjuSCSd72KkpUiTKLC/TAkHTND776c+QSCQAU522bd2GbhicPHkCRVXp7u5m6ZJlpFJpzp49y6AQpFJpWG2uhNra2vji7/wez7/wPIah8/nPfZ7u7k7WrFlNW1tb2QFFyWSS22+/ndffeJ2W5iY+95nPsmPnDpYtX8ZHli0jnU5z04030tnVSTKZ5IMf+ADPPvccAwNn0BIaqVSay7ZdRiqZ4sjRoyxa1MvqVatJJDSuv/56zg2dm6OaXICQMelkACK11f3KFaj1iiIEXX0pmttUslMhCj0fO+y8RGWdV0kqtu1SCynKRFb8qtGeMSeDbZYgJYwN51BUQc+SNKeOTJLPObdS5TV3Ye2OlFmHH9uwTRmlGHHmsQ6Txe+yUL9SlCJOSklKizFZlse2Zi1vHwvd6hGeyEx0hj2vd6TLrES1eBXHeq/qcwzdep7wZFM0Yg0p0VRIJeM7MFUCx0/384MHf8Ox0/30dnbwuXvvZmxikr2HD7O0t5fdBw+Ry+U5euo0oxPjjuVoSKdZsXgxr+16m+6Odq66ZAvXbbuUVCrJ5nVr2XXgAEdPnmJiaso8TBRJV3sbt19zFYu6u3j+jTfZd+QoF6xZBUA2n+etffs5NzLK0dOnkYZkcnqaIydPoeu663kUAli1dAnrV67kxR07OD04SGtLE1s2bmDX/oOsWbaU2665ihMDZ3jk+Rd458AB+gfPsW7lcu6++QbGJ6d4YvvLvLVvPy1NTTQ3NnLve2+mt7ODh559nqJCpFMp7rz+Ou6++UbODg1zvL+fnXv3cfjkSSYmpxgdH8eQku72dm69+j00NTbw2Asvse/wUdpamulsa+O9V11JV0c7v3ryaUbGxrhm66WkUymeffV19hw+zKa1a1nS2xtTS4uS4Wt1rJY+XeqyqJ3mFhEdEfPGAF03OHNuiEw2S1tzC9lcrnDHMt65dFCBYNXSpaxftZLtO3cxcG6I5sZGtmxcX/bWGsMo386qaioNooFcvnj+nGVNJUFVVJYtWsTjL27nqe2vsHn9Wq64aDPL+vpob22lpamR7s523tq/n1VLl3D3TTcyNjHBYy9uZ9f+A1y0YR1tzc3ccPk2FnV38Zunn+GiDeu588brODs0zINPP83UdKYkT3trC90dHdz/6OMMDo/w+Q/ew7ZNF3L8dD8Hjh5j+86dHDh6nNGJCcbGJ8xzKZcu5dZrryafz/Pk9pc5dPwEHW2tAExnMrzy1i7Gxic4ePwEQyOjjI5NcOJ0Pxdv3FBtk6EoIIQ50Qi/qaCgX06bH63LT7esNjI+jIKntudwvOlIIhjtcCmrz+WHwL12jtYHgVDs1NaDgLq7uvnExz9RkW7D+vVlER7FvOaHYMWKFSxbtgz+/+z9Z7AkR7YeCH4eEamvVqV1ASgUdAONBhqiu9G6+/W89/j4ZoZGGmm7tmKMM7bLXdvfu3/W1vbX/FkbW6NxbDk21EMOxWNrjYZqAA0tC1UolK57q65WqSLC90codw+PCA+VmReoA9TNzAj3c46LcD/ni+PugA+anDp5CqdOngTbAIQQnDlzBvfcfTeIpmFubg5nz551dr52I1Ce+8ZzIAAs28a7772LdrsNSm3Ua3UcPuQALc8+8wws2zkNwtPle9/5rv9GIDPtHZ8rP+V5LqSwZsztwkjOOc73bk0YmJoz0O/EAChfpHZPQyFIHBjI/iYp2QcLDArWrSRS0zFDOYaMIYgrE8BcZ/fA2FjpoVIlmN1Xw9K1jiRHkKs05Qa17Qgrc9TJAzuYcoYMTf8kHdf38Q9dosE1H0VxI1XYdTvupy0yz9Iu4mqs1HNa2sEn+ehh2a9yzFCEARU11VIy9vRnTk9i2ti0bPRNG7pRzKavBMA9J0/g//IP/h5+/fIf8fvX/oROrwfbprBtGxNjYzi0bwH75mbdPT2arh5BxAiFAyr8xbeew5mTx/HWRx/jn/6H/wTTNDE5MYF/+/Nf4btPfxWH9y3gys2bwWkshEDXnE1FCSH+m3SPb6/fh6HrmJ+ewfTkBE4eOYyHz5xJtDknWi08+fCD+Mf/5t/h3GeX8I2vPI79s7MAnJc8mqajVq2iWqnCsm30TROmacGmQK1SQa1Sga7rIISgb5puBIbGnRhDCEG9VgUhBK+8/Q7+/S9/jR88+ywOzM/h2uISV0ZN01AxKmjU63476kSDrhswdAMVQwelFEcP7se9p07iFy++DMuy8INnnkazkX/5hVujsCl1l2BQt2+5PSCiH3vjkoO72E6fKHhJ+szkJP7RP/i7OHnkiFNXxDk62bQs2NTmj3OXUKvZwFOPPIL/z7/4V/j06jU89chDOLAw7z+e42Nj2Dc7h8Xby+h0uqhWK3jt3ffwyxdfxneffgoAgWXZoJSJ0CHAk488hGajgY8vfob/8Kvf4JNLl/Hf/d2/E9QNdbY6MN3+Ua1U0KjVYLj9hhACTddh6AYMw0BF12HoOiruhjLsuGZTinc+Pod/9dOf4dnHHsWffePrIJqGX7z0Mn7x4kv4q+98CzOTk/j5iy/5wLnm9itd05yxgglDtClFu9NFtVrFwswMjh04gIfP3IMThw8V0maUOnt0RXWF0PhLwS3t8SBj1f1SIvmKmbkE6dBvqQ6RLFQ15rFKLkcsi8hcmWkEzynLz8J/0NxJRGMmE/E6exSXi39A1zXouub/dv4J6xXda5r7YIMQZ3JwecLn60xmX33yq7jr9GkcOnQY/+j/9H/GgjsYEXcpkqifN9Fkor1i6A6TuAmEiheGTqImukYwt68C26Tp90C5QyFyWrsgxzZn15EtyRllAKWUJUQUQ3sMZSLD11j3OiCbUqzd7qFa19AYi3K+cnWOsDKy31n4fs6J+n/4Tx8YYQ1k9j7zz0/v3XZ/c1H7UXWZpo7Fdk5q89wUx0zW86NVK5zUVcvIPvwsOxutUrS7xU6urXodp48exV988zk06jX8ze+ex1iriSP796Pd6eLA/BwqhgHbtjE1MY5arYrX3nkXv3nlVbz14UewbRu3VlfxL3/8E6xvbuK5rzwOjWi4eO26H30yNz2N9a0ttDsd9Pp9UEqxvLaOX7z0Mn754iv4+OJFnD52FNWKcypLtWLgzMkTMAwduu5EBuzsttFs1OOPgyUEumHgkXvPoFatYnN7B1++/z40687pQxevXcfvXn0NP3/hRWzt7OC+06dx9tQpnL98Bb944UX85PkXcG1pCWdPn8T9d51Gu9PFT37/B/zqpVfw2bXrIXG2bePa4iJ2O13MTU9hbXMTnW7Hj6i4vbaO3736On710iv49Oo13H3sGCpeFI1gOjfrDTz1yMO4vbaKZqOOh++9N7zBYUaiFDBNBwQJxpakTMwjTylMy4ZpKeZVJAeMqqFRr6NRr0PXdcxMTeDqzSX87o+v43d/fBXrW5uR+XVNx8P33oPxZhPrm5t44qEHnU2B3XqbGh/HVx56AG98+CH+1U9/hv/829/j//uv/hd8fPESxsdamGg1ce7SZfzq5T/i+dffgGk5Jz39+Hd/wJsffojHH7gPRw4cwLXFJfT7fTTqdVxbWsKNW7dw9tQJXLpxEz/7w4v4+Qsv4sbt2zh7+lTQvkCEU8/TzVu38U/+7f+K9c1NnD52FB9/9hkuXL6C60u3QAFMTUzg9to6en0TfcsCKMWnV6/iVy+9jJ88/wJuLt/G8cOHfICmUavh4XvPAKBo1utYmJ3FdruN8VYrX2O5ZNvOvyiKxAXY+Uj4pkqROYZiK6gJjU2Vo0Bpilz+xrJpAZ+B75yWrrFSv8BzI1xmZ2bw7LPPOiOuG6lS6C5SmZT7ghEVv4QrrLzqk3NWlTc+VUGtoaPXZkZYMfPAn529QbwvktOhzfmMjTI44lEwJ/PORu7omCEVPSxWXp6sU6vZt7G51sfMfBXtHSu8Lj5tREIB/ewLTRKAyQM7PCfHAUmY7/BAEyYDlz54x+cfdwxS/vHfMnRPpKS+kmlekM2LvKCwyLCg0qNWWEFU+J2CHwWw27GxvWtjejKXdo54QjA/Mw1N12AYBu46dhQ/+sbX8crb76Bvmvg//Fd/jX/xNz/GP/l3/x5zU1P4W9/5Jg7Oz+PPvv4s/vPvnsfi8grqtRr2z81i/+wsHn/gfvz0+Rfw/Otv4OThQ/jzb34DFaOC9z45j3/7819gemoKR/YfgGlZmGi1cOTAfrz5wUdY2djA2dOn8F8893Wsb27hyIH9GGs28a0n78L1pVt46c038eo77+DeUycx3myGytGo1XHkwH603JN2AODw/v24+/gxtJoNPHDP3SDEAV62d3fxL3/8U3S6XXz/mafx1Jcexm6ng6WVFfybn/0C1UoFf/b1r+GbT3wFGiH40Te+ht+9+hoMw8D61hY0TUOtWsXh/fsx3mzBMAw8+9hjePujc/jXP/s5ZiYncXj/fj+CpW+a+PmLL6Hb7eFLZ8/g+88+jfOXL+PQ/n2oVaswDB0H5+cxOzUJXddw76lTOLxvHx697ywOLMwV1jcti2J71wZ1QwiC5XVAnAPk731BnY1c221nY1otp19AQDA1Po4j+/ehYlT867qm4bknvoL3PrmAf/43/xlTExM4fvAgxppNzExO4uDCAqpGBfMzM+j3+9A1gsP79+HuE8dQr1XxwN13MTIcMO6vvvNNbO/u4j/9+newqY2DC/P43/3tv4XTR4/gW199EhevXcc//ff/ERNjYziy/wBmJifx+IP345//zY/xj/+Xf4d6tYa//d1v4fD+fXjm0S/hn/3Nf8YfXv8T/uwbX8Pqxib+7S9+iYph4IdfexbffPIrePPDj3Bk/z7Ua1UYuo4D8/OYmZyERggmx8dwaN8+1KtVLMzOoFat4tbqKja2t1GtVPDvfvkrGJqO7z39VTz72KP47Np1/LO/+TGmxsexMDONvmlidmoKhxYW8IuXXsH65ia+9uXH8MyjX8Lr773v9MtWC3/7u9/G5vY2fvz8H1CrVvHkQw+iUa/lajOPLNs5DTATsXMdCS4Q5q8iC3kO6U11Bz/SXYlkkW5Al7Kh4gWlXKmIUMXdS1/48UZ67ikNDAqKpeULOHqqiXvuPl3oJksyacWnHBKNvILlUL/fx4svvoY6TqBWSzi7nUb+iE5WKEW5csmkawSHTzVQqRDY/FLTkSFvGLEsy4+mKvP5pW74rE1tGLoRK0uvEnQ7Ji6fb2farJkQJ8TTsvJVeh4AQtOc8tk2z8OLkhOvR5EXWSe+7RBzt8YMHDndwCfvbGUKMyYANJ3AMunQAAGiOaJtm617J6JQ0wDbUmsTAuKkt6NTGwbBwWNN3LrRQWd3cMce3yEJsS90KYuLBKCJ/ybYa1NKnO/+dSE9PCCFYU5HbhhWo9LB9mgBA8f5FeLYbdtGr9+H2e/g4bsqeOTeFnQtz1Jqxzne2NqG5UaYaJqG3XYbWzs7mBof90+x2d7dRbPewPTkBCqGgd1OB7dXV6FrGuo1Z7nJzOQE+qaJlfV1dDpdTIyPYXpiAgDBysY6tnd20Wo2QSlFy12istNugwDYaXcwOT6GqfEJ9Mw+Nra2MDk+jlqlgnang5X1DdjUxvT4BMbGWv5ydKcYFL1eD+ubW5gYH0OjVkPPNHHu04v4f/+P/z/cf9dd+Ed//+/Bsiz8P//x/4hb7uk3jVoVs1PTaLWaAKXY3t3F6vqGEwnhHqW8ur6Bn73wIibHxrC0soJ/9jc/xl988zn87//Lv8Jup4OxZhONeh2WZWF1fR3bu22MNZuwKUWtUsG/+9Wv8R9/9Rv8P/7b/wbzM9OYmpjA5Ng4Ot2ufyyvRjSsbW6gWqlA0zQ8/9qf8D/8q3+Df/h3/kv88GvPgsRF3aSgrR0Tv3l1GyvbBur1GiqVakT/4a9RUFDbRq/XR6fTxpF5imcfHUe9lk8vSil2dnex2+5genLCOSGUOFF3lmVheW0Nu+0OxpoN2BSYHGuhb5ro9fuYHB/H9u4uKKUYazZx/vIV/L/+8T/B2VOn8H/93/x9NJhIFK+f77TbWF5bd6KpxscwOT4OTdfR7/dxe3UNvX4frWYDlFJMjU9A1zWsb2xic3sb9XoNs1NTqFar6HZ7WF5bRa1Sxcz0FHbbHaxubEDXNP9o63ang+2dXUxNjEPXNKxtbqFaMTDeamGn3Ua708Xk+Bh2dndBCEGtWsP61ha3nG2s2UCjXvefp1arCcuy3Xqw0O33YFkWOt0eZqcmMd5qYbfdwW6njemJSWi6hp3dXayub0LTCGYmJ9FsNnK/GKcUWFox8eK7JmzUUatWQHQ9vJpGlUj4RxoesWmlN9NpmI6FOu9sqoUTfP/vqaHpxUei5LEqBmaRZH3nOCI00sqNEIXqKTuQkU8wySVHrxDUm1r8XiiKxLqBccfweWt7d3fbuHnzBtqdNmamprGwsA/ValWap9vr4o9/fBmTU1N46IGHlUEUb3d627agaXp8SDGT54MPP8DSrUU889Sz/n5IMgoQb4XKk8DlYxMGag0dy4tdpfr36ljTCCamKtB0ph5siu0tE72e+usGTSM4cKSOfs/GrZvBpmmEALMLNdTqGhavdWJBHm8SnpqtYnzCwI0rbfRNu7TokkpNw9z+GhavdWCnAZ+8+nY3ePRydnYt7OxEgxOOoRHI0QjB/L4ajKpYNxRj4xXM7qvh5tU2up1kwKPZ0jF/oIbbi13sbMuPM7ZMivauheaYgU7bujNGD4jYKCnuTZz7JYSds4Em1ANQgu9BMIobd+IDKH5CeCMKw46jkQ8I9Iqg2kdTF0h8gxgVvUIif2VyGpJUEVUKugwInIiCm8s9nO020KjnfAlACCYnxjmRzUYDTTeigwCYm5nB3MxMKM2xQ+H9FarVKg5INkKdn5nBPMPDo5YbVcKeP1OrVrHg7l9CADQaDRxmIkw8vVl9qtUqFuacPBTA5WvX8d//T/8MAMGfff1Z1Os17O7uolGrYnJsHAcXFjA+1vLzgxCMtVoYY5Y7EADtbgfvnjuPDy58il6/h3uOH8d3nnoSrWbT150A0HUd87OzmJ8NVDRNE7VKBRNjLeybncXRQwf9e41GHY1G3c8/Oz0Natv49ct/xP/wL/81Hrj7Ljz+4IOFveChlGJj08LGjjOXEn8mImw381IzOYn/6e3HuLJhYnvXQq0aPg00DREgVI/ep67r2Dc3F8rDWk9TE84mqhevXMV//0//Z9iU4s++/jVuKY8vixBOFiuvUqng4L5wnyUAZmemMTszzV2r1ao4tH+/f22s1cRYi+frLU3yaHZ6yv/O6jE1GTjA+yOiRPbPh09nakjSEQDNZgPNZvDsyvp0rpUF7hy0vGai06PwTWwKUFJAMCGhbn9UOXybzy4FcbKFfUTyj7/I3kBUgpyqZY9IKX85TxoaiPVxx7r9YtIw2z2f7Ka310IBAIplWbh27Sqmp2cwORGPtG5sbOA//s1/wNVrV1Gv1dDr9fCVx7+Crz3zDf8ULJb6/T7efvdtHDp0GA/e/1Ao6oMwb7jEayurK3jt9Vfx5ccex8L8QmQ67xqlFBcvfYqPPv4QX3n8iVgQJcrZkSYUSNMIZhaqqDV0rC/3YPbjObGOfKVCcOh4A5Uq8YEEy6K4erGdCkQhhGBqtoL2jiWAKARjkwaaLR23bnZgKQRANFs6pucqWLrRQd9MjsSQ3k+qTAJMzFQxu7+GzbU+tjfNhAxMVgLsP1TH+GQlAD4oxe2lHnZ22lINwQBB/oRPgImpCio1Dbdu8HVTb+qYna9iebGDbieCpccMQK2uY2auis11Eztb8rJQCuxum5iZr2FtuVv+Mo87xBGlrJXkWp7uV+eD+j/ZpTweLuJdkx5pTPlPgHLLe8JvmOVEhPtDBVvS9E8WdGExEaUCxAni28z5FbxwKK2eIgUQrKz3sb7ZzxeeT+SOinhNJU2ZlPxyli8HpRT752bxD//Of4W56SkcObDfdX5r+Pt//iOYlindrDXsD1EcXFjA/+1/+w9wfWkJNqU4tLCA+dmZkDMq01HXdXznq0/i0fvuxb652VjAweP3wN134f/+D/+POHHkMOamp/I5vEExYNvAjeWe4/jWHPBDbH25/+Zu/UngRu4S7LRtLC33MDuV0y2L6H+R1yVEKcXC7Cz+m//6rzEzOYljBw+G83p7SUapEadiyvRp0pRBKs9uHqJw9mRaXDFhWd7easGgKw7BGQRwU2IaHrFThRRdSaehNEcBKHo21dILLg5EyWU0lm1xqvMfadt3pJUbAQrVj7zCijfOSpLjPs+1uuaut83KKABQPj73MV548Q/4sx/8KBZEoZTi4mcX8f4H7+E73/ou7rn7DP70xmt47U+v4YH7HsT8/AJWVpaxvLqCsVYLB/Y7b4Ns23bD4p1Q4KVbi9je2cH83DzmZp03IO1OGzduXEev18fCwjyazTF88MH7eP6F36PZbKL15a+gXqtjZXUFyyvLGGu2cODAQRiGgU63g+vXr8E0Tezs7HBhmikrJPltrFv3lZoGs29jbNLA+nLfvx0HQBA4xpGuA7vbFm5eabv1CnTaNsbGDVA4S7UIAdq7Fno9G4QQNFsajIoG26bY3bZ8jnqFYGKyArjpLZO6chzngxCKelNHtarBsih2t03YNqDrBM0xHRohqFSdDbNTdSXxlUQC6TrB5LSBrfU+Jueq2NkyE0GFQASBYWjo921cubDrL7fo92w0mjoMwwlLNioael0b7V0n6qPW0FGrawAI2rsmrD4FiAOCjU0YsG2KTttGt2M5dcbIrjd01GrOKQ67OxbMvg2iAc2WgUpFQ72pgWjJr4PMHoVWzMEedyiBgne9/FXAAzsCq5GNOAF1n1sGPAmAFua+950DUNxBw9/3gJcbJh55EFMFsF84hwoN1KEQgQfxu4wygCyy45oFKD69iBjy3866m/rvtG18crmN+ZkqDAO5IgI+b0QAjI2N4dEH7nPBAsA7UOG4Fw2iUl/uct/52RnMe9EIKfYJJIRg3/wc9s3NKqffPz+HffNzgd6FEMX6pomL17qg1DlhyDlUwrurRoRoIERD3yK4cLWDowdrGGvmOFiiAHKiLZp49H6+re9QCeR2lMXlHm6u9EGI7s8YbB9gh2Ai+a4kh8DjzMDVBUSPSC+o848EUjyKvBnPO5tq6YCUYkCUopz7OyDBHcpAvn0bvipPG5uiGMoth8mk6Wper2ime+YCBYVlWvjwow/wh5f+gKeefBoHmLDJKKpVq86a150dNJsNfP1rz+Hsvfej2Wrhw48+wM9/9XOY7mkAT331aTz80CN+3l6vi+dfeB5vv/sWqE3RbDbx5z/6SyzML+AnP/sxzn96HoATFvnUV5/Ba396FTs7O/jTG3/CieMnsbW9hV/88mfom33Yto2nn3waj3/5K/jVb36FN996A62xMayvr/shlipExS9inRIneqRad5x1o6phfNLA1rqJzq6FuQM16IYDqJh9in7PRq9jS8EUVpZtU2dvEDiRKJRSHD3VhFEhsCzAqBBsbZi4fH4HM/NV7D9Uc8APg2DlVg9LN5zok7FxA9VTGnSDYGfLxNVPmcgMAkzOVHDoeMM15oDlpS6WbnRx8GgDM3MVmCZQqRIkIhqJFciTphPUGzqMCoFR0dBo6rBtYOl6B4dPNLFwqI5ex6kz07TR2XWOvJTLCBxYy7T9fUj6PRtHTzUxOVOF2bd9oOXiuR3oGsGx001ourN3Sadt4fKFXQBAvaHh8HHnXq9j4dL5Ha4oY+MVHD3VRKXigEvra31c+2wXk9MVHD7edI/gJEr2o21T3+C8M5UJJBotarhDdBpAvr8RdaMZXHSEfQ6D707kEjsMOJEpxE/oAyy+rtT/5KTG2ltRA40sjVMwGs8wlDPX28myKfNbhKT6IqFfeerA21dK0zXYILh4rYNTR+o4vD86uvELSe7YFoo0YfZRScsri2Puy1fNS0jB4Anc/UUoPrm8g5VNE0al7uxbRgK7yxePuCHNOXpY053TQhdXerh0rY377hrzVB8ORbT1HSqeKCg6HRvnLrWx26FoNIg3KEkHNrY/pR9aKQOkhPnG65lwM4RWpFRNQYcslE01df1H5Ijjsh9Udf4jPWSMtHIjQEOrn3IFawTKxxr3+32cv3Ae7bYb+eACKB989D7+8OLzeOrJp/HAfQ9A1+PxU0IIjh07jqeefBrvvvcu/qf/+Z/ihRefx+TkJECB51/4PSqVCr733R9gYWEf/vjqK9hyj8ujAG4uLuLFl1/A6VN34Tvf+i42Njfwpzdex6cXL+Ctt9/E1575Ov7qL/4KAMH6+hqe+/pzaDSa+NqzX8fU1BR+//xvoWkavv/dH2Jhfh9e+uPLuPjZZ3jjzT/hwQcewl//rb/G4UOH01dmgn1uVDUcPN7AwRMNVGsatjdNrN7qYWu9j/XbPVSqBAuH6jh6VwP1pkLYAQHGJw2cvLeFk2da2H+4AU0j0HWCfp/i6sVd7G6bGJtwgJtKRcPOloXF612YfYrpuSq8LWK6bQtXL7axvNTDxFQF41OGXyDdINh3sA6NECxe76DTtjC3v4bJ6Qpm5irYWDdx5dOdyOUoeUjTCeYP1nDs7hbGJgz0+zZuXe84y49udAACTM9XcfxMC5MzlcTHhQKoNTScuKeFU/eO4fjpFgyD+HvLLF7r4taNDuoNHROTBvQKQbdr49aNDrbWTYyNVzA27vRvs2/j+uU2bl5pozlmYHIm2M+HEIJ9B909Za63sbVpYmbOyTu3vwbbprj86Q5Wb3eVplTbjcC688auAMqCQvngB7+/iXcCBqgHlriACAOWUOE3K188wSkExhZG2QzPkacBKZlZDAWIRqBpOnRNx9aujXc/2cbOriUH6u7QHQJw43YX5y53YNsEuq6B+Jvp830m5p2NM1VoBLqmQdd19C3gw4ttrKz3JTnu0OeOqLMk7NOrHVxd6oMQDZruRr5GZ+E+sxCRfEufVyVlAbZQJIucvAsy0/JHouR6zsseJNT5j/RwNdLKjQgRRL5hL776YiIPimKZ8XW2ZVn45Pw5fPzxh3ju699CvV7Hex+8h5deeRFPP/UM7j/7AHRdLVS0Uqngua8/hwfufwAff/Ix3n3vHVy7fg3feu7buLm4iHqthjfe/BPW1lbR6/fQ7riREZRicekmtre3cePGdayvr8OybKxtrOHm4k3ohoEz95zB9NQ0ZmfnYBgGbt++BU0jGB8fR6fTwe3bt6EbOv70xutYX19De3cXt2/fQrfXxb1n7sXhw0ewb98+rK6tpK+kGOrsWLh5uY2FQ3VYFsXqrS4sy1k2s3q7h6nZKlqTFDcvd7G11pdGoXBEgc6ujeUlJ5qk17F9QKzbsbC13sfEtIHmmA6iEXTaFiamDSwcqKJa05jlSs7bis31PiyTYv+hGqq1YPPVak1DvaFB0whmF2qoVJx11rW6E7myvtLD1kYfE1MVtAraY8cjs2dj8WrHcUYIsL7cQ6/r6L2x2ofZoxibqOD2zS5u3+wmnCTkvH3xNtGlthvJ41aD2afYWOvBqBAcONKAZhBn+Q0B5vbVoOkERHM2YwaAfo9ia6MPXScwTYpqTUPHPSbcqBDUmzp0XcPsQg264eRpjuuoVgl2t01srjtHPc7tL7DCBklJER9pqIgQm6T8iY8TDaehzIcXaMWlcSPyIsCSAGSxQf3ovSAAheXvX4vTmUjuKRts6SuZ3xxaDPWRC04XbJ2DPEEqRUoVl87/8uqAShglsXVOX9McR9Yw0DdNfHqtg6mxLTz2wARqFe0OMHqHfKKUYnW9j9ff28LGto1KtQZdN5xN8VM4jv7z5y5vMgwDmm7g1loXr7+/iWe+NIWx1nCX9dyhcsmmFNcWO3jr3DZ6poZGw4Cu6ULklNpIHRXJIYvEoCT4QYRvaSJSIiM8JGBiEufIOSlWoNpMxtWBbE4KZR3Ucp6RtinvAChfKIqopz1RfTIlmWs2BYhizFitVsNTTzyFX/z6F/j5r36Gw4cO409v/gnPPPUs7jt7nz9AJ5Ft23j3vXfw2WcX8b3v/gBHjhxFrVrDz3/5M6ysrkDXdUxPTztLeNzjhieYPVZ03Tll5+iRYzh+/DgeuP8BtFpjWF9bg2VZ6HY7ME0Tt27dwtjYGLxBy7Zt16jQMTM9g0ce/hKobaNvmmi6x+RtukfWmWbxURWUAtsbJsx+G4dONtDeMbC51gcFUK9pmNlXxdLVDrbXzWQAxaVO28LKrS68ZQSaxk+PHvanaQT7DtWgaQTXL3cwt7+KZitoeI04/cDbd4PdDsZ7ud7vU6wt91x+QK/r3KjWNPdtq+rkkO7J6bYt3Li8iwNHm5hZqGHxWhugjg4Lh+rYWuvj9mJH+Shms0+xstRz0zNrgz2H1gZAnFN4ZuarGHNPHCIADh1vcBOmc6Sxs9TH2VvIYeI50pZlY225B9t2jire3jAxM1tFpeKGgWsEIBLnXSBNc6NlBvn2WmY/qIjPouKQB9O4TY45cMO75u+FQiI3koW7kayXzbtGGaa+qaZa/oTx3Cfpo5i+kuP3Z5Gb1mIONeglA6UpjqhqCmXCdRB2QVgSxRACaLoOwzBgGAa6HRPvfLKN8ZaGe0+N39kf5Q4BcMaHrR0Lr7+/iWtLPRC94vQZ195BhqOxCQBN02HoOiqGAdPs49NrHYw1t/DY/RNo1HKeFHWHRpJsm+L2ag+vvr+FtS0b1VrV70s60XibR9L87Jgd1Tsi77mDIr9iKI5TSv6Z5jEVvtlz+XeVVFPXPx2Iwk5quQwqGvszH99k5QorRhk00sqNEkVXTjnVFrboinwE5HJcg96m0jBRkYizIBeTk1P4zre+i5/+/Cd48eUX8e1vficVgAI4BmOj3sD7H76P3XYbB/YfwLlPzmFiYgIH9h/E6VOnceHCedy4eR3dbhe2bePkyVNeZhw5fBRzc/P47NJFNJtN3Lh5HffcfS+OHT+Oer2GX/3ml5iZnsV7H7yL73zruziw/yB0Tcfb77yFrz/7DZw6eRKfnD+Hmzeuo9vrwbItPPv0s5ifm8dLL7+ItbVVnDv3MTS9mBWJooPW6zobt1IKN1qBuL8pum1LCUChAECc05UOHmv4ztzGWl+egThh5UR3NkNttnQQAj9CYmzCwKFjTTTHdFims3Fss1UFcfXd3jAxMV1Bre44/oZOsLnWQadjY35/DUZFw9RsxdU831MSzk3R7wO9rg1KKSpulEd7xwmJ73SsZACFmQOrVQ0HjzX8E1N2t/oS/9C54J1uUG/oaLR0Zw8T15itN3QcPNqEbjgGw+62Cc1w+oxlOpE9CwfraLR0mH0bjZaB1eUudrYsTM9VcOhYA60xQwl80nSigrWEy8yS95inHf8/53OFKoDC4ygOoMUt54HXbagLqFAXgPRuBgAKG/VSSvVGefdphSV2zWRBMuhFFtEh666FUi4AKilTkFncWhEg7jJLx5G1DAO73R5eensTux0bD94zkf/Y4zu0p8m2KZZXe3j1vQ1cvN6FTXTUKgYqFcN9acRED4hjeGy3cfqeZugwKhVUTBPdro13PtlBt2/jsbMTmJow7vS9zwk5L24ortxs47X3t3FrzYSuV1CpVGBUDGi6Hl7OQ+G8yAHAQh7cbYmsEFgs0cXnRYKRMYqHtDxRaUJ9Px1Ez5ZPnYUakJJTNY6yRaKU4z0WwTxV/pG2O0dauVGkIlzDeN6FyUmFhFJ0dm1Mzaqx9oCUqckp/OB7P8Da2hqOHT2eCkABHMf0rrvuxl/8F3+J9z94Hxc+vYCJiXF8/dmv4+iRoxgb+x5arRauXr2KZquJx770ZdTrdZw4cRJzs/OYn5/HX/3l38YfX30Fn168gIWFfTh5/ARmZ+fwFz/6S7z+xmu4fuM6vvzYV3DvmbPQNR3PPP0Mrl69in6/h+9++3totlq4fPWycyLAI49iZmYWP/j+D/HSyy/hytUruPuuu0E0DUbC/i5JJHPQjIqGak3DxFQFjTFnt/T2rgXdcK57y1XiyLIoNtf6MKoa6nXHcbcpgb5JsLneR6fj8OjsWNhcM9Hv2bh5tYO5fVU0mhq23KOBNeJsPGtUCGp1B1S7fqWDnS3Tcf4tZ9nKjSttmCZFva7DsijWV/vY3bVw/XIb8/traLZ0/6QcW+E45HA9xbtehACNpiP7yOkWNJ3A7NnQNIJGU8fmqqTri3g6BbY3+7BtHbU6cZ1agl6XYGfbQr9PfTBmfa2P9o6FTsdyQJuGjl7HxrrZR79nY2fLhG1T6AZgGBoWr3WwvtrH2ISB9dUe+n0bS9edM46bLQO6TrCx2kO3Y+Hm9bYDgLV09Lo21ld6icdSV2saTFMBRYm7TxXSfMFIGUBhPv2j0BFEofhpqf/Bj+w+cEIgLhsaWHBRFjmpHLY0gniDNAnfGKiLl0uw1zeYCiMUGhwQxTAMVCoVWLaFrbaJP763gc0dE4/cO4nZqYq/Ee0d+vyTN470+zau3Ozgtfc3sbjcA4iOatV1fA1DvkQ65hHj5lHi2G26pqNi6LCqVViWhX6/hw8u7GBr28KX7xvHgYUadP3OSTl7lby+tNuxcf7SLt78aBsbO7Yz3lSrqFYqqBiGs7+OrH3d4VgGdDC3lQCVSB05TuoUyhGL8KTnnyxQnX/szJdBNUIVd8564T9vpOMsJdFiDv9cWjmPo6dauOfu04oTFWs5xBdlpO3SkVZuFChcQf2+iRdffA01nEC92iqwCsOc1HuZMktpApmcak3DyXtbMDtUeYNZ34mg1D++MZW6bn7LttDv99Hv92EYBmrVGjRNA6UU/X4fvX4Puq6jVq2BEIJ+vw+iEVSMCmxqo9ftwTRNVKtVVKtVn2e32wW1KWq1GgzDAUF6/R56vR4a9QY0TfP5G7qBarUKTXP2COl0O060g1EBQFF1ZUeRXiXodExc/mQ3eMMMgN9LgKfxyQpO3NvCxmofq0s9WCbFzEIVU/MVLF3t4PbNrlI9as6puxzZtrtZMJy3W95pOrZN4RwZ6RhKHlhg2/A3l/XeUHin/GjukYpeWs1dskMphW05b9mdUHWnDzh7rBAnfcxw3Bo3cPR0E+fe2WQiSOJ7f62m49R9YzD7FLdvdtHeMTE5U8Xsvhq6bRMXP9pWckY13Tvhxn1bTOAsw4FTFg8A0nSA2o6Dq+kEukZgueWj1DUzXAOVaASW5exHQ4izLMrjQzTnqGmvPbxnTNOc45otph18z1vyiufA0Qa6HRurt7phJ28Pj+8y31y8FlW8rIEVIlDHyRMAFB93osFFb/WOF/3lL9NxARYvrc0s7QLlgRgg/P1zQ6lBFzGT7B5CTDOJyUIqqiURBSi1YZoWer0eOt0uet0uTNOERijmp6s4c6KJu463MDlWCcbkOw7t544C8IRiaaWLDz/dxsXrHey0bWiajkq1glq1jlrdsWt0XXfmYgBKHS4UEuDItEwT3X4f3W4X3W4H/X4f1LYwOabj9OEm7j3ZwuxUxY9OvdP3RptY97rTtXFtsYsPP93Btds99HqAXnFs53q9hlq9jmqlorxnofu+FOAi6rjb+YjwY7gKPyWZoUQpXu7KLkROMPn4fv/vTSnlLeaIYyUq2xL54gAo3lsy/82ZInmD/Odx4C2zfUVQNRcDtRvcHbNP0d62UKtrsHpqIknOtvby6ZoOvaajXquH+LHAiHe9Vqv59zVoqNeDYyJZns1Gk7tGKUW1UkW1EpyeIuOvaZqfN0v5+JM2YuqfAtcv7mJj1YRpuhEjV5yNYL1TYlTIFkAvzyW0GNG27/E5gk0zrJe3sSoE8MMWPDzbcsATsSzOEcu+EGX9+aTJY+zyYg8bqz3/6OfujQ62NpzoD0IIVDB7Xn+hLFw6Pk+QjwppKdgKpxSgTF5qA6ZkqZFtB+CUFDhhqFLRUGvoYQBFknYUSQUU8aogzXiYpehxeaggnDLfQ2kYwMQHWNjfbHruEQxKyr7xY09e2vMzaFIjxsZnq9xz6jCTmCyUpJqiB0CgQdMBo2Kg6o3LhMA0TSyu9LC83sPHl3ZwcL6Go/vrmJmsOqA3UZTxBaDRrob4N9TeeNHr2bi53MW1pS4Wl7vY3LFAQaDrTpRSrVZFrVpFxahA03SkPkBZ0ie9fXkq8EBfD8ghWN8y8ebHW/j0ehsH5qo4sq+OhdkqKhWNeVlwh0aNLJtie8fC4koP12/1sLTSRbtHQaA5Y0y1ilqtiqr7MlHT021iHTW0scCH6vCnzj36bnZZGSnWwMihTQrDpUQQJUYLGvszP//MKQdIeZSiwMrtbbzx6hVsbnSUslQrOs48sB+n71mApu0lIEVeUcW3abSzlpNVbjm2TbG23Meh43VYfTrQDh3VT1T6T5q8afZqUSUuXJvFEBRoZ8vEziYPs9iWs5+JqgqsY5oG7AwxKJB4nXIIkmTpdy3cvtnxo0YAxyjd3TL9vVFGllRUi0pDgInpCnpdG92OYqhYDhLVyB/tEcU7LCl9P86nnRzDo/COFyDwXiYgtGxHfrwx/H/BxrMBqMI9E1QYQ5gHX6VEWUs+EhSFeMg6XyyT+FqQhaWXEr3CqiB6GIIgXSOAbgBV5zIhBJoLpFi2jZu3e1ha7uGDC9uoVDTobrShlsNVKZwKqrgsbIoQLesXSoLjKlOBZbDZOEWvT9E3HeBUc5cNVysV/+VOxY8aCHjz0GGCQLFPwtn83IAOVLzrBARd9EFg2xZWN0ysbvTxyeU2alXiRroSt59GF3vgzq0ypdcqUzlKL7xcgGU7fajfp7BsCkI06Jq79021glq1hlq1AsOoOJsTp1HUm7MIOzMT9lY+oMOdHCkhHH/2MYvjH/kUhG6oj/axKaU31UqbZ74ZYCTKcGiEzfbMRAG8/84NvP/2jVShxutrbRw9PoN6o5KceCRIBUApooUL7CUldbidTdOPRjEVo1G+yJQJtGDzxzxYKs9c4AJmcTxRSj+i3PdkBydSjYgsjrMa8cwqnsozUCpIpUqFYHyq4p9IVAbFsc0iMhuAlk9SrjzuJQInGCu4HpzA4yeTgCbc0casBBZA8YxGx28SABz3YgoUIWvJSwERiqAk1C119Ap7Xw5QJbLPQlT4FL/DdZphAFUComnQNA2a3odpmrAtZ5PsrknR7dshYDqXnoSA64BErIHRdYdZyvUm3M/k1YV4s3zyojs0XYeuaTAMHYZR8feuMLzNZEkAroYdyyxt5R13TPy9dzRCoOk9mH0TlmXBpjZMi8Jse5ZF8ZMOG5GYWAKlIkaNauXaBUrlyNY5Ba7R5SBwllIbhuZEGrl7LlWqVRdACfbUoYSkf2bcOdAZMsI5888pvLWoMiKVbe2le7LUU2d5YksAUWKqj8b+jM+bIs0ImusBFeTzt3d6qddqd7rO5pX1RgE6lE7FQyWlyVHKlG+6s2yK5aUeDp9qgJjqe6N83kllfxM2dbGyVfgnyCzd6S7A/Ra9hFGlIehGNGB2Xx3tHROd3ejdelVVk70kT+aSMxZFtBxEaytP++cIx/ABEe8XZX86SlM3ysxb4kqoC7L4oAkJolG8y17ECgOqeDwIZaJbRL1DDh2nYEzh01QCO47J17pHSYm6NzCSKaFsvctMc1kKnklZ5SOEQNM1VDwnVtOgmzrMvgnTMmHbFqjtLruQ+VWFYB3yKJ3cVFqnGCDAUWomL7KDuBvX69ANHRWjAqPiRgx4m38SEvv8UWmvlVwJgXgAYKAKZ68vXdfRNzwQz4Zt21KHOV0pFROVgNulXv6UX2CBjGhY/1j+HhCmOZvIGhVUKgYMN5JJ1zQQonHzXhZ1g/mKQgxLSjsLhZkDVHiJQJi/CVnlKaU31KGeSHAokm85QErBIEpeKzZJ9VG24PcGjW4NptdMzVFUl1U2UJOX/862iZWlHub2VdFr01FuzIEQ5b4PqzJGpxGygdIpsoxOUUeDCDA5W0WlpuHmlV2ufrLiDlT4LOrFQjiLAAio4H9Z2j9jnlA2yn243wMwxHkbR/jfFEw0SnCfBVAAF3hxARSfd7RXJCexLgmbOEsP4Bgx18M2UtIjO9S4BbE4IqWOXuFLFOUcFFFmZ0NqAMRwQBTXobYsA5ZtuZt0S9UqlMpvvwJRIBluSLJwKkiHzFmID6TpmgOi6LruR58QooWj1RjKP1USd9m97m4Wr8MwdJiW5YIoVnBUe6gkmUX6/nekg6rKRHqLBPwZOWm4ZisdSWRSBP4pltyHW1wQVtM06IbugHK6ewqPRkAkD0h+LDacM3Ob+tOYN2Hy/HKPT6H5kruopFo833Q8E/kKVCCIEiFW0mLRCuaz4IduMMTRHQckhuTun7oDkh18y9QsiZl40CQzAixkohRYvdVDvaljbFz/QgEpuZfnFKKD15YFgxOZWTnfgiiclD0tLgsNfRkuDVkN8VkmBJiYqmB6torFq22YPXmvSN8uMdELcQ58huYfdp3KSKqSf1xxkIh6lynzPFL+tB0vV2jPlCC58MOhTCvPxDwyn1SFQpazjHFUpijV5O/B41QamB2VVJxEkEU29hV5WgVxTlLTHIdH0zXotu5EoYBGOLL5paZQz3dMs2UuSIdiOSqL5btJRumhoAKXG3FOddOI5i7pchzeYDN8Jz1NKdbprSqurCNL1x0dnL5ng1Lb7X/IN4YzFRh1OrNcO0X3XqFe4pOEQQBpnrI6nVApWYEV73RMTXP6kRN5knxiZhSQouTnep3DT0iCy2n4xCkGZ+5VffbErpqMb6TTUNo/IoGU1FBSJI3onigjaN3doYGTGmyW38HeS2SZFEtXO8CRGsbGDfRTHHv8Rac8vWSUexgbMpxaz1Eu2IiSpgHT81WMTVRw60bH2TRXmrKgylVlk0ZcZmS3PIqrQ9ZhCC+zCQAV7ztlrgd7nvAgir+PSl4AJYnygjLFveorMcewaDCd2D9ZTteha7oLoAgAXGSF8WiauE1jlLOkrhzHXtFHiNYpEySR41W+J5v9HAm5BC5oAjjLdrLHQWTBuDlNNQIDBFTTfPA3DlMHxOqIryBOt5g6lfF2vqs1hEyODMCJrmkFOYp9Il2XYUorhNLIImpC9UQINPfTWwKmQpT59PKkBlQkJOqXZ7wvdKpKSWWZMWnKURCIElEMEfZyKX3B1VKPoF04ggqNGskrKFVbJiYMc8vVLLHKUS5ZZlkxmXpdGzcvdzCzUMX0XAXUAiwzq6C9QWp7nkRRvophTcvRiUIBxI6orNte6SdD1jNkGBGg3tAwPVeDZhAsXWuj27YTRpa0s1IUUpBC0bLylETRqlDvf65aKHubsvco/J8UwfHGXn4aWLseNEOp50SVUCVZ20XsMolWqoog3kxOn2OAlKrs6pnylsd3fVznmnrtpGXhFf6uxeqo+NafZZZRJ7kTrqCTyCAlFqKetXi50uoiIgiRrIqMqPDpfSfCt1giAKgTveA45fzx6zJ10vV3AkJSt3g6Iq4cCbwDFDDeEPmPvCBBFH8WekvkT2LuK4aRiTKUykTl/EUQTEVe9M30NRs5jYVuxJcyCryKZ8Fa9Gp846gAEEUBQIlPmZAoPhfv4IwYjZxCAfX7FnpdU8lWJwSo1gwYhlbQ0chyoVnbUvVRKATMkCpXgpwEMvsUt2920d6xMD1fQaOpwzYB28qqwGjRsKOLZPITNSpAZfkzMAzgZoD1nxd3SClGNETiiADQdKBS0TAxU0G9YWBnq4+N1T5MMyIEjBNE+Wt3iKNoLJqyHxyQ4gAr1AdG2A1ivag8H0ChXnomO7M8yDPpWVlDpzg9ZPfinhfOUqaC4ZtcYMowURFTKkWVPUWmIstDVBNGZZb4B/JtSjPBKup6sMToFOWix2TJJ1shcSllZi6H+0OCxEx9UszKwiGsFkSW2L+X5MOKQF0YuhDlZAOKRBCE56ogh8TeTSCF54XE81YDJwI5wZzhAVph/sluOiuQ0T+Ff6UMqFBx3A/yyHgp8/cvBqOq2JMjVYqSLa049REmlq+0ANLUqSgniKIOoCiTtEYzazI8Kl2hjI1OKNq7ffzxhYtYvLEJWyF+mWjA/gMTeOKZk2i2qgUBKTzRiO9KeQdiwXnCct0ulKgNbK2b2N22MDZpYGLKQKOpQ9MJYDuOBvumdm+RvFEp81eVdIOgWtMwPqV6tHf+ChMNisyZfSaDbcR6U4duEIxNVtScy1wFHi3ygBPdcI6arNQ0gFJ0dm0sXmuj35Us34lCaD4ndVIUKQHllF/vz32nwrjmASQCwMIv7+FP5wFIAKS4YdnKKzNGkdKALoLhqy4g/qSgHL5kPpJ7bkqZkspTmv6x3qJMq0Cb0us0VoC8kssHUBzZuU50Ucgqr/kMcjN0niBLysmCASBUnk+5nBiFJXhHVA9lOdHQnQg5ErGi+RNPMaWO4O3dkvGPlk2laUQGuccNf/PWaBgnCfCQ85UnkgFgqUBS5qY3qlKmh2Wui1DmAkbkkgb1HCAKjf0pXlae2xTHkJG0S0dSKYEosHhjAx+8cwPdbvSRnCLdXtzG8ZNzOHn3XD7hkb+KoAL5x2YuQE6BhbdMio2VPrbW+qjWNTSaBhotDbpBoGkE3LETGdQkdFS7djD0+yubJYpqXWfJxdRsZcDlKECaFFAplpX0XQ4BdrdMTM1UswscJQoVXrhAqI/GUlDYFmBbFGbfxuqtLnpdG1bf2UwytdM6AhRqX8m1JCoyT5TDIjUrKPvJpGEBE3j7mQQAinO8sc2AMQR8eArxARTVZktTByMLxKiOJVIjVj1TUo7C6kf006IoVXl4kCU1ThNHmRAnKslaALAiFlIpS7gAmYCGQcpNkBfXE9h9U/jsMbJlk2yMPPm8rNDj3Eyq45Uoh39a2VTyy1HzCCsnHgQRriaIVfF7IwEPyreU+LJV1JH9Hg/iMD1BkkgcjqL0jwcnaAhIkdVJKlyA+n983iq6kqQ0DBNK0gMpkb08lDndoCHlG6lQ9tE9I4iiZkaozm3lSP+8U/Za6HUtWCl30KM2RbfTzyxzT7VarKo05tdwybaBzq6Nzm4P6ytwfENZwhgvOmWviL8lG30F2dnrT1Q+vYuXv+0k5oI/+Um4q10qTifqgQNAsBlaaYKzUZzFpaBjtpZXJNffTgRORpTiVM5SnLLy+O4ha4xR7ib/6f4Tl/AExxp76Z3eQT2jlwogK/H2TFE3SdPUQVTfHAlwRb1hHPKBRyQUgM+k2gcHUiexRrkssUd8OVI5LqqUianXvwvSJwejXDrkkjuoSBHZDiQKchRvicNc+G4CkIL4JDI58UBBsXLCd5OZiKOyipMfJUdW30SBb7ym7t2YRNn09th7tmQ8zyyPjwwSZHlFNbWKnGDWzdryeTIo8kRxfFOAKGU6KJT5WyTfAdFIKjVsiq6Uwqsrt0Melzl8I5OcQfURry5S1MmgNkstZ5+TePMjXm6M+62cRSafct9I6EpKSp0lXqdcNKB+nE1MQi6ZNzsiY7dsXldVLV0xBicpMQ9F8HYwBKA4N/2vzh/+tB0wy3QY8IQ9NYU/ncdn5ov0LQ/fWEsqXxwsEq5bGbc4CXE1HC1lAJR2KPHrUqVEImRRYhlFj0xJUNQozmfKrWtUdSnoFp7jSDadZE2lxETUIKV8sQOkoLDkFF6++DMBq5D3gvTyxCyyZuflKew2IZERN+VFPwoJyjKOrchLVEXkH/3Ehy9T5laUL53sY0uUJeH6juKT3LLMZBKxgWuSnrFlkOyXosIziT9l/hC/egiXXjbkJwM/7gcJRiURTEmqi5AcaQb1GSIyZU6+HmXYw1tCuQzRIHO4qgsUUxaNpFLDpuhKKa+6cnD+wrUh6z584QrPUIayp8hChc/UcoJmukNSYiso2lGPrMch161MrSx9Rj5TiiaQ7Fp+SanzMKrQUBLv2Fga3KfhfKAI9jlhNpYF+2lTfi8Ujxlj83L7RRGGv6hrXHmkCWWtqlZ3camSpIwUhRs3LhH4OSl8tdDhUNb1EwUlDyCF6paKcXSm0nRKkTV19pwNncumyWQSZLcjJBhypDqZ6hElyZEkSnpGVR3wJAc7/VgQnoPiHrPMvSdm8zgRvBLvZRYZ8Z29JuVP+a+yGSsvmB3I5rlHweqxZSlgIJOyKIBv9j1RIoSn00l9EhpJg2EklRo2ydu0rJe+1GOei0H0jVwDXp4RKA1/jxLfWOUw+9hRNeeborJpWMcQU8k3hxR6/yiNJZmtoDLEqNQbHYmokrjypJnbovtRFKmYJSqSSyYq+cpZTm45aNCsABxghSJYvsNsPOsAJRQBmOIBMeKpO4HlTP1rEh2Sfiv3Mwp/CR13LSlfulAE0dhVoYFFsKgoF9qvKypTfHRPKWWStXvkm0v2VxCFUZjDlKnQ7JyfM2omtVfFW35ivSjLFEkxM2sDFLncJ6or8/LC36KYRR2KEAV6yFs0IXwGcjmE+RTtdL4KIhpdfD4iKK4W+JE63FdE0TKRaiapkDOhSBnMXDcjk1MSYJOZr88boYiXuEdSSZbPgLotII94yTJmULjTIFNy1boI3Y/sb+qOVuQQnmMCKSYSxaV0JhmN/Zmd74BoJJUaNkVXSqnVRTPw92aKyJtp78QkLKPwGXymTGqw9SR+Jmb1dyMYGA0fQMkgYJTGkjTefkb2sY8e12ciUsmYDKkOk8ujohpFmFOaAo1SB4ogKv3qj93+5q4UfoQJAA5AsSkFtalfTdRG6Chjhwnx8yQCKDnKkZxWklhs6lCSqIE9OlPa4iT110IpSVCqOkhmU1rZ2McyUQDlssjYFEKpmIX7TCabKbXscKZcdZBpeh+OTZBHjtg+yUtW0tsYUc9LdNRKjBzJZRaQUZvZYsog3JIBP5koIqMYOZKOv5o1KKZSnvkTmiCLBeFlkOUR+4MSX2G+j4pIScEmcwqlHEpzkJzSRaKwvTaTSPUHMB3fAVAhTyzDjlJYFkWvZyobdZpGUKvpGOC7pDBRwLQs9HpWhN7hi47ehnM08hBVj283KvlWJP8CaIQNiGEtCwreW8jWhUdmgpspV5uNtHGmQt7sVqBOMoNMbowlMRpWf3IoypBUq65suaLz73Gi3Ad33d+010vjGXIeeOKms4VoFO4Id58d9Vk5fN03m2yaUaxa0VtStVL9uTRN/4qP6IjPUSKp1EHsKXO8WxWVsrCyxHkbfgJ5LEpi1rR6KIe8hCuZMokzRaeIlCo6xsuSIVJEWZ6XJcjEn7STHMXhy4nxf0R1gmYpRo7YzGE5zq9EOQm6RyXhr0ekEsoR1SXVqjKmEiJSJRQvWlnKyBEiXtLxFPlHVwLbbiScK5k3V9fhMT2z3tT/AxDC9bPMfClbxek5SHNIO5DCA5qUPUOlqYMoNOJ7+Gc6isk8ivZOEUpRUNiU4s3XruDdN6+h31M7arg1VsWz37wbR09MYyhoBAFMy8abr17Bu29dh9mP0psfIsYn6njmm6dx9PjM4HRNRYU06gjRSClTOMlKlxpAiWKkkD0z7jAKzSLqULJOVPJtL1CUttGliCvf3ip7oZQEoHg3WbuQ/S0AKABcAAX8PiguWGL7KEsAoPhvRPdCM6TRkYa+OBRrGmQ3YqMcucIp6eFLBAiiy1iq7iGx8plKJj0DLpBFTEQmJ3F2hzGNXFmWDCfs5JSXSY6CTPYWK0e5jIr+EC+HvZ4PSJHxjn6S0stRA2li7kRgE0AaIEW9/UVeqbobTU4tsyWjAJa0FDVeq/ONP2EnL8CUZswrZGxS4ZtBUPY9URiZw8k8ICpDRwp02yY+eu8m1lfbytl2tns49+EiDh+bLkmxBKJAe6eHcx8sYmOtzekQp83OdheffLiEw0enoelDAH9kFjwAHsMvgm9JpCTHG5hyGgjKWQbb/zI544VjY4p1LN4uONojFZUkVx1MkBR+wHURJU69WaLcyDskrQn3oszI9y74p+0ICZh9Zf09TjyghIK9RxkQhXJ5ARJsUOsaa7LTyvIZmCNMid2TgtuvJbHAzP4yimJKrUNZI0a+qmQp/C5dNloNR7cgU2E6pWIks4NyRKik9LI85z/4ZDVIIU85E6AckRInM+JWIAPMs0OZ6ykAlQxyCHdHklFSX1HPdjTwoShH4JlWTqikEu9bjU8ceRMEH5EikZ6Nr//TfaYSgCC2rtSeAW8sD57ZYAYMa6PE15twI04dkj3isXy5/sbXqoo+kWlCz0m6gSDEN2UHKnRPlKJpJI2ZgpSyLBuWZafO1+2YxSiQkSyLwjRtpHEkKIBu10yV5w6loTv1Wj55xtYd+mKRzPT74hJr4Kmk5X77YEgYQPGBDsp+lwAoNABQQt/dp5MFUAD3lB7fhUnW/k5L7yHK0FgDH8NT6Dgw8KlsEr1aBdl74lSd1DIGQ2WDv+wsqNScGZThgaBsRBL4pOUblV7turwS4l7DsO1IkL1NZUAVCy0U9SpI5JM3cmYvUq5IlHSFFhG5ovmXRGIvoexXiYYjoXSZJC/gyL6flSol4r0Z9R9EoZX4u85DNksiQ5bBtjSVfFOinO0TlpshCiXqWplUgjx2Ao5mr1D4AddFnLh05VC5t/cpqXThkTOegZ+WBlf8ZTUMgOIl9EAWyv12gRFmGU8oQgXBNc4U9e+zpmlYVRVj+3MFoHLrnJjrka/60r3qT58jJ4kNFvPK0usPUaNVYbqKHUwp+CCcsHCdlJiFo3Yyy+PZJcqlTKZMsjNkyrSkKGPFeNZaijAdxb6TInOmvhlQdGyCkDhF+7NZouGHWCWUSIl/xmoLP7nhu1EnMkXlSmyeiFN7PIlx83Uib+I9kfEtLvKJ5cvdTDfWhe5HZkjXOaR8FSkziJIsQx1gGEmzNNFXck4K2NzoYH2t7YcUxxEhBJOTdUxONwpScvi0t9oufCOT/mUWWs1bdZMOFjRJtXlrTsoEnBQCmMQxGy4gEEkp+kwadvJ7KUGkkoDGbGIGpNyAKE+zZy15XB5Cw88tdcOvfWNOsOi844jhAiNsGh9QcQMfPTBFBFjA8eWBFLtA973IOmaNT/b3QElhiONu+AWiCgrzIIVK3RVaB7Ed1UsgbyEaJOKzlKFTbHx6kEg5q6oesqLHeBFOlhxLjeI98IiElPlLsstTkiuf2xKBlRRywg4tZe6lkJOQ1JMTjDEJy25S8veSh0HSGCYZ9Y/lL+nHlOEfBXJEAyES/l4exeaJAhW4VKySMX0lmk+UEoz+JLpFPJ5KfKlb9pjjlROHkgi+/hfi8VCDF0P3pcJTdmgFuVGUCUQp1+wMBs6hGBYpaH2tjR//r+9iZXlXOc/0TAM//MsHUG9UckoffO34A0kOBLh0UhQycuCJyD9R1uCdv8EBKNEGbkSGwiTvGUrlAOVjO1oM04qJh4T2GhXV7MWU3DMKPeMnMCWpb4RS+E4gY+R5vymIA74wAAq710kIUGHu+eBLwJCzU/m3+jK4Qmb6immyU5qeJ9o7QwVXoija+4hInPNtYFnkC0pqIRLxqwxd0ifKpVOGAYBKemUmHQaXaaQoqsrVXMf0cuRjiIIcRVXih4Ps5WH1V3fGwxQNxqjwD+7GtRvLQ5xFVPQnHkgRKT3dvSARjQQ8lHmwGeFliG7pPD04aT6UpS9jNMjCVxlEUR9zqfxnREeJujK04VK1oBRYub2DtZVdWKb63ibrq23cWtzC0RN5T6oZhAMgoHnM6JBFeultGqkUjb+diWdBlIr/YMox+OU6GVzDHCqyQ1KqsqbEdgqjkuSlBx5IcpKCKP18M4yGyU4qhlm+0iTlJhyooUQkKg8/IYScLertSMLOIe4VEUCxXQ4MmGILG8d6AAq3egfCSTzg/vC6MlWQmEa5DiCZ4MRWjJ8BM4yCISkDtZsSlfMMeYW+yLDM9GYzLSkJ4ttOBiJEZk2rC8tEKkZeh04xCtqMVpkJlfwi6eTKiqPgMYdVTFHSDA9Jpo1nU8oJuqK3pCiBgUI7sVxEJ1dJjvqwxcnjnekIlzTjYMXzl837JEiIAJwQtVCfW/mcfqQlL4ZLlXa09182xFSTTH+5hiIDb/wN80zKK71Hgy/Bxrg80CTWhVITM83HbvWcVJfh/hbmF3EhUZ00XXNwG8sq9Vp+Mh04pRRq2+k2WHVEUFj23jH2WZIHlapTWaWW2sGC1EyyR6qZPi/l4GnQ5aHMt1THIrOzxCCpBHlscVIJlB1xUjDF6yZLLfs+mkSRXL583SxCApX9yyBBmocBRghAWaPN37eE+r+9aJIAILFhA6C2+y90nwasfF7MiTvUdXSYrikuGYouT9oKQHy9JdZxut6trFKECiNB7Jqr6EQxv4JrhZcrSlBiYnmiQnTLMKSlKkZWXRQT55KbZUgamJxylQvG/WJ6uOiAhp3c4p4kOYDCahIhS3JZdF5FveX8k0mcV9Wd5GBi8WVLRIqXsvCPoijQJ1wXskTRjOPApCS+cfnS13HAVcU2UtFDfjObZZlEuY84jhSbYGukvVMWcccjKhDx/3yeaZRaKIIUnp5BTbCZSElOhnIMykDIQGEpCnILUC1TbxhWR2dnoBw6pDMtUtwurD1UU8ne8YwWJWmm1pRiwzMRD0lVEBcdUTZR5ukK/jDXvPnV05EEy3Tgrta3PV/bsVQ5wIQyeASlACWwGVmeSN9IHrVuItUnzmKOaHciXmB/pxDN5Mxu7GYgFSDFVyReOxmrQssTJUAhUZTzKmVRmC6yhMlvclPLV4gUCf6mjExhWaRsTDFCKNXbb5FiMsv3TEnMFMtfNjcIIygbC5Esh0ni8RarNFzFCUoqtIUMSOGd/AiXX+hfUd0tLrImUtGIn+nHiUCi3yKS4oj1qk6UYUBCPMRye6SsvyQiJY6vGk+5Erl4MgwI8caS6EgXMVvksBgKU5H3nqxUIIiiRiodbGB+LKVot/v47PwyNjbaSoIrVR3Hjs9gbt84nOEnw2NTSAHLMn3iDbzRx49GzYqWUAoV90BpUtJgSpRJyrCBk6RrpQgahNw87EfnCeAddBH0iMknuyhb5uAhAkQQllQFw0AOotSj4WssmOJb9YALrMBfzpMEoLgYCjwUhQqCxCob/blKQlHtzvYN7mK2UsqMdJaGUnd+cUTtksGjqBzF66aeKMo5LgTkkcavx+tSGLiUglGmMqdqzHDiQT77eWUljdypASFGIdZdjOqLqUjSmKw7muzcJtSWe/vY6TompkpwTTM0lGx2FzG+cKmKddJVSUlasA5noOqJ4JpUPBFTDW8GT2NSFdBTZYagUkppgkGag5QCH75zAy/89gJsS+19PAFw+OgUfvTXD5WtXrIihRON+VW2bEWSKkW5z5F0oBX58yfhpOSdyrgJ5JRNgztFKAOTUQJOcrKQu/N5BuTspAYxRN0Z/AAjxUfCPyRXEirRtwmYdELkiNJL7lEimZ8fAk8cxIMFR5zL4gayzGaxgB+lwqwAAmzmDaC7FFY0cj4XAIoKhfoGDfWnEIWt1fRikDpAIBuJlraoTQhk4W7IckSkyEBKHi8VLoRrTEyRW5fIhpGNVEHsROa2VKpcfgagQqLMoIoSkCVmKRf1SWVLySbtCGJvsaVKc5KPuGmpbD5mx8sAhopRTsKf5SFzmINs8ScFEQDjEzqm50p8vz/UySEMEHyu5qpUhSl3RsnD0Vbf5nTwkSgjQ27brS7vwjLVrVYKYGuzi85uHwA74KSgIvpL4W8fFVwDGn77N1CKlTvCnkdqNCQF8BCepRSyZJCTgYYLZn2+ARQ1thGCBiY/C4CSdK944se0HEBsVEYKcIN+nCwSODkjRyJwIXxx6pEK3wkTaeIu36H8vicBaEL5LTQoQP39w0jk0lt+q57PNYQipyRbIGSnZjNco6aaUqI+VO5JAYNobUrvGSEBYo3JI2gKBXcSGfJucqE6SJnIJWWWmSFjJlmZ5HgbthYjR4onZlWOyclSVKRKWooDZ+JtAHk5iGT5yciTssqShAWbPLGqjFTdJuhSZphXQZQDRImyqOSXy2q2wLCiyrgCISSIHMpY0VR597pRJvkwF1UqmpiiBEoharhOe1aeOZy2VHVTfpvJe1FC+GZuWdSVEj9d55WXidgqKKSsSakkggouczZ2wxknE6VmBU4KK474bPhoQghYKWr+lD2VScVhX7CH0tLwNRaU4vc/gQugkGC5jgCggBKfgb8hLQfEgOvq3AsjZu23ShOleSyj3q5691iZo2SiciQCEKlOGVJjmy5nTgqVx70Yoz/bhqW8B41Fl2Q1Fb2PSiFRKlJdwj2ZhhPli1CJzBy2IjMBD4ly+Axs+ZSlZUAKWTtLuVwJQApLwVgTH9GRyEByO1PkizfOK+gvTyJLMbIjaDzleXDFSaRMVSL2SBlJGqE6jaKBRaKUVQ5KgeVb2/jswjK6PTMxPQHQGqvhrjMLaLWq2TUjBM4EmMFDKqQyijarZb+E696DN6jnr0wAZSTwrwwASga9B3dksUxO8bLlUkYMQCldtkJdD7WPj8QDJifGy1fSUgDD5I50NCeqPGBGQBuU6d0KgIpod0T1FNWZS+Zrs8cJc/q5zDnAgwFIqHfcsQ+gUPe6ozH7MsSLSqF8qAl3j6OUhmGaHkqFzzg+ok80kuBKXOFD97Ib3Qk+XHFEhe9S0IBPKmbxqFBAJREVkesWvlOQLlJJ0boMos/mkpOq4XJIKrsyFPmX1j9i+SlISpEkeTwcYdvh80L+5uUjNSvtScoAoghPSwoUtQwyTQvP//oTXPlsVTkSRdMItje7+OrXTmYXPOznvMC+n8agLlx4FJWGuqHEsCj3M7YyHQXKPzLPCS0tG0AZ/H4nYiXHVPagn1Gl9ldjw5YuLEAhU075kLBLfpPE5iqfZEVOlC5GeiRl9nFjyl1LM4T4eWVgRCQn1pkJMhIBUPFSytRPaoWk+0QGVCAMqlDhixdd4ukTLNuhwm/n0/Y3kfVRE/8EHh+M8YAXXxThFfH2BRE/uQJFpBGPZS7AsIyq26inJe5zJCiq3sSThBQ0HgqwArG940fZwtpBLKy08PESC6svpQLxqESuOkiRObBXMspTzhTYX6w8JcqgHGuHKe1lkpq/lyXFUiIFn01UI+CfkFkhSZwagzbZSqOsg0bEe5Q8aohsw4mKmfNKJaWCRFDc26QCKCWIou6sDOphsG2K9dVdNQCFMnnWdmFZebR08u79PVG8IThRILhXhCNGSq4bFT7L8veUFSmXBheBMgwSG3OEKIdKSTZ3cZnU2aZjN6i+LZcWKZ0DT4QZWcKMyC/kG7sleYkADsgTsqYsc9UrU4olLEpEuQ/uOvWsQwpQFmWhcCNGgr1LbAYE4TeRdZwKLxKFWxlLwRxhzMikTC1QNoGoY8wcFXWvJCAlJD7mWlQ/zuXAl0U57ICBjdbSyo6SLgdSothkplhmsh6QybrMoUNhWaKKE5s4VZYoeSkBDhYoiiUfEc4qpzigQ1SJlZNm01kV8fLkiihJDLF+LeGuj6A9l5aKKILIo2hfxQOU2bF81IGUEaWUIIoE0olo3PRtXvLDw482zHyaoePQ0Jc9TOkXJJVa6oyKKGVL+6o2DSnzKj8KxZEyiCgUR1Iq5XIVvVw5uagAeaxrH2YX5TTGZspEUayUdSqZ1HRjbwZmbEAkct7iPPbgouwHs2+HAgnHGrMv7/0X0q78wFaXKSKUhjKp8hhCPjjB6kmY+gt+u2LdTwpCCaNfsOeJN9eGlvB4+SkJwBVWDy87c4MyMsO6p+2LQqRK3HE/fpbyjUzVvp1Vk1ygTFwd+4yFZ0xRp3Q5cpIXJhUyBqKllwZmhRizz59cam5dhMc7OlHUrxSkXsV+glRZotnE3A5LUFItlxyoASgpCh/MEewsoVhjie0vey4VMincFvkHGrMlKe2JGwzlVb3gEJ3wMCMw3AsASpF1WqDpmgJEEY0MpVSpeJZmkhdtD4WManXNh9dVvUmZv0KEz6FQ2YLL4p/Kpy8fOMksJxV/xdilnM69MnBSAoigTAUCJ+yVRHAqNYqgziY+xeAqOZsU+RzlYAPxBqBvuktu+4adZDNx2dgZWUuM4RJKw2IQjO6eXkGfENNQgDBOgPru6pK0wksSl38A1gAglL3lgiMkAEoQVFOAo1D/NzcNMWkAZ8NZL7/XZmw9FRsAmeWBSTlTxh09TNg+hdQGiVJ/8xPnsLOYpS+JGoYYU8iX/PjMpSziylOY/SQVRGNBhaR6KwRokII78bpkAhkiZcvlej0gasTIJFuaOdwwir0vpZxw4sxylEEDdvxPiTQgXg5faynkKOov8g9nIfLEEbxl4xcJ3UlRuaNGUQPZEIsT25X2QiRKrkEvgk8BVOjGssNwwjVCMDvXQrWarigTk3VohGB8oob5fWOplB+fqMMwdNTqFczNj8E01Q+V1nUNjYYBTSOYmWlB17TUehPi6DC/MJYqb2usCl0nqNUNzC+MweyzejtPvYcFs8MXBaBpGuqNCnRDw8xcC7qeXu+hUFmdchidPYEGdVxxKjmlOPdFZRqOHDUWckBguDSY/pU+F2OtiNVGk2deInGeuDdishNzaHBF1F0lts+/6+1rkoBn+G/q/CIzo7T3wTjkyX6DTD8q+whn8xEU4iekDEsORGGW6zhp3Drzph4/DwugUN+fpQz/0aA0Y19M2qQlRWk1igFKhK6Uzv70+cr34lHPD4lPJHeS4mq4ULcq5hEAREHJkgvRTYkJn6iwOklgRCU9KJfsyMzhhilHjixpsccUD1KOvOsqKJcCSFHOksFEpADCXsUeB1KKokG8v9oLQMoIEqGK8ch/+Js1/kIhNr4w8VPg1uoFHD3dwj13n1Y6K5xSik7bTBdWTQHd0FCt6uj3rFQgCAAQQlCr67BtoNdNPhFIpEpVh65r6HZS6g0HhKnWdPR6FqzUegO1ugHbpuh1LaRx5wiAStWAphP0uiZsO6Xebn1zbZpzUOj3+3jxpddQtY+jVmsVxjeREvnzzpXS0hqZE5WYpdyC0tA3JaVGVk4mKkiO3CwsX3YUi/C7vsFRrrlCrUBB0tgIFBcqESIL2Xw+y1AUAuuaqhoeIg8JuW/u+blPLFj8WUAsr0wmkQhasFXv/nGqJ9j/RIw+gQegsN89PrYAjlAXumcAlEhdPu8UF70SQ+o5AgAk7lFS5p4GUFElInvOErIUKT+1gChwdlA6REsqRIcUZc8lTylzAfJSZcrQvzMolWqkTkgqD4Aom39EZoVHmUtCgPu/NIaZfZWILJ8TJz9rMQqaDJVG2L0AqJQUkWLbwPyRqhKbbJEohTRkMb2BEIJGs5KZdbVmoFrLJlvTAMNQq2gZhfROQbWaASTqLXfddI2gYaSLJGGp3siud+E0SAs7A7rufM+FLETcHgaKMChg4/MOoAxOdjL7zwGAIrmXFIESGX3C7sHBASfEz8mJIyQFACqYmtJ8HihBff6BAexdo27kigxMYUFqYZSIc3iZolL2GvjfHGji3aMeiOKAId5+KAGwwoIkQYYg+oSEdWVkfKFIodDSFy+RBq/8uuqjFO4xoQfN+cgK2EkV8Pq5J0/hZZrwu3DzP1YN+c008Go+HaIlFaJDirLnkqeUuYASFd4wo83fGdYzRL6k4B9JovnIJPamydC4H53lDhUUkfJFnFrLInUQJaLW0zXGnaYbHNGYX0OmspQpg28qnpT5Wzz/QQEnZS/XSSVn0B03V3ky3C0QqImfX5U9/dx6pJciyZXDg04DoHAAgY8ahPXhwQgmI/X/+EZq2MkN1wIVVCOCNUmJ50O6WolgiutgBriLzNQUwBfZsiQ2MoEKyRll2QgRds8SDywJok6oG3US1EXwD/6xyTwY456TQYN6oqw+uUmoB2kSoUOIgUa0nBdzkRrFFl6iSDQjHgYkTO4IDyXMij16Ngyo8P005VvvOKKhLxJ91UGiQsCEKAqtx3MkRmXJBTRImUXDSIXUhTjBEPFmwDl+9M0jJ0oeP/4qy2EpFiTKIEepHGzygLeSnJhKjgIl+A1oFXkr8Gevk6QCC3NcjBipvET+e4XyFKNg0y1SlYz7dQ2cstalglmgQoXuiTISNFJowbDoTiUMnsoFUAZFZes/gkUOqDTlygdQ0rMbFCCneIfG3CtEnnPXcyT9X9JlO0wi754InNCAV+Dv+gcAyyAT/roQ4EKFCZ09PZi4CEeQl9/iMXQ/ZE1IEAGhvP7C0PCtgDcN6swHQtxr8ugTNy8HnBAfZKGiPDBLfjglSE6bWaE/hfYoCb56/vHwImPSF97LQQjlfkezdUEvadooj83Lw4Ip7u8iI1NEVUIOvJok9ZQZKBJcKDFCJJZZCaVV6v+83Ez+DRW+x/r7VDVpLuLlKEZ1pCiHTE4ZVGQdJb+0SSep1Ofz80blvAPbe1RkHWSs08wgysi0HztKj4xSwySZ+T4iNFLKJJCywTAI4KH8iVX8Fps45bMWTqooZxCUQ44yQJBTTjpWwwZH4jINQDd2OQ4TZSF9VlngIbQxZ9ipJtQFO1hH33MaGVgjur+zmcVQGPc2e5nyESL+CyEZoEJY4CXa6fXcXfblNRV04vYl8b8SDzuCB4QEp/Kw4Emgv3MtSBMALjwYAxroGR7rijT5VSjTaBUpMWq4DL8Rzu5ChOIdGDYyrtR/3x188vf5Z4Z9J87u7kWZq87vQA/iti0hJbw7DjWIA9qETwGSw0GydilFt0FEiEQxk8qWy88kM/YxFSuBg9nSy4sazkIK5JCTctihzFOiLEepHKKMFJEvAt8oMy3o+4r8IzpK8jOUMKbJMiYMtkGWwp/c4VCeYhQUSaGkyl7YdDZrXeYs1gAjUVKY/lk6xV5y0EujLx6A4u9BVyT/XABBsTRSAEqGpKkzD7LTDgpAKZBG6plWoig3sgRJEgAl0MElxvDwnUHKUts/FgABAABJREFUnsXD68pGhFAhH1+mAD3w/DlxuxTKpEEoQkBITJhLXjb3h+eYEvci9RAUIWDDT89oSmhQN744yvz2AA0/2iTQ0lu2E3x3s9sODyc9u5ksI8TfWNaLTOEK5dYOW2iB4rqPSvci1C9XqKJCrrUKJaelwqfsHnwuSXLDp+YJDCLIgz14qCXoA0RIzeonaubwYX/LDjsN8oevlWaGS08BkkuUtUspukmZlloLCmJkfaEAjWLlKSYtTE5QxnJrejBtmRj5EtGYsmcwMJfZJzx7OeLGNhGIjWVSfIe4Q0WRP9HvASBlCDQAECXZeGZTGIYBy0p/4s0Xm+QT1chQSco4BjsF0Qp8sBV0LWOjWDEZ+6agSAo7gAoeiMI8KM/iTf4JjnT5SFRhLPhSFF9vcWziBRRvTIhy43sK5T74TGX24/jroZfSvj1AuTShNuU+PKM8LJUFWXwOIj4gleP84OSyvr0XqULEjMyJOAD8SBRWXy+ri0eIW8QQGhjQlOHLhpEExwwT2Fx4CZjv/PHF/n3q1Q0NNuelwf4tXpEgsCWsomlwN+XuRWP6o8S1FuqN22fYTyB59nK9ao9nQZT4M06yuNFNSk34SBIemAz6qpCPOV3HByiJANxJtS6QaOgLI0gd+AFy6iVlSiUDU3SWXP6llInYkeV7t+TqxrFARwH7piRmZsZIRZhSKiMxU3gZpZKclLZBqo1hY+on6lbq/VIkSeLnZAUgKLV9KQI14K7uKcpjK6aZK/OowkX7jXAd563LlJQJRCnSJBZ51ap1dDs7zuSb1FBlO197gsKVMDLVUqIilFLYtg2zT9GoZj9piGdaDJt8FO2wlSdP8baiSnyWBCN+JOpcnZTUDXnVJckJpS63MlMDKPGZCpQPRO8JEtYtBGSI0wzjgPnggBc54juMwXPqm59RYJFrfPibxQISoeCcUeJvxCE45yxK4soMcBBxmU48+ax8HpTrStTl7yQJuPkRKQKoEvxk68b97dpfrGsTMv7EKmGBLxGLlTSxsgEkwTtEFhSinUhAiOhqiDsypKNIdePKKkrzFOX6HtsK2R5Bvx44YCvsZvmbNFMJcMO8EScKbzFT+lHZKeUb1Tw2uRp3wv2KT1GIGEGSvIS55MZmDpd5EO2eSU7ZyqXgn+mEnRj+qccFscvIpqZY/gmFzVDXAxszRp0KBlKkNLxNwUaaSo5EYQdntQaoVcaxsXEbvV4ftVo1GUi5Q19Y2trahtXXoNUHuz9yWeMVG2JZ1nBFGDmDGXkHKWfQ4iWMB1bM8gUNudVSkcxgE3xgx9EXwv5FQCWSnw9MsPt4hMEraZ1xER4MQxZUER0YxksmXvhBIirCAyqi7iHdfLUI8937SwJ+NChucBKP9w4wiEYBk4YrqYvWBHVPQmWUa0iYD8bxJQKAEWroJKLCr7jIBHHxE99uudbmS94SE+EeTRhinKqhoeuytBFipSTDtkRAha0X4m4YFNVFVYGULwSNZBWMpFLxpKTyoMpFBiqtSPKGGGf8yVaCuKmp/DphB8m92AIu5VU98mVQflb8zT1QxwNUMZX3mc71kiHd0Sk80rU6eh2K1dU1HDiwLzoiZa9Y96VQdOGHXi0DUIBSCsuyceXKdVSNSRCi52CmmswDOKINxUjeCg+0uPt70STnGSEng3gq+ebQEIGGHHLkb1GAssoTX2vlVlg67py3XRqlYh86WcVDDZg2YwEMtghiKILwpLCRJ/HLcyIcWZln7IMUTHoSHU7N7m0S3CZ8Wgqwx6yy+7wwmAiCE4kIl5bV19v8FTTQ0Tui2ElPfOCEwgNWgsL7m876uru1SoN9PZwiic+SWHu8086WmsbAFwGII4Z0hElsNV9DX17UeM9DLL6a4DdsDX+G+6HIlYqqx5BUN1mRCfcRz5sGXYxpVi4/pRTUPXbb366YUBAK2Fyf9BgwW3HGGOHxrVWQbUyAYNMiyUMtkSTTKbMuskGCkxvu2VnBsEi5ITGyVo66mkJepH9LQ0lTAxFRnSVBDvtMK8mKLQcvh68vxZKkqGQ+3jIF/5ikbPFS8VcYn7xk7K+oeS4rDh3e3yUHw2GSUj9T5OPlz2inxdZiRHTiSNEAu4EyiBJn6hRGBCDQMNY4gE8vXMbszDSqtWq8MnfIpy9StayurWFpcQ0z4/cOQBprZCvWcooHZnCbxxadWCWL6OCm55+JcsiRZ+Xcv0LkxLEQnfPhE5V+LVGKYobgKF1w5pnESKeBI0fBJGecPFER9thdUdMADEiwVwSv2Tf22MmdsoY9BZMQonlIKPPL27OC8KAJx9r9w0WIcMtznFoJ9i8Bv0Gsl8blwW4Q64MlNssPDODCVQAoAJsGxq8Ic4g2pN+qKaMtwPGXbzMst634+onmzXBgFKX+Jr3uJxF+c0yiuJMgIQ0+OOwsTjk2g+Do+FniDEumWAIOKfjd1C2fI8jTj3j9KUrHhIgUlWLlIr9uJZKCDsdJiup3hdnnnFw1Cbnkx4opsGTqxQllUQY4UlImHzVDpkL7R15KUEasxmC0KgZI8Xh6Y0gkDpWywjJ0r9GmImyrHODJHUpPJayDSG69+BQEzfoM1jbXce7cedx79gwMw4k0IOJxB184khd+JKpkAEp4b0y3trbx/nvnMFY/DF2rqiPyPiP3U2lCT1GwVEnLrbBUTngOQyQVk7L7SA7+qcpTqJyoFMXOhDIjKZo75T4UM2XWRS1TXHvEmU+eMycsTZEBKIIX72+uyqTll8JJHNso75UpA2WSBjhJwJeNROABFwFMYXgCCLZPIQE71pElTHLK5PXrhQIUNvM9uA5vCY+wmawPrrC8Ka8nWzUCNsB8hvME97L0GJ6f7PmmQtqQspFcvdZ1QTm3XESWJUF18WmPmsuImIHjEPH60m8PN5qXib4Ig1Yk1G3Z58QHVEQwxQMmCbPAyu9obFlcOIvVJYoSNjCU5SziBW5YACMpxWa0uYCN0BhLJQx5cKeQsrMyQ2BOcEM2JeSTI7sZHguKBzz4+AVlOSkbPNUxxaKMRPwi4K0kJ26ajFDBGZkVgBSPFIEab/yUZ8puZPBFLGxEGA5x9gZPidtcFFzkyJoUxmkqGdeHviVHyd2gYBAlufMnpiAAoTomx45h6cZ5WPZHuPfMXajVa34DZV2393mkAnya/FSyEsGxmhTr6xt4550PQcwpNJoz+SbxRL1TFGwkGsIhKvlWtqTYJINAxnPwT5W11HKk6pyFSZLeyeAQDoNkk3bI8WCQAwIGbHBRAh9oIMw1N8vUbA3jUxW5T+eDAt7mqxGOFqUw+zZ6HRvdrgXLtGFZFGafggV3eMDEUdRzZMXoEwCwGdmidyuulGGzs5/+0h0fCWFfVDCAibe0hzK8PCE0zN8HGShXrRxxzh+D+lDJ/RBxe75Ed1auqUkEGMGiH+JXwQCk/l/if08e4mROAgndUXfT5Wl4x4TnSfx+RpkcbF3TUPuxZafeTwru6O6gq3jLrr0+6smUgyDx/i3lvysY4WEHrWBKsZ9LLvlRXVkK1IazlFJ2n3fYGylHXkFyIjMNrsaCb4qbwmZQLfWLvpTFzbShbTmqZOYrtxN4yurse0tdbduCpjmHXNg2ha5pzACc3W/d3t7B+fMXQKmNU6dOYXJyogCwIvyM5UnpHPThHPZx8+ZNLN5cxPjEBO666xQMY7B7Vg6aCixdcidVftQJoGtVzEzchbXbV/Da5ls4fuII5udm3eU9XzQYRW6mjYRPU7ISzgBFsbvbxvXrN3D1yi3U9H1oNubgvh9LwUw9UVmOdfkRKIr81cfQULbwe6IY/gpJM1EOnnInLYJhQbpHsymnP6hxpdxHGfJT4WcsUpFjJ3gB55B+er/C4ALl1Dh4tIWTZydCOdOSY2QB1KawTIrN9R7WbnWwttrD2u0OzJ4d1BkDYjgfDJjiMfMKSvk+7O+64e1bEhSL4cncYyJJAtbUX5Lj5Q2W8xAEdcQfYQxKXICK+lELBB7Yg9BYIx0iRGzE60DiJ5tbbHAmLccjQg5HMjk0fFvMFLrG8PHqInSTCpckJCYR5YRAGCGBDQD+qUJiRYblcPxYwIUEfVCW2KkqB2iI3jXMKzdVBiTg8Q2xis8v0yC3zRg1JkVEyyS1VzrZIpPozqPQrdRlSZnw/SezPCU5wc1McpQy8SNoKv5s9oRMmfczCTIpJKfJ/MXOKSSV9dvwjk4JA5aEJ3ublZNrc+4IkvXQfr+PpaVbGBsbw9TUJACg3W7j9u1lzM7OotVqZgZSNjc38cYbb+H0qZOoVCv48MOP8OCDD0DXdaysruL4saOoVCuZPNfV1VX88pe/xtTUFBYW9mFycgI7O7tYXFyEaZqYn5/H9PQUAAmQQuADLrZNoREAhGBxcQmdTgdHjhyGoavBAHFd0bZtfPzxOayurIGC4pWXX8Xc/CyOHTtyB0QZGhFA1yqYHj+Bbm8L5z68iXPkIqp1AxVDB9G0sMMYNXPdIZfKr6BYzinFEzgPZ69notuhqGgTmKifhq7X0091SjIZo7FQvqmTZiJ1ZzV9Jj5LQqaRKWh8Viq9WowcNTblVJQaV9GrLEe+ep+k8u85pPuOnf8pen0QlA33bKIBRoWAkIKOUYdj1LQmDOw/0kS/a2NtuYNrF7exdK2NbtcKiu+BJv46CuoDEs5LfwFxcA0mrtyCXI4PRdAN3KgBDlShQR36oIrvWLugCdeN3Ax+5GBKMEyM+mDe4vH1Ic9OXRbep5hXXY/ovFzv8uczKscmkvRNoROnCttBODckQg9OX/aThNKLz67/msLrV4TJI/g+Dltvw1nPmZMvm8hNaYEYRFRLibqUNg2GChJdskLKHNWfCm/TOJYFyFNiETxPqaWlyFRaX1QlSecUH+twlqhzzNKLY92AoC6KrRWR28bGBn7yk5/jvrP34qtffQKaruHGjZv4yU9+jm996xu4994zmUGUnZ0dvPnm2xgba6HVauGNN97C0aNHsL6+jnfeeR9zf/UXmJ6ZylYO90XyAw/ch/379+H27WX89Kc/x+LiLRACNJtNfPvb38Tdd5+O1H97e8fR6chhHDl6GB988BGWlpbwF3/+Ixit/DCAbdu4dOkyrl69hj//8x/h0qUr6HTaufkWSiU9dKMJojCvAgnVUK9OoladgGV30e93YXUtUNsOknN5I5kWoFd+FsXyLiuugcb8UsiqCJTIk/B4p6ZrqGoGWmN1EGKkA09SARzloiHlnLgT/HUo4e1DJv7st5iG3SPACX9FUp5C5WRPlUVu7GMnOrMFYanZhq1i6iCSi//ayykkfzSrl1HYMFYEUDzHqIRJ1zN0CAFqDR37Djcxt7+BpWttnH9vDWsrPWejVip7BgP1vAT+Ecg2b5gGWWiQx9/bxANE2N+2sN+Jkze4FhxTTFn0xF9mGwALlFWA04OtUPfcGs8vp4GRTgFoTA6VacV3+CV5ZDxUmlYqjzlqWfqZlJ+9KRTK32dFmsHtzyJ32XKkSE/IaysC3ZAJIrCs4Jlxmp6AuP3MA9vYfYLCzUqDxgjpETyTudfKc881A9gpnv6Tti+o6xL6wslnKbPc0LQfzVnWFTIDBFyFyWZWnnOxQATb8wNLMFUbKjU8ZZKmLIGyo8aDi8q6KyZOtReLOEwzw5vYwoEKCsqIDxvzs2xzUVQBcBz9druNXq/n149lWtjd3YVpOi8vdnZ2sbKyAtM0MTs7i4mJcVBKsbGxibW1dQAUc3NzGB8fg21TrKysYHNzC9vb27Bty1/a4w0Hhw8fQaVSRa1Ww+LNJYA4ETFm38Tc3CzGx8dB4fBfX1uHbhiYn59DvV4T2o6gWq3Askw8//wLWF1dw/e//22MjY3hhRdewq9//VvMzc2CEIJ2uwNKKfr9HqanpzE21sKlS5fx2muvY2NjHVPTUzh58gT279+HarUK0zSxtraGza1tNOp1zM/PQdd1LC8vw7JsWJaFXr+H2ekZTLhLiVZX17C5uQlD1zG/MI9KpeJrWq1W3H1MhwoTykn5+VSngkCU5Ecir7FNQGBodRi1euGGezZ+WTKl4UWTkwyLbwRPFUM3QZ2Em2U9lOUO6WUv4WElpbmcntOgyjEosTT2Z2lySuIoM2lTMSiTCgJO5DxZj479Jtk8VFpxYQClhLk2kggh0A2Cg8ebGJ+q4KM313Djyo4DpLgDqlcef9sJZmMKmwEyGK5OOYRXfk6giWflkSC6xL/npaOBXAr4i41YEMZLC29PGD8J3xJcWIg4/7glc5EUdvmNrzuhPs9wSwtc3XqxGR7Eq6NI/sEnF6BB5X2ABTqinHJPr0SifB4qfIYShwosJmafCQYoFJbItcYNPPzkDJpjFTYzbIvinVdXsLzYZQriRJe4TeHsX+NVkqALZb54B/cQt4+IOysU+oyl2EdFVsfF6uIxS+ZaiFwpkxJGsBx2RCpNlDK541d6lVI1fKZaHOTkkUB59jPJNWNHDGRRFn3Q5OXbSu12G+tr69B0HVvb2/7Jctvb2/jNb36HCxc+hWXZ2L9/AT/84fdhmiZ++tNfYG1tDaZp4siRw/jhD7+P1dVV/PjHP0O73YauG9jd5SMvKAXOn7+AN998C/MLc/jJj3+OjY0NVKoVbG1t4+67TuPPfvQDrK2t4xe/+BVWV1Zg2xQPPng/nnvu66jVayF+u7ttXLt2HffcczfOnr0Xum6g0+nixz/+KW7cuIGrV6/j7bffRbPZwO5uGwsLc/jmN7+B11//EzY2NvHBBx/j0KFDuH79Bm7duo3Dhw7i04uf4cUXX0a/3wco8OXHH8UjjzyMX/zy17hx/Sbq9To2tzZx7OgR/OVf/jlu3lzEr371W3Q6bfT7fdx333147rmvFd5ue4UKAFHiO306hzo5dfZBM3ogyTRIxmiTWkfOEKGyi+nBCS9ThFZyKQkUmdDhUiyA4vHNQIl82SFbUeMU1sDI7HviJM6RNCZzuUXMxT86q+TOoOQUQGpcKfdRpNx0Y4Xn8PHOW9E6JSYIyWbAARknBlDxIjBCrClAKUWvY0k3eJMNErpOoLn/vMgR1s/zqml8qoL7H5+BadpYur4TWrlB7cDsDNqDBCXxm98NS/EL4x5FzESQ+Mc30+C9pQeegDr7aTjRIcRnHoAwzDjkgTWy6qLSq5IqYwAC7jo/fcs48T4RDXiweYRrUZ9UyCPbS4TzD9zqIv6+I1F68UVTfSJkQA3fp0lEH+QnLAfICDQwKhr2H3FAO5Zsi+LcexsAGBCFugxAmK+UB5mEtUneT7E5Oc0p9Y+AlqXNRTn3USkM2JBFAAoSCpEr7VBUwjAsN5PMKG84gmumMiZmCp4qdm4qFvTwANOUO3ewD21sJsr8hRrgkbKgqYEUBf7i/Jn1BJ+yzciQGpTi7XfexcXPLoEQoN3uoN1xIjc++eQTnDv3CZ544itoNOr43e+ex8cfn8P+/fuwsDCHJ554HNevX8frr7+JxcVFvPvuB6CU4q/+6i+xvLyC3/72dyF5pmk6kS82hWmaGJ8Yx/e+92289dY7OP/JeayvreO1V1/D5sYWvv2db+Hqlat4770PcN/9Z3H06JEQv63NLfR7fczOTEPTNBACTE9PwbYplpdXYVl91GpVfO9738bubhs/+9kvcOXKVTz33NextraOhx56AGfPnsG1a9fR7/exsbmJl19+BQcO7MfTT38Vr736Ol5/7Q0cPnwIZt9Es9XED3/wXZz75ALee/d9LC+vYLfdxvHjR3HXXafxzjvv4pNPzuOxxx6JmIdGlHINfjzlBFHiK63oKt1DTZSOoibApCRliU6dkCYnGTHKrPGQC5lKfC5d91JrBjR8AGWYVDyAIuGukIBJOeCJlbVbKXc1dNH/zRqEvs9PZIkD2t0y8c4fb6PXtQS+4TyEEFRqOqo1Ha3xCuYPNDA5U0Wlpvn32c/mmIH7HptBu21iY9lxZgOHlQFBqAcCS+YKylQ99cATCv/4YUoR2tfEjz7xKsVBdgLgJIjBoKDB9hquftFNndQHiDzJSDxkYm+iPKLBgTsyheXOcnCFh0lCfpd7i997Jqwf7weGnwIb4DJzMVrikVMAZxAH++9QH1jyl/eA7ZeS50xqpMrh2FhftghKsY9KIbok2kxhCYUCOdFiODmFlTX00q7A1oxk541HOSUnZKLRPT2eZ0qlUumeInGRJ+yU9fRmelGcQcixY0dx7733gBANi4tLePPNt0ApxY0bN9HpdPDxx+egaRpM08T6+gbuueduUAq89NLL2NraRt/so9PpYH19HQsL8zhy5BAajQaq1Wqi+JnpGRw8cABLi7dw4fyn6HS6uHlzEdvbW3j9tTfQ7XVh2za2NrekVWpUDBCNoNc3/WumaULTgFqtiu1tgrGxMRw4cACWZWJiYhxbW9uoVqvQNA3VapVberO2uob2bgd3330X9u/bh7vvvgvnzn2ClZVVUFBMTk7g0KFD2N1t4/33P4BlmZidmcEn587jt799HhsbGwAB+ow+I08Fd7IcIMoeAFDKUCLGuM6nYyr3LzMVX48Z4IihIULl6joSESi5cCFF/mVZurGGd3KWxHIUAJrET/TFtr+6HBJ42QWUMV2mkfB0efL9R1E34flnPVMPEVDs32bfxuqtDrodSy5bJO/NPAEufKBj/kADJ89OYm5/A5rG7w9BCMHEdBUnz0zg3T8uw+x7hxkzjALFmX1Kgi5AWV1oAA5RFlnxglXY6BTvqwu6eEuF/P1RAAC2X13OL19M+O0rZZAGCWjAZWCTcXWXYcCRRiJEpYX82fHALdG15fGJJEUU79PQL78aKZ8yUDVi1It9Jt3C8muu5Gnc7xz24D4rzgcRgBRJyahTf8QD5Hy94a8IkkmWqVYMqOAWhv0EpH1MaPUSgBUqjUyRJs0jmyuIfJItpL5DFSQbEHKUS2yQGDmRSTPxFxOUeVJQMMoqR6UoRbzw9mOeiJeo9uNj8RTCWCR8ywRRHf4EBw8cwMMPPwRN0/DJJ+fx7rvvAQA0TUe1WsWZM3djZmYavV4fc3OzeO+9D3Du3Cd47rmvw7Yt/OY3v3eW4Ooadnac/VS8/VCSyN9Oy59bAEI0jI2P4eGHH0ClWoVt2zh46GCoMgiA8fFxNBoNXL9+HZ1OB7VaDVeuXAWgYWF+Hqurq/A2orUsG7ZtQ9d1X574skM3DIAAmxubsCwLpmmCaBqajUYglQBEc3pMt9fDW2+9i8XFJXzrW9/AjRs38c477+2tKBSWMvgcIo3OxrJF71lSNKUynIoXOzQusVlpcpIRo7J0LR9AKZsUJJT5DNCI7xmyl0lhOeVITsU1+jV1OSQ6IMOkpA0suLQxl0SfUqVolHD55Zy5UAVQCnQ7Fq5f2sbachf3PDiF4/dMQNMRAlIOHmvh+sVtLF3fZVh4inoOCa+4FzHCFsh2PfJgg1gGVPHSiWmBwPF1I1B8f9N1IgJZbLEZUzhUJyT+M6rOKdzlMnIIRkjqXk14/a50z934VnRCJWnZtosEFbxKR5BA5B8KCmEwG78PxSrtZvKeCeGOIzOhc1O4G78GilL3mfffIRE3DQekBCWngHNEsreXiqxWvPoQT2WKVguBRjmI3byHvaa4j0qhjl7ZnuOgBYfYljRHDEqOgvBia5J9uhWjR8ouekQBOcB+D5BYBEKIX7+EEJw6dQIffvgRrly5Bo1o+OzSJTz++JdhWSZM08Ly8op7NHAXpmnh+PFjeO21N/CHP7yI9fX10J4oKlSpVnDXXafw+p/exM2bi6g3Grh9+zaOHz8uTd9oNPDIIw/jhT+8iJ/+9BdotVr48MOPcOrUCSzsW8DH587h9u3beOWVP6LT6WJnp42DBw+g0WigUqng4sWLOHHimA96zM3NYmFhAW+9/Q4oKM59/Ammp6YwvzDvzmn8Zu+gzrKkXr+HmzcXcf78BfR6PWc/lRDtlZ6Rj0YHRCmDcr6ZjeZVJOMyeQ5LypCUSOQ7EqUvl8oqImvBjlAVytWRXM2pc9RL8uEQU74CFUrVtMMGUNiIirQOM5vf8fYCa9C3DD2nKpoRZRzqeBCVv+c5zjtbfXz41ioqVR2HT42F9kip1XUcPD6G24ttWKbtl5N1xql/gQS4ibdUh0nv73XiJfeuOQUBhRN1QhgeQYSJB02w5Q3KRvkLofIG5Y6rFfi+v+yeiBOKn3GcQ3KlIIiEA/UcGYZLbL8KIJzwHRE4krPj3+gRPoHfpPGlJhzglQxKRF2n7rPhl9/d+8bfI8cHUgAhVMXn4vwStRiNUTQtsU5jsfBDMrdC5IWYRJekeHhlOHIy8S8b1CqLvyLfopb1iE+xUhRKiiRFU7VaxdFjRzAzOx0snW01cOLEcYyPj+Pw4YP49re/iXfeeQ+fnL+AI0cO48CB/Zibm8XW1jauXLmCqakpnD59EpVKBY8++iV0Ol1cu3Yd09PO9cnJCdTrDZw4cQzNZgMzM9M4fvw46vUajh49jImJSRCiYXJyAsePH0Or1cQTT34Fmqbj0qVL0HUdZ8/ei7FWM6S/TSl0XcOjjz4MQgg+/vhjrK2t4d4zZ/DkV7+Chhs9Uq1WcXNxCbZl4amnnsA999yFSqWCLz36CD768GMsLy9jbm4WhmFgfHwc3/3ut/DKy3/EuXPnMTM7g6985cuYnJzEoYMH3X1XNIy1Wjh+7Bimpqbw5JNfwUsvvYzPPruE+fl5TE5OghCCublZAICu6/w8lmIZ5VAop2qEKsbhPP+f1qDiSWWaHouOQinFifSskvAb2Hw6Flz2iNzF1yNNTpKKX0ZScu7L1bX8g6YT+GcAOPgsEZlks2SRRc3BS2n0KZx/AYwVOUqrumDgIjVgMgrRJyxo4avi1hZhHB0GIAg8c6anU9b5F/ZCsV3nWQPuf3QWdz04xUcaUGBjpYs//PQaOu5yHhLT9WLBAwJMzdTw5LcPYGyiIsih2Frv4/mfXkN72wzyirKow4j6YAplABW4+58waSgPSvg82WU/7GcgBBE/I4iEf1LJp1Bb5eK0AWdWjgcUqMhl7UFZcWT6B/fCd2UrSvzAKkV8kDBtLN0unbBfKKZnq/jW3zqCiSm+z1mmjd/8xxu4enEH3lFFRMjrR6j4jx3x8R4H4/GOrXY1IsG2nJSKdcwuZSOCrupUmomuYPwXKpuEe2UpcrmlTPGc88lBTHEKAjwSq4vE307ir5hopPgnJGZHCWVQJYUCwTiXDlAhBLj/0THM7kveXyQVuX3EpjYISLC8BRTUBjTNe+FAYVnO0hzDMPx0lmXBMi0YFcPV0+Fh2zZM0/KP9HWuO8cpa5oG78hjTQuW3RJCuOueXNM03ZP6DBAStNGVy1fxz//Fv8b8/Bz+7M++jwMH9vvpbZuiUqlA0whM08TPf/5LXL9+E3/9138LY2NjqFSCMjjHHpvQdd2X691jy6FpmmMGufpqJDjFj7j5LNOCbdswDIPnY9l459338Otf/xbTM9P4e3/3vw6WBo0ykOKRq6JtAfNH1PpgxkiUAk2cYRvlKsSqOAB9R6JGigZQyiZFnKEIXnzSEQFQFJLKs6QqbHFUKMAxUj0xNcm0L7OM6Z4FKv8+SAoBFHI9pD65n0lSDjYx4/1S5aePhParUMvH8KfAxnoX1z/bxt0PTgt2BkGjpWN8oor2tikUIdgk1rlgB9cBeEt6CCGoVDXUG4Z7MpDj7dqUwrYoej0b7Z0+bNdIcspPItCa4IP1XTRCpLaybQv1SB07qlLR0GgZMAzirLV2mdk2Rb9rY3fXgm3ZmbqbZ8SK5EfjsKQR1KqOLrpOQLRAWdui6HYttHctUNvT36sAzwBH7Ccn3/8UzvAhgKY7dVJv6jAqzokLno9LbcAyKTptE72uWyeSimFrmoOkiGvgEi8VC2zISdPg1oVbJ5SAEMotC/OPOfbKRB1hTt/glyHw/SXsWAVX3G9qGIK0/IWb6QpvURVdxRTy1DjnkssNJvGM8slJuhnuJ5n4K2TMzD8xk9frywLzMnBObNMMg6tiXRNIxrlhk6uM5g/y3mUCorNFIj4wAASAh67r0HXdvwY484mzWSu/QTyAUNq47x5VqhVfJ5ampqfwjW88C2pT1Ko1Pz+7QayXp9lsYmJiHJVKBVWPHyNLdo0tB1sPGqcvn4etI5Y0XcPU1CSeeOJxTE5McDqOfERKRkoBoqiahSlorwEo6rcyZyq6RooFD5Rd+3CWop8dBQVyTRRF81UWzVZYcZ0lVcuV9VgOCjgppdmL6cip5BQ4PipxGqXxOEkVFVVlGICYj/j4A+tjqstgkvEb9ymw8XxyC1i51YHZt1Gt6QEP4rypGp+qYul6G96JOgRwABTqSSW+c+v5YLoBjE/VcehEC7P76pieraFS03xjyLYpzD7F7lYftxc7uHVjF0vX2tjdNkFtryTULwuzGigAWgigEeCeBycxNVfjimZTivf/tIrtTWettKZpGJswcOh4C/sPNzG3v45aXYduEH+osyxge6OHlcUOrl/awc2ru+i2LV42W8GU/yQAFg7Ucfyecf9NG1zdPzu3icXrzpp1wyCYmqnh8MkWFg40MD1fQ7WmQ3NeJoLagNmzsbXRw60bHVz/bBu3Fzvodb1aiWhRXxfCGIwu2EAoV4+OEUwwMVPFkZNjmF2oYWquhkbTANECFpbpAEtrK10s3+zg+uVdrK900etZSkNga6yCs1+aRqXCj1vVuoFaQw/lIxrB3Q9M4uAxNpzcqdybV3dx5fyO/xbVO9Y5NCKSQAfiNgBNWBrHa+6jmWFKcUyxoE52itoDStgHpzC5VPgRVcEQAaqcMjnwJl5OWBNFGaFMciAlNWzAKhbKGAjOVF9KmViIsAz0L7SwUI23ErjkjfOKnBVBt+AzQfOyfIQU5Kvg6xAPeMRdz0JxvCbGx/HEVx7n0snayjAMPPXUk7AtG/VGPcRTqRw5TUBCCE6cOI4Tx48700ZoneznD0gZ6T1RygApsvEajFc5YJcpM8+ht0tZNFI6lgGg7E0qG0BJx2xAtTloAGXYNGAluS1VGB3SAaTeviEB2CDL7hmSQSLuCyilWF/uoNflQRQnGUG1rjmSXJBH3KvEK4xnn0zNVnHq7BSOnBpDvWlA81++BVEalALVGtAc0zG7v47T901g7XYX595dx+Xz2+h2giMLxeNxvbKDOpEKx+4ax6ETLc4ItkyKzz7exPaGiUZTx8mzE7j34WmMT1Yc4ISpg0Aninqjjrn9dZy4dwI3r+zgvddXsXS9HRSaER/6JMD0fA1nHp6GUWHrF9hc7+HWjV2MTVZwzwNTOHV2Cs3xuLrR0Bw3sHCoibsfnMK1i9t4//VVrNzu+hE2Ub6a2C4A5faj1XWCuf113P3AFI6cHEOtqUv1AABaBepNivHpCg6fHMPZRy1cv7SDj99ex+3FNkyTaRjRkaRAs6XjzENTqNb5N7B8QuYXIThyeiyUygPnrl7YCYFavgPigiXU/e4FlZCQckkUN76nN8JTO+RRclPqUohcBUZiWxQDpIQvFDZEly0nshKcG5nqK0WmTG2glCkD58I6YTq+mZ77snTNRKOhjLdUUhWwqdVqyYniBRYCpMSqO8pASoZmzw2iZHOo43NlbsMBASjFgAhFAyg8XF6sT5KB52Bwp4gkGYQnYhYp0frUYpUKNnL8UyqRI0sEE/YtRplyclI0V5qUoCA5ssRDglfKFBvh63j3xDlS5gw6eWii4eKNinH7oTi/mbGDegoFTiYAdDrOEhaRnOUvOrMcxXkj7u0J428SC0DTCQ4db+HhJ+YxMV11Ixqi3j753xwZVR0LhxqYnqth/+Em3nz5NrbW+/w0SEiocJ5KEAwnQoBqTcf0XA2PPTOHg8dbqFS12Drlwo5rOo6dHsfkTA2v/X4JVy/ugNpxHYdZ4x8yOikaTQP7j7Tw2DPzmNtfD5Y2RdZNAPDU6hpO3juB2X11vP3KMj77eBOWTYXHR8JL8oKvVtNw94NTOPvINMYmKxJdo3XRdaDeNHDy3gnsP9LEhfc38P4bq2jvMMdse6w8YI3hoWK3svJ4oj5K6D9DDloiTR/ATDT0zImpUpPKzsAxkgqdwVldJDqImuYCOMQfEWXOVVaZnSoBfsXkueSE0Oew+52fP3uDDyspHvTw+jxJVz+KQErAs5jIERnn4G92vuxtHr5SRASHQLyGowGkqFKoPwxZ/djWHnUgJQWNXCRKMQBFUUoMxqssBkDJySky65BHNZZGwMkvZylP2Y77kACUsrtOlAecMmvZNCgARZmGuWyncNFh9CzKGIw26uQ+SqyqrlgWQKEAuM1rBRKX+wTNQCPbhHgOhuu0Ux81YTaSBYVuaDh5ZgIPPD6H5pih/OaKl0NQres4dXYSlZqG136/hM01ZzkO9fQI2WkRcggwf7CBBx5v4sDRZiJYINWHEEzNVvHlry1gZ+s6lpe6sfNUHPeDx1s4cWYckzPVDHVD/Aifx55dALUpPvtkC7aVkJH114gTFfLIk3M4ff8UKtVoECdeF0ef1riB+788g+a4gTdeuI3tTRfwCiN4KNKS9mR42/Fo7vcAWGGMY2Z/D+ruqxLJNK+KKbzV0nwLBcaFyh70fi0xlVy2nHL481eKjh7J5csU3Y/LSlxGHaRUoVwaGUX2FI2Q11g6ZQZRsg0Q8blGGUDJhLhLMxUNoBRACQBKKh2HCHSUGYFSNKWq2VQgj2Jmtm+OCIAif8aoPFEGKmH0ycClWOCEZRM7Nn2ugBOeLUFMNw7doOG9G/3vlDtVJJxAvMw8xd7yhXCwhpQFBQvAENQbFWh6eMkFpYBpugCKHfQdb8kIpRR6heDeh6dx9kuzqNbD0R7U3UTW7FOYfds5eaCiwahq0HWn9tgsukFw9PQ4LNPGy79aRKcdjxbIupamAfd9aRq1uu7v6E/dOrNtZxNZ23JOetF0As3dYFa2jnt6tob7H53Fy79eRK8XjtbhM0guEYKFg3X/u1gvnj6aRqBpjj5iWu/32ISBR5+ZR3vXwo3LO/GPFdP3GnUdX3pqHnfdPwnd0EK+r7fPiNm3YfYpLNOGbmgwKoTZbDbI5JziAJw+6/D742+XsLPZZ2Q6gm1K0e9bzn4vXFm8cgrLh9w6EctFqbPZrnw4diFJFjQKEf9MsZBXcVtyhvVzBEQ7/WLyfFoI8suIFAkx84CU6JLklheamOUcM7dipOq8nMzliDXeg5uZ+CcW2ntCFKM7RLViM6WMeEkJpAQ8i0EGqfCtKL5lEF+fexhIyeK4sm+ayiT/dLA9WrcujVwkyqhTPqBnMN5qMaBHBgClLBoRJ38olEtPJeSpeMqJZQ1epQF3hgLEyVhEO+9D6OwlixTZxwEo/tIXhKNS/GuM10i960ll8I5rdaNP+OQksv49H5eVMTVbQ60mAVFsip2tHmzXyfbzMvoePDaOM4/MhAAUSiksk2LtdgeXPtnC8lIH/Z7tHItY1TA1W8OJeyYwf6DuOupBXk0Djt01gaXrbXz01hosYSkN8RUhkQaas3GpB6BQ9Do2lhfbuPbZNjbXejBNB0RpNA0cPtHC/iMtJ4pGExgS4MipMcy8W8Pi1V1EGbU+mCUh9kQFUGB3x8TyYhtXP93GzrbpADoawdh4BUdPjWHuQAONlndsJc9nYrqKBx+fwepyB+1tSwAuiL/qybtsGAT3PjKN0/dPQjfCoAWlwNZ6Hzcu7+D6Z9to75owTRuGoaHW0HHo+BgOHmthcroanGbklUkDjt81ju2NLt58cRn9fgAyUQAbq1384Sc3oBt832pNGHj4yXk0x4I2AgBqA+++uorlxXZQArdA2xt95sQlthBA1LIeVcpi68s5yG5RqaEeNYbuuUgRDhUulHOYJUS2vJzy3M0C5JSlXCRf0aop5wSf1Pb+QOvAITm2qqDMyOAXI6PInqPPe82VD6IooE35gImCKM7gzcwr+mIx6vOGf6qggtiEGQCUspymBL6p9ipJoWN5ESiplEiVjHC/8vFMTTmBE/6KpCcXwl9BTgZKBmhIpHNXnBwv0ZDQwZLEJrOl4a/iJSlCF96rwTlERTjgOBFIcQEUnxGRCI3QxdVC0wlm99WhV8IgimlSrN7qOsfseuAJo9bYRAX3fWkG9YYeAlB6XRsfv72Gj95ew/Ym4wC7Hzcu7eDix5s489AU7nt0Bo1WsAyIEAKjAtz36AxuXNrB6konXK8kejwLQAsnguHWjV188MYqrn22jW7XiYbx94ghwIWPNnDgcBOPfW0B8wcaHA8nUkfH0ZNjuHVtF7aPE1BRqFQXtk5si+LmlV28+9oKlq7vOKADDeA0QijOv7+Og8daePCJOew72AAke8vsP9rCyXsm8OFba8JeLUEUh3d13+Emzn5p2jnSWQJyXT6/hfdeX8HKUgeWDcZmcj6ufLqN6dkaHnh8BifunoDB7C3jRJQAdz8wjVs3O7h0bhM2pX50Vr9r49pn23w9AJieq+H+x2YB8CEqlAK3buziysUdHz/hq5gEPjvxuPHva9kzezh8hS0WhfTEHpkdU4gBLu5dEmPZFyo7NB6HQUdRXiZAKcrmFKPS8soRZZHwhULqryzAhu1gId7sr3IiRzLVj1JDeTa7gt7iQ5aIYyja2IrPFCsy4nwvZb5lk9y2/jxDAgwVYx4DSGjCPR6RErVleyxlAxaGZNwPnSjK8TBo6NvQAJSyKFEJtg5GQuPiqFDQIDvPYgTnZFha0w4CQMHgAJRh0aABlBh5YZdMiqC4P72xLvB6/Rw0udnc7V0DH9wHyzxGLhP3kh/Z4iVxD9yZnKnh8Mlx6RKPzq6Jna2+k9YO9KLUOf74ngenMbuvEXLOzZ6Nd165jbdevo2t9Z67FIO6kQ+O5jal2Nk28c5rK3j7lWX0XHDDI0IIxqcqOH5mAprMwPHLJK8oSp1lMlc+3cILP7+JCx9toNO2HNDBBYQoHH3Mvo1rl7fx2u/dZSkMERcRmDvQANGJs2SKUPcz+BfXMTwA5dOPNvGHn93A1c+23PJ6erhpbKDXt3H5whb+8NPruHZp269vtl4Mg+Cu+6bQbOlsk4b+1Ro67vvSLAdQ+XVjOYDNy79axK0bbViWIMhlYlsUK7c6eOU3S/jwrTWYfRpqp3pTx4OPzzlHJDOVQgHYLlvvU6Vvsyc+iZf9UtDAaWMuMMqHPpiUNLK5wmkLHmJYlCvxGS+aosstyitGdsSzWZQchfpLzT9WufAIn5pSZCql/Uvlqch/SLZgAJ6kVGGkDKCRUkaNsqpcIK6xB2tNiVKBKEVPZpkH2FJaowDGIRZhfsWon4NDbFaanESWpex5QXo7BWySQkeajrMyJfIVrW8lnmyLxVikZbRRDr7hbBJGpfAv7umTcxLk5BSnpLF3c1AgNWU+C+pXstaR2s6ivKhrCuS9r6MsDxflENzCSJ39T+rmou5JPRyQAj96JPgNf4PYZsvA/Y9GbAZLgRtXdtDZNWHbNmxK/X+UUszsq+HEmQluvwtn7xTg04828NHba+h1LS6CBW6UAmxPTRtmz8a5d9Zw6ZPNUDfSNIIjJ8dQb+qgbn35oAKNqR+3Yhav7uCPv1nE6u2Oc0xxTCNTG1i8uourn21LGbfGDbTGjHCH4fpB9KvQG1d28PrzS9ja6Id14PqQU7/rq1289rslrN3uhpUFwfR8DbP76s64TgVF3N/7Dzdw4GhTqtDVz3bwxou3sbtrSorC/uf87rRNvPvqst9OIrAzM1/D4ZMtPxiKrW47xF+duLQk0M+rq3AiLjm8jhKeqyj3NUkxaXNnJlYHGstY1lVyyxYbMEHLPKJCfTNi5sonw2Mif8BztVnCZJCrXSIz5eCfmJB9ylPonEKBVHZsCiWU+CY8w5l4JvAdBPHVNGRlslBWlQcJpCiOi+WTug6ZIlEy1ekeDdUphgZT9js1/DmiDAX63NXB54XKahjfuhvwpDPic5zUUGOWwcTazV5ahULyWxF4BnfgVHJ+OeCDGRTO8cnTc3V86al9OHh8TLIZLNDtWLj22RZMy3bzO5ESXhTK0VMTaLYqoeN8Nzd6eO9PK86xyRSwqQ0KCtvVzqaBa+7p3O1aOPfOGto7plBKgtmFOqZmayBCP+Oc6XDtYHfHxNt/XMb6Wi/kp7I+OOvjWRbF5U+2YEk2N200DbTGAxCFjaoI/sn1ae9aeOulZWxvmoC7D4nII+Rn2sDq7S4+eGMVfWFDW0IAo0Jw/K5x6N4eLkLnMnQNp+6dRLUW3qtmZ8vEe68tY2fbFAuAsFMf/G7vWHj31RVsrvUCQS4ZFYJTZydRrWugcBYOcP8o22Lx/Ztzg5mkxOv0lE0b5hXdK0bERgYyjcujovro02Bqio1sKDfT54yGbCx6yw3v0B6hO40VSalAFK/jqyOnbkoi3xMgGxiTJVMCUTnj1GNs7FrIhCQZSTTUlRNnT8JTGQVSUEIUG5tlJAaABCVSFUiWkMgdmrLKnpFvornttX9h/JGdmTJ/Ro7MS89grCkh9qKgkfFO8pG0FIlNSIXPLDLV+wmBe6qMe7IM+48QAuJ91zRomubc0wlqDR3z+xq479FZfPXbB3H01Dg0LfyOgVKKy59uYenaLmwL/lIeZ9UKRbWm48iJcRBhBqc28NnHm1hf6cGJOmEcaPcf++aPrbXbN9tYvdURloo4p/UcONwUdHRrLKa6b3y2g8WrO0GFMfmDJTgBN8/B3t4yXdCCZU6gGRqMis71eu4xi7HMe10Laysdp+RuOtlnCEexgYvnNpx9aSTP18xCHfWWEQJ0QIHJmSoWDsqiUIArF7awdL2d+MwSb8cAnz/F6u0OLnywETpimYBgfn8DUzM1Lo9YYU6fSCLx7TDfX9j8PIQXHo/Yv4lyPQNT8THONeLRcPkUf+aXLdUhIkkhctgf8lYYaTkRk4J4OdUeI0qZgt6b2vFPLGjKfVcyJI5UIUPFFbn/oPiI83uOZOdbFsnbf4/ZW3nN4ILMaPmjTILPPRZwobyxbOruwq3t5XPnm/jyZJbxkzPMN9Crv5nJKCA9z9jENDlJKn4ZSWkMTSE4VdLiC8RPOhH8cznY6kZgYeTNJrmaQaEuUhrRcpXyV4ISh0HteTLsiJOcc1u+8SUut7zlgwNDhI7FXY9yAWMMUAD1loGzj8zANG1enkQjohFUKhoqFQ31loGJqQpqDUN6pC/gOsq3OvjozVX0urbvnANBdMbsQi10sgoAdLsWrlzYhGXZvhKU8mXky0e9nzBNGzcv7+DQ8TEQZokQIcDUXA3QAGrRgA1xtgWUdksKdHZNWCaV99uQsxUMLJZpo9+zUW/ym57qGnGXLslbhtA4UMdtdyq2eaRSPnXbFq5c2ML8wQZ04ajg8akqmk0D2xv9ILcLxkzN1dAc400sSin6PRuXPtmEZdqxjzQhBDac+YPd88WyKS59soEzD02hNcFEIhGgUtWx71ATS9d3JbM6D8hEEfX+MDK57R+pd0Rx8Fe1RiOe1OAORfDb/84VIYlDjmFKNocGdZuUI7Ncfl1W8JuNXpJkSy2PtU+JvMaKKQ+YvhMtJ7v+0fwz6Z+YiYZ4K/OPzcQ+oYqASqoCBvyVNm9V5MvPkjGJ2eaJScaP/kpOwFBejMqbckjKZKFCHu5iKFRrlEaOfaNOe+uI4yJ9iKL9kSH7N6PAKRepeZFla1EY8W5bGa01xLooQ3ROnmUAKFklfy4owjEeitxIZXJMtDS8XESUFsWdEKBW13D6vimlKiESZlHgCQCsL3fxpxeWsHrbjQpxd671lqsQQjCzrwGjqoeOy93e7GNtpets3koALtxDKJXjLDsn0ngbj96+1YFtU+4oXQBojVdQq2tob5uc0R/XKVifTeVtr2/0286pNZzW7mtAImZhuZB44CvYvyMAjpLJqZvFazvodS00mqzJRFCt6gzYEwABmkZw4EgLmk5Cbb2+0sXq7W7Q/yId9DAM4v3YXOtj5VYbrYkKl0fTganZKjSDwOrbgodChbaLLLL76Ri2Ll4Wc5q1e8aGK4tQ6py8E5k+LC76Da9wN6IvxeTISS43BaaFyB3Y3lbsMyDXPFd5BBBOxnEk+UdmGoyznAoITKHS0Fx9RUzE+9RGvkBfcEr5AjUV7dFI6r0DohQKoEQPVZnE0NAX7lf+Z13ON0NW6Q1lfsUVKEqVmCQpSp0qafEPblmbZA1t860M7S7PQuWJMqqTJ0U+DlQlUX45EeNKaVSgGLb9FYagXMpE2VPU/SO44/G8xVsRSUkKJ1GFnP1OKJZvdvDWy7dw88qOs38KdV1UCnh7Y2gaQWvMgCZZjLu51kWlQoCWEbk/iKQ0/jdNd/Yl0Q2+VhstA7W6gd1tb88Ur2Lj33F6J99E1qPsR8SeNMFtVzfu7FwCZ0FjDKhD3DGUBHn4T1cKp7AjdXOjh92tPgeiEAIQzTku+OrFLdg2D5hNTlekL9S21vvu3jOegy7qLL6+DY+mZt/G0rU2jpyaCMmY3VdHva5jpx9EI/EPZMJMEtKZ0UOGpLgoC6V8zKWshgmQ9ARKiE1NQj+TciQkVZQvaScZEFqIPI+ZB3REQVcFyGHnGJ8RCd/OIkfyaMmAjuL5Bxwz8Y/MxNd4pvqPzBTmnQpISVSG+qNkdh2juCrwlRRIHAcIw0+JRgZIKcsxKpmGrHas+D0UkVIOiBJjvOUDKYqmsr2gwqSMFo1ygYasW2kgbUl8U1Em4GdQJFoT+Tgl3s0hRinrwN5IlstSHUApot1E902WiIbu8n4mZdKVO4F7IAe1gfauiUvnNvHhW6vYWu85e6C42lA3rbdUxahqmJqpSXkuHGji6z864gMB8WUIL8So1jQYFQ1i/RkVDboucxpV2k3FHiBOtENsaj+pDyixrUcJiTfmfeYisiDpsYT9TbC7bWJ328TMAm/XETgAk4cOeJx0g6BaDy+3ohTY2ugGQBAvTCik7LtDNqXY2uzDsig0jb/faBowjBToQhL5odZp8/k4mxQS4nRK5eGSyJ/lkaTwCbILU82r/9LlxDPKBRqkEZSF/0B9rTAQVIb4VEBK0TxTkhJfyaObmkcmweXQyGA4WWgkHIrPBxUPoowygFJ0x6GhL2UJSC9FwXspY5BORUoAVMoZQimZInqekoYWgVKWIVEYaEJVEmVURcllz8+freMywKRBgybF4E0htukSZVMg2i4X3+AnEFMH/IaY3u2YXpGjvSgFbIvCNG1srfdx/dI2rpzfxPpqF/0+s8zId/iZfUcoBdEJas3w1E0IwdhkBWOTldC9dERCPpthOBvj+kEgTNoo8hxoKWIlSR1Mp9GjCBUjETitlSAYNaL8D2oDpunx51GUat0JQifMcplqTYdhaJINg4GNtZ57TLXPguEXVZ806Ktu/fc6FiyTosI1N3Hk+sCK5HlIejwiHzCGX4JjryIn+7QlmU9kII9Y98zlYhwgBiWKkJugUgpRDKeECJh8chhuksgUUVZ2QIWG+OdqH6lSfA/LBQJFRo44NzPrK38NXxJfJ4HDs9iIFGW+Kp0n7RA+FCAtEB2Oq9pj0EpatSPR8MGIHzXaO8t5CqOCQZ4B8CqDqPA5NAWGSOXsVVIsJTvfJSlRCFAgYVJoRRXDbGh1PEwqoBzKwIkUsMmvQAgP8p1YCnEvEFEN6jqCMvCE/SnTklLHod5Y6cK2I8oRIAKwbWfTVst0lux0OxaWlzpYu93F7nYfu1t95+hihr/vMFPA2cDV9VtBoBFERhrI9lrJT8Q/icgrm+87xhZfclNUT5Y/tghxwFbc3bz1QmGZlvROpaK7KYK0lSqBLmsj6hxTHDmkqIBzbvfu9WzYlg0g2O2WEEAziBv9wfb2GM8+QVbU5WDjZvEG86nErwBIQ7ZEO4KtaPsUAqYocikEvFEAsIoBiYZDxU+xYVe3jIiHwoA5gWMZbZkSHxlsZ9pjHXcvP2uFUMEv5DhSAeuHTMWBKKO8KQwNfYlOUqS4XLnD+GY+ysiljGZVshMVBaeYDcrY/0SZbyZQIiHT0JAblSzFAChKfDNQpG/vJyjWyY9ONKBxs+C3BqkSDOr0ooTM4pGt1L1H/TSCFx4jdGezj1d/exOdtgk+UsTlTeEv2bAphdm3YVkOf+8edywugmryF+G4SAW1HVPaSeMkEpdwlE/Z5SW2XQYjjE/OQgTJzqWXhn0/nfisUmfjXRnpurf8KUjgHG8tiRigFN22Bdgu01CUDstHog0JPi1bvjkyIbKcgUMmCJSQYmOIupNAbw5kkQ62YceWZZsd4KCSn/GROKlxvCS5vvJyLmJZM1FCZEohckS7OSYCJhf/0JFafORIav5SpeT9rdiolHIiR7y/qSKn1YwPdb6KBSskyjvrZJ+rM+ajAnrX3qNBFW/EgZSBRaJkei5GGJeJAmaKUzkHpyH53kOlIRVqhHCMoQkuC0Api6jwGZ0iv4xYbmUDKIOu85C8khSgKpwTYTIhbfDNAyri5m1qU7TbFjpeVAF1DUgfCAEHrNAAIeGv++LZQjlH23LXgoQhnf0rDDCTl1gzkAJOxI3IVwkdUUgn83vVk8OPQCKIfaaCumGAEy5qQjj22SUCgBISCVzZts01EwFBv08d0ExCHB+2oj3kLMK2CBI6tyqGFg+mcbZ8wslFCSTiId7KOW6fWRlIImlbrpliIkXY9PlI4KLAtBC5g4oYGVhkSknOYVntEcoU5lIM31S3M2cqpg1ZbmXwTalCwvNfqnhGUFzwnDK/nPoUQnkKUlABstZhrHhaci+VRVQqUn4QJcERGA3wpGB3qXQAJQe/BEcmFc8BFygVip1Ct6FFoKS0OXgDXsE4Looy8JO4cPJEGUP9lPjn5im5m0OMUtY9BJyIrKQ9MtbhyyYvd3Qoo1PIr+PuOz+Im9Jxst2nkCL57Yfr7/obxFLCXAwShEAT8FENnuwg+sTxTr3xIHhR68Sj2DZ19+cQ1KHApx9uYPHqtjxCQV6ESGKLb1kUG2vdmNRyeZlAHZX0sjQ0vSi+T7g/iP/Hv0UAGLrkOCQA/b4VAFhw2rPbtmD27FBaQggaTd0/VjokxBMdiZ94OhJUqnJgx6vzANwgTH5WoDpJn4QIgz1scXhoCxXe1VN+joh43Fh+2c1ogYs4NyU4c/kjRhgOMfVVSGQKEBs1kk+O+0fgrzRXJPGV9s/wc5ifb1lASqCzQrdW5MkncJIMOSIlkV/ANeupPbko7plmxnlnbzJnfzLbdpbdpici+baHaUiFIDG/hkFp+sLnf0+UIn2Wkv2f3AIUffoieJVJZYEeRVLRdakMGox+1TgkdVjVsw2F9jqAUiBF+KjJiUqSLU8htzqjbKggNXPsrg+EeGmIA4rQ4H6kFjYFtRnQBZSPOAEBBOfa+eIeBSsc/+uJdYISHPSFEtcH9t7EUALbouh15LP84vUdvP/mqq8X57CGfkGaBkBob5XorhtdSaz/yEogsk/RqY2jzP1OMSPbKC4R4u1xEq6XftcOsTb7FmyThoIECAFaEwYIIfGbE8vqgsMfKGo1PbTvCqUUlun1Q94Blf+QC5c53BxH5keSsyTAJiC+bkIhFTzOTA5vFBcavlQecRUWCxgN34WIoFAnKisiJbqDjj6Qwt9OTQN7BjLwTVGgPEcVF25W0EAfSgGzT51/PQrbki+JzEOjBggoUQKgPGiKVmEwytkpOkV2EEUxAiXVW8VMmVQommEqUaHE/IXi1M7AKcHDGSqAkjjZlOONlcu3mNmThr7FtP2A20UtCw0nyKBG1rvZ+QteW+F6e4lcL2oQESg55xe18kDootnLVUiN+CEczG+Ov7ubCOUu+ulsz8mlvD40QcOg+EIfogiDJlxaXk3vWF+2SgPwwTv2l8J3bAlgWXD3YuGJAGg0dMdB9+T7x+k4ErgX4xQITjWh/nUCUkh39fbmkO1YEvr0nCc5yuPTsAD25piBxpghDU7a3TFDgAgFQd+0IT6YRAOmZuuRJwYn+JD+PU0jaE1Ugs1+GWrv9J1TnmSMKAkOsYoiQt0SEL7veSyYH2HpgjckQV3Ccx5zPzS+yNlGy1clURBJZCzJkUGm8DUiYiS3T5MyMiW1HG/M8DNFlyMVhTKFa6E4vnwtZ+pXUmVCg2wKRaHQ8HsvIgVJfAuwX2Q8ffDEdjbi7rWpvzdZmRQe7UYAmYijsPEzNJXjxQ5GuTT2T+mRKAquYWSmWl3D5MyggmUks3dJD1oiW0qxcruPfl8xpihTJQ+IMugTGG+jTCn0Gw0kUS7mDpVHe2zT2JGVF0Us6kCIb6rxYziPnnhLZ0SnkPpJw1EqUbIpDfixBptHhOENVgaDufjIiHvFe0vPJOPuA85JP9ub/bBOBNh/pIVKdQXdtuUYrYSNSojwDDkAJS0R0MRcqh2GMH+LpzzddnyiitZY2BahlGL1djf0qFObYu12BwePtUL+6/hUBUZVg9mWnPbD9Lm4etANDfsONqWgzvpKF70uw5vpPkr781EAlLgrcIJOIWb1l5lJHCDPgVDrGyPuYDA0qKFvVIbYrDTa+ntzRLlaslKUe/go2vB7lCico+n7fYpu24bVH0zF8vP2ncZUpUzPS4m6qFJ2hCLh7arYfZS6kpCp3tBw8GgV5VTpcDp3FNrNG/UUW5smzH5KLbnEGR/goqsl4c2ik4QHTYo6laZoMEZ5cEzR+YOkCZmG0C4y8byW+XWMz5K/0Mn8s0eJJD5hnsdSJpiSepBNZpN8o+x2UWHAvusJWsJz2oIAFRbFCL/ODkEsPpBCIB6THFaBhvhw4hiHOFiLzbyfYjN58t3oEz+tF6rCvKW3LYq15S4sk8KosDoSTM/VMTZRcU6Aca85PISZR+iTgXOdYq5NDJtIS3l4JZteWa0IQghm9zVQrfHmEqUU/a6N3W0W0HL6ok0pbl7dwb2PzDgROQx6MbvQwPRcHTev7oSKoFoD45MVzCzUQ9epDawtd/kXMB5Gxq0rUhTERJLIF+1QLoCEFakqgn8qiLwSIhjmM7jFwZPE/ixWNiCtuDLkFB2FIjKKQeZUAEG1THwtZKoTP1N86fNHuThcArsuhb4xXVLGP5WuSolT8C0qCiVIXIir583lZp+is2vD7A3e19tTUSgyGoLKyl1/xOqz8OU8mbprQqZyTjfKw5TG/MomVXY9kW9sApqcJLXAonmVo2MZUSyUGxAj+KcQGwlE5ORbBi+5n14GgKJQx5n4Cnc4MenlJD+XJU/aBbFXB07KbhfFXJSIV+R2MYNQUOYnu+QiCFAJ+kQQUcLsVxGnNGU2iGX3PqHCKS/UqzkB9CHEB1eIZ3RT5/Rb3+j0Ckip6wQ7I9HS9V30ujZ0Q/PnR0KAetPA6bOTWF/u+qfDEO8mKAPmBHlChfJySZub+reDL1G2QFzlsShuLDQr5PLSpkSBpdyjdOcrxagQHL97HJoeTrm53sPuDru0KmjzzfUeOrsmWhMVjnetoePY6XHcurHLn+DDFItI9PBI0wiOnZ5Ac8zggBFKKfo9G0vXdl01gnvprB0ifMLrrrHkqE/hHdkTPb4nc5E6umLTJedISbI5jWuQ2ByZ5ZUtp+zjkKXru3gumUEPjh3PRWx3ZZAilIkXlKkuInUNBGXmK01MmduK3JQUSME3RYHYuSBxWU8O8uSYPYrdHQu2iG8PiPjWZ+PxRgsAiKR8A1thKkSPVuUqlaYbyrebv0MR5Jvk5YsZLoOBUSpNh1QsGvNrwMIHTlHukUKiDHxzMMwiuAwxewBAyT6KDQFAoYRHQkRwBE6VB9XOpKH8P+8WD6CQADyhzndqQ5ApJ9vVjdrOdwrCgBSMDm5ahzdxLroynO0nAh1YmMAh1nl016xTYHOth821bkg/TQNOn53CLBelwJhwhP8XJgJN03DgcBMHj7Sg65427j+CwDqk3o8YgybR1mFBEcJfjiWZ6xTdVrpOUK2L5k5yryQEOHishdl9dalSy4tttHfC+9MAzrKaWzfbIX6EACfPTGBmvs6p4ewhQ9wewDjVwr/xqQpO3Tcp3Q9lfaWL5aUOJ4skNFGYqAAwU+7D00tWe5me81AmBS4KU1ChI3Hp87CkjksRMzyDohjJcmssbfceDBVkbCRkLcsr2TtehEPe3me9DsXulgCgDEWfO5SX9kId3gFRlCncnKVBKkkzQqzgsJMxUFIS7CQqGkChiNhMLwdRlQKlqGy5GxiTuCjKoCMNXWGUCifKwDeDcgr8wzc8T7oE3hz/kp64DHWdiQUHHGQTKsuZzCEil7CcRt627FenjZ2moBxw4h0ZzJ6i46ez3evU3T/EvwfE7+ng7TdC/ZePHpASgDEE1CuHe8wrgGDm5dgH6Xy/l/CJiMum17Vx4YMNmMI6b0IIxqeqePTpBbTGZYGmkigD/7ez6ej+I00884NDeO7Pj+DMw1Oo1nU+8IM6nrkfARNRO8RvTgkSICVvD42ECdC/7Y3OyS5Uc7yCB788j0pVEk7CMeZ51Zs6HnhsFo0mv6kspU64+KXzm7Atsf9SgFD0ejYufLCOfs8ObTw7MV3DA4/Nol53oklISLbLR0ACKxWC+740g5m5MKhjWxQXz22g0zYTn1xKidM/xRogTqSLh6OIs4BYW5S5QWj4Wlz+dCQZI2QDDY3PlV6HCHkSRvnkeBzAz1dlyFE4FCJzW4XmEPnt1Py5TGXxDV8ohqd4Q8mqDGdNSJDa9k1UIgXPFAUqx053qN+n6OxYsCXbTQ2Tcj1TX3CS19vo1GihIEq2Ab1IDT4nNIw6GbDMO82eQEVWUGG8ymi1YniW2Z9oxHfnwh7vySHrsxzjRj0DCRwIxtzi/CQa+uL8Y/0OGiyPAZc/AE04X8UHThgQhHIVEy6XF4lBiXPcsaeGey6x59wHzijlGETibh5wQtnf/G2bUlz6ZBPrK92Qg04IcOT0OB59ZgFjE4aQU/wMQks0neDwiTF89VsHMLtQx/hkBU984wAe/9p+jI27e5O5R+6ovPmlPuogPkFioQN9fChBUi/+9ZDTAwRAiry9NA24+4Ep3PPgFCpVmdkTBjBqdQ2PPr2Ag8fGICvxyq02bi+2nR7KYiC+KhQ3rmzj1o1d76dzmxAQQnDq7BQeemIO1ZrGFCyqzxEYFQ1nHprFPQ9NQ9MRAnWWlzq4+PFmsMRMyslR1DJtmJKN6wkBJmdrDpAi9jsGvPL+irUS9bzLhpdCR5rYQbpoAWpysqmRXk42MVGDT9Fiy3J29vi8m4Uii0yTkyjzypV0KOSNRmafor09egAKT6Nem3coLaUDUWIG3s8vgBKeBEYHA/Mop0ajDKAkFK0MVFuZbyr0nTU9Yws0QgBKMcokuKIl8YaSoZjENzZ3mZEnrBIZWUSWgQqfaqVNL0c1N8cg/tkINn51/2PBEA/4oB4rN+LEzciCJD4vKuEBADaN7z7UATJsCljup8vOJwIv4oUGxaLBKMDXg4SICypQhNZkEAA72yY+fHsVvY4tbHtAoOsEZx6awVPfOYgDR5rMBrRii1FoOjA2UcFDX5nF1354CPMHGr6jX63rOPulGdz36Cy3J4hye5MAeHH+uV/iUBiFYBRPtgOseNpEZ/TK8vjX9uPRpxcwNlGBprlLsECY2qDQNIKp2Roe/8Z+3PvwDHSDhJY+mX0bn7y7jva26WZ0gDMPVPMAp/auhQ/+tOIu+aGMPs5eK/c/Nosvf20fpmZr7vIc4R8h0DSC8ckKHn5yHo8+PY9aXec3iQXQbVt494+3sbXe8xsn3GOCX92uhbbsdCACHL97HGOTYhQTCX9XHf9C443SLQWmMSNPwqCUf1ZgBpEEOdlnCUGOQsr0IpiBL16DlHzFTGEO+fnKJ8ri9A2P0vn58jdS80xMvHciUoojCsuk6OzYsOUrK71kQ9BNRiOhRDoact2NTNNJKNvGsnv97etepoTBLjFJKn4pSYlXOX1n9I9EVqCii5CB3+CaMD+TZLOyDL5eopL6W3avIsSiLP5KclRzUwKWU4incMEBJpjs7h/WWfQiSPwm4iJP3DGS8X9A3Q1iqXPD+UqCI1zj9Ie7TSzxok6CMTjYH8UBQ9gNY/lVOoQrR8DBc6RpcEgPm4JSXHh/HXMLdZx5aBqaTnzn2gFSgJNnJjF/oIkrF7Zw9eIWdrZ6DugCoFbXUa3rOHC4iaOnxjGzrwHDICEHfWujh6sXt/zlH2xdJ0ak+A4a3858u/JckvuVw4uyPxVyEuJs6vrgV+Zx6NgYLn2yicXru+i2LfR6FgxDQ72pY9+hFk6dncTsQgOahlB9UEpx/dIOLn68AUrD98XCXLm4jQ/fWsVDT8zDMMC1UbWm475HZ3HgSAufndvE0rUdtHdN9HsUlSpBra5jbn/DbccGt5Gwpwu1gU8/3MCVT7f5Z8HbiJkJ7fH6ndmzsSM5JpsQgrn9dTz93YM4984aOh0LBEClqqHbsbHob1orKaisN7hpg3gnWSrnagQHRfKUitCBhFPG5MiuQgSzfGWLZ0KTkyjypwihhXmJq+RCaiHgGxWyJibJxJe/kGmuK8skVShYgTVdGkWd95Wajw1028M5hSc77YUWcmmkq3X49agOonzhgJMRLK+CSspaD8FhTwV0JCQtCzRR4lvGjDpEACWcVJJZ4gep8JQPb6MLcETmDGLxyxkLCwBNYpsn0vHJJitfLsJcptIUHEjiARXcNeYEHe8eY1T7vjsF8zuICnFADua0Gg9g8dPTBBudBHJpcJi6B54QMR3c83ciVp0QIlym7K9oIKXfs/HWy7fRGq/g6KlxQKOckw44x+He9+gMzjw0jfauiW7HiUCouyCKUWFP+Ak0p5RiZ8vE679bcpxnsFExTmmpstMV0QdAQ/fiOTrpve13xXEmSRsPXFo41MT8wSb6XRvdjolu1wFRGk0D1bourQ/AqZON1R7e+eNttHfN2OeBuJqafYr331jFxFQNJ89MQOeAFGep0dz+Omb31dHv2ujsmuj1bBhVgnrDQK2mg2jw07O6UBu4fmkb77y2jF6fdYL5ehX9QgrgxuUdnLpvkgN2AGdPlMMnWjh4rAXLdPjouoZrl7Zx+2Ybluxtr/C88hJ5R9R7RmTKidNMevNY1iKEvywwjciRQeYA5FAmVxmADR/SJuUdIzqGL/NFfKaEpMq8Q50lrF1McyTzlQoi2eogMhM7w+XRMZzASZJCS4WCZeCaIDIfkEIphdWn6HdTWibZB5hcxIsdPgDw+aAhNaZL2Y84/gLSCMIqHA1NPzXPtmwtRpYSSz5EACUVvwx8lQCaQml0AZp8gnOwiUIoBkquEcqBA3GqUe4a1wWp+J1BSgB/00z+FvU3ivWjUbws1N3QlAa/nZ/e+3M5sSCNDfgghxOZIpTJxd6I6wR5W6iKZQyCU7zoFEaIC+B5zrmXcXuzj1d+swjbojh6epxz0p1sznfdcJbtjHFH7jr6iP4SpRTbmybefuUWLp/fArVc54dzVOK3dCWezoTxdaRdj41RoDHpfK5+AvZXHJ5jWxT9vo1qTeMAjGpdQ7VexTgrQeY8ukptb/bx+vOLWLy2G8K5RA3hAWcgaG+bePW3izD7Nu66f9IFrniwCwj0Ecssax/LpLh8fguvPb+IzbWeognp1jEFbl7dwdrtDuYPNPgUrjBNA7RqwFXX3OeBCJ1Vit7KHQQWDI1KTuWXc5DApTTfZUhyMqXIJrU4TgVp98U1K5Wqsch+kKqqB4APeMt5ux1bukl2TMYRoj0GpOwxdQdBuTeWZUy8kjMNl4aqbmR9OTdSVWfRdV8kgDLEfpG4B0oG3ZT3VSmSclW1cDVTmeOy5AM45LmZO+zeEyn5RgMQnmddMCUKVmchndNC/NMLpMiZi90vQGibEE8vC/PU+HuXeNlZtv53Zk8TdtkOmHs2m8f5Qm3qHzNMWT4AKIh7FLE3uiYVOXAqCUEAoDD6O+AH8T19b88RIPjnudwccd4z5fkzYjZWu3jxlzfw0duraO+asG3v5CCWFYn45xWD+s754rVd/OGn1/DR22swPQDF1y5oPZV+4Z3SE1oeRdjy8c5n/Bgicc7ZupbQzlYfb7ywhM31Hlc3svoISXT7zOZ6D3/6wxIunnNP5KFeq4kHE7PgW1Bv21t9vPr7Rbz/+gp2t8Jt5GwfE90+ni6UUnTbFj58cxUv/eomNlZ7kbUVWX/E0ef911fQaVuhvhLoEzSRfL7wPljoKJyGCr+lowqV3xbHoWxDpkRWhBoxlxXlxChfpBx2borhnXmKUdgrJRtfBAN4zKyeirzHjEZrl0rnyMQ0OUkmvqmSyNTJkyQlKfocioIz72tIAbNPQyfUxcmxqQ3LtmBTOyTTG1tlY2G5NGh5OWmI6sb3u1yjUmbKFYmyx5r+Dg2F1I1tIUvM7SE/xamTRWQagQdocCqULGmEI0TKIBrxXfFCbpmxKajkGveNjUqR5/VcZQafYPwF6voQQQQJ6xQ5J/B4oAiFt+9KYLsz0SjM8h7u090s1tsxNmRwsT8kkRZskLK3ryo8+axTyoWjAxoIs5cKw8DPLFKwsGVn28Rrv1/ClU+3ce9D0zh4rMUtTfHTM6AJS2afYne7j8/ObeLDN1ewud5PMCgJU0oqVU8MUhCjb7iSeiE8AmgQJBc5Uf4nz40jy7Jx/oN13FrcxdlHZnHk5Li7QSvDwv0h1n+/Z+PG5R28/cptLF3fdU9/8KJy/N4plE7Uw7nf2TXxxou3cf3SDu57dAYHjrVQrcn1EMsPCvR6Nm7fbOPcO2u4fGELva7iURSEcCoS9zn47NwWGk0DDz4xh+aYZw4SocsJow37rBEGMmL6NRHa0a1ZtZFI0TFM/0JUyCUOohKG2eSkz51LzpDNoZGIeCmrDvwCKnSWAgRlLnukOgFfZY0jE2cDOoA0wlXZOox7XfUoFEoprly7hKtXr6DRbOL+ex9ArVYHIcQHT7a2t9BsNmHohnQcdsa5wmPj7tAepswgiswworKeIdusShr+OWrEKzlUlSOFOzfYF5/ZeWWkRH4ptBtiJQe7GkQmyKBbqpYphhT1lGsmcUxSql5WE0bzJbkAlGR9SyrRHhgDs6kYzhXGdHiDlAoJ2Zer3HfmJhtZ4gMpHj9K3H8sUOI8334eBuzwHEMedHGOLb51s4NP3lsPnFCXdrZ67n4Rsu5HQsAJlyTKguLSibt+ANxyHuEBJu5z0OvZuPrpFm5d38X8wQYOHR/D3L46pmdrMKoaNI342/pQm8I0naiG1VsdXLu8jZtXdrC90YdpyixTwSt2waYrF7awsyVsUkqBWzfark0QZS66hinrlMMxjD87t4lbNyr+DW8Z1tYGKyfc1+LW11umjRuXdrBys4MDR1s4cnIcc/sbmJyuQq/wG7ZaFkV72/z/s/efz5Il2X0g+PMbOuLF0yK1qMzKqszSortEd6NBACRIDkiCOwsaadwBB6RxYbMzX/hx/hfCbM0wu8vlAjNDKBKq0VqV1roqtXpahI64vh/8uvtxcVW8eC9fddepyhdXuB8/7n78qOsC9263ceOzXdy+1kKnPRLlyUCEVQ/TY/BJWHE9GIxw4+oeVu92sCz76FgNswsVFEss6iOm+HQwCLG3PcD6/S5ufL6Lezfb6LR9s0cSzHLJJzRixYDhkOP9Nzaxud7Dw4/PYvlkHbVaASyQASWOcMTR3hvi/q02CWradp1eoMZUgUlugu672JS/aF7GgdTHYcbJFjvpjWYVXufiUPDurzSfvBkTzf6T6IQ0lnsoQMf5pDDmxMbFEk2pg7NCt9PB6tpdbGxuoNmYwqWHL6t3rfYevv/Dv8Xy8jE8/eRzKJfKKsAyGo3QH/RQKVcRBAF8MxbHhy+ZoHvA5CYXf/jEjR1E8ZHqrtu1HhpfNWwj46gxUoojcJjgeiHeu1Sn5yAqkYJTOgGJtPlswZjEk56Fknu5TQbP0sXpyTTJamRmgLjq7J82N0sOonLhtd6MUUymLAc1pXMCaGPFgVGh/AWNRZqKnJuOZLLIImloN5JrvYmquUeGscQnlM/M6Is++lgGOZjOw82yzVktOjAjv95d/XgXVz/eVeXQmoYhrRST/ytSjCpbvo77TmYw9aAT3CWBFIVHEsXkiUIc3e4INz7fw80v9lCpFtBollAoMAQFhmq1gOEgxKAfYhRycVLL7hDD4ShmsosOICnqZJOHwDuvbURf6Kx8PG4YSZ6hjaIDKt3WEK98/56oD8wZLjzar0Y3CblhVrs61RDl9XojXP1kB9c/20WtUUC9UUJQCEQAIwoshCOOXi/E3k4/g6FuSxLq0cRHy2gfVetF1BtFFIoBCgVxipDqoxFHtz1EpzXCKORW3ZMpclJ4sgyHHDe+aOHezQ6mpksoVwsolcVK72E/RBiKtmjvDRGOEkqNChRdFCNdybg2Mvmo9fKi/3V269EujwjPGISelBnBagPP+PaVkw9Io1OE+24nmdmSPTEU5MZP9ZQV+KBxgUnila9z96XKRHFSLs4ZVIjtaLn9eI7tVmmFEvBKfbY/Gs2eyVT3jEEeTuqeFUYjRLMCswFjDI88fAXnz13E93/4HXz0yYc4c/o8CoUC2p0WhsMhFhaW8MZbr4KHHM88/TzKpTLCMMQ7772J1dV7+ObLv4parZ690ATQTbKvEXr48IDJTWal8aTofiBzEGUsV8gTJOfOEzhvHzwj8YS7owD+3jh0OlML5J4rD/hs0Fhs+3PK0wtPeZ1StJ/GA+yZnMUcFGX+bzS2KTQp4MaPc50CqZQd+prYdMg0fh4Y2aZb5HnlpjMcYzjP1ayR6Bl3frkKfKijXDm0GcYZ5LIdeqwxILZCAQeYCpxoAhiX721Xz8QBIHLyzdqZ7+XTLAaxFYGJnuncpD3kLAVZhl0mZ2Ckzt32CN3OiDRwnMyLoZJbb2znRPVLHga0iZbGgu4L1b9W+lhZY28W45Ro5gpDjtbuCK1djyVOuiOTXeZ8QUpMbNLBgU5riE7LPvbG4wnH0OFzDM3AlifCZdwy9AchNtZ7Op9kMAao/Xo4wBh36svBxNIem1fiyotNk9LQMUnyWY7c+o1BGBOIyG6m++p8EC6Apx4H4UvI8X0QxyDHtDUwZjUSHfZ94DUK2Ecjp/BxQpJ9ZdofW/h7JhFfLto4ghzUDQc8m1iJgIGBM45yuYxLly7jO9/9S9y5ewvFUgmvvPoT9Pt9DEdDdDptvP7mK1hZOYazp89jfWMN733wNq48Kpb/5ALOMRgO0G63wTlHrVpHpVJWY0g3SYxP59nX7MjAAyQlnpUOn6jMQRSnezMc9emqbaF8GaeCbMx1gAcGPOHukKmI9/KQ+Do+y+QgBd8kjzPOjS9jcW4UOCFxDryJmSbZD2PgcmlMsF7GImEyFYzHwtMSjIETOR3AMWAf6FPEwL4LyidHMshH7t5QeeZcWxfWxBLipEdygEMt51HOO7eDGHo2injNjHKkg86iU3zEkiDxUh1XbPuZ8Oi0VIvf/SafqublJq5y5gvXG4zqY5iJ5rRVMfGemWpMSYOkJ54Kxz2IdcQlkMJT0xJiVMN4pIhjU0aBJDs5dfZTSoVqMdkCntQRPuMQIk+fugSPYb7p7vPjZDHXnoTStrI1ZZKBrhO5FKjZJFYwiVm7A8t4CgfMjYMZJzyUUr4BBmM4NVFJPI9TXqWUeRjl0NymPJpMEMEnsOxgl8bpKTpjMdzB68OfDyfgO6KY4syF1+LFieJlNLfuy9x1TyRA4N0fjb7CcsxISa2Q1u2Zl+OkFJ7ZzufIvKEsBTnbZWVpBSvLx/Hhx+/jpRe/hZdf/BZGoxFu3LyG3b0dXHr4MlaWj2M0GuHd999CqVjGhYcu5VvKE+2x8rNXf4wbN68hDEMsLSzja8+/hGMrx/UeXLB7Wj4Vv/dX72NvbxdnTp9DsVg8OoGUzIx0mMXvTzKPA5lP53E6zrYe6Tbu+qFISnAwQC45N/854j2P0j1gB+gBQPK3iqMOOWh8gNVJLXos2o5u//gpO7r0umB73l8S2Ae9sVm9L/IXlCkHhyNmY6UuNzPIYIT0/Y3lOCqZ3hVfvSe/dNd846QdyDTuKTz61J5IB6l76M1iuTyamOlZKdC4HZXGKX6rASI95vO5OSxVJ6+5/5+BEMJxlfSbNJGSJEK7V9QRK1ESZmJ3/kV/5K8OyFC9bP+jjeWNOljAXELcFJ53jNAYPbL6IImfWYRB/nqBihirbB+xZruBtHfef3D/ZQYeoYg7lNvmCZNOu3eNJNEd59wJoMjAUVKbc/I3NqHzfDL2w3hi94BkaFqug9JpMXj3XdxBfHQ4ynqdx1z7H0yooC8PHCbVzlLZnMDAUC5XcOnio7h37w52d7ZxbOUEZmZmcffeHVx6+DJe+vo3Ua1UcfvuLXxx9XNcfvQxNKeaucrpDwZ49Y2f4/MvPsWli5fxxGNPY219FT/52Q/R7XTBwxC9Xg/tdgvdXhdhyBGGIXq9Lrq9HtqdNjrdLt7/8F386Cffw/bOVvYg01dwaJBrT5SkCJh/F3/xLC6XoYCNvVOiNxMLJFHTIC2N7+4QIdHe4AnvDgEyNOOkZ6BMGswWTKxITpwpmR6QnnWTejKPQVsmvGPi9PfK+AGUxCxHzBikbZAeQBnf4E9zfnz45bd7bidRD8no4mYSGThhMJtcziyRP5Dv5b21FIdHyMwgC4w0ig5u45NlyXXnJD3NyzxBElgqCn4/3o6rwLo3NCIzGk8XT8mRe6AwUm/92BozjGw4a48m5RGDM723i5zPYtJqP4njFOZW0mawuF9ZCVVptyhdJzr21VPx3HiWwWRwK5tSLTdoQlcNZd67YMIQf+xw9N57kyhZzTrLgFT0xzD9iHkmthty28BkP6Ye0GGVbw5ygnZw+MrNFZMzpawEZJ5X+fnAKicGSUKx2crgMIVXDP7c9B/YjJR4DGPhVZnic+fG6/SVfjB23fdPVYas7ujLJDMzJMw8BvbdQNwdFDmBMYbjx09idnYOH338AZaXj6FaqeGFr30DM9OzqFar6PY6eOud1zA9PY3zZy+oI+ezkrjX2sXVa5/h4kOX8PXnXkRQKKBeq+PGzWvodNu4ffcmXnntp9jZ3UajPoWXX/wWFuYX8bff/Su0WnsYDPpYWT6Gz69+hl63g7/97l/it/7RP0ej3thf5ScJk2P2Ly3s64hjAEo5GsxF1jL7DE2PPjbxGZ+aEgv3YMwOObZvOnSYKFWT9hMPwO98MMXFYB6rwENulF9gcFuSx72YdEFHBmcsGp6aIhPOdPy+W/ckHX1tbQAbU6B0pezAh7l0h2s7yXjPrQALEEZRFA79XMvO6JhiOcMFDCHXNjpjYlIKxCsEHOCcCZyAX3kh9ZUuXxHDlPNIYwnakCXSPgpwMFpvoiRV8CR6ziLnywleqyVBLpWybGnyJ7tBVk6zArEennSwmaJFVEr6cyZZJJODkGzmaxkLTAaNuCYodVSkKFbzECYrsePnOtaLWQ6XM28dxsw8fBljsFjAyO4PltAE6ZaEjrHoYJS7PIxck3dpDr7sFcrzNO94gYeUSMN4iNOLzZBk38UeBO1AYsBjX0Wn4B0v6GHJ318GyND4k2SNyZs+B8W4MaUZ01HzAwNDrVrDhYcu4eev/hiFnxZRq9ahFS2ws7uN27dv4Ve++WtoNKZyLaPh4Oh2u+h2u5ibnUexWAJjDI8+8hguXriEMAxx9drnaE5N44nHn8Yrr/4Eb7z1Kr750q9ie3sL/UEPVx55HGfOnEcYcty5ewvPP/MCKpXK2HX+5YPD4clcG8vqG/JlQSpeutmdvAeMZ5lwy68WB3yEFPeaJEcHbOdlQogOEEeOgnIlnVzfZMI1VjVSgjFHV/ONRcKh2qf7UJTxgYJJd0xagfvMuo/ASWb8hnPEyV/ywkhH0thOFb0nON0ZIyAzPuixw+IPVxf2M4CeyMOjmSV0g1lBepRXHXdM9hiJ0umNaO3hynT5MN95wwvU7o+cbU6cUtsP1deuGyr2t4DapJNbG4Qo9WsFFASdlvcrCTIahtbIVxlZCVkpmd+TXcU/7OiKb3TpTxaaLHMDYbuFJUYmu9eIqEStZR0/nR1oA1K6aVArri5WftXW5iPVH7Qf4hF6S3BbluAw+sQMUADwfnyP7SFu/HirJNueuQ8VPu/4ANxp+MysXwxVHogrISaJxb6x7ZlYFoPD9J62zVePmHJckRBLUb4iSK1jMo+l37l/HO0fL/wMjDHbwMg0AbxOYjd3bnzehBpL7nZMJIArnLFJcoF9zHlq8rEL5tiXaQihdzh6vS76/T6u37iqjnWXUAgCPPnEMzh/7sJY+5CE0fpiOiegUCggCAJwznHxoUv47ItP8PkXn6DdaaNYLCLkIRgDLp6/hJde+CYYC3D12udY31jD0uIyCkFhP5X+hYRkNjoIj8WE7DNR6NTbyMhTt47xwNzXNPAik8lrGjRhEMZAajQ6TrnFN6k+bleujI7HelQhF32HXJmj3nYPDB5Qw7jFeggZg7ZMeCcC4+PNlnOCdB+9JsiHQjlQdmrLs6Iy3Ha6SFZO8REn2TB+OCmP68CA1AlGGepXli91RLQ0h+t3Sj2RotXRkZYO4nYdmMzPLW1CXU/i+nGtsjSeZGOXWXe6nhwgS20kTmbTCHhmc1A6Y8LFvn3N7DVK4CBTSNyCuY2GOAwyn48haFqjYZlaqiRJ0u1nzkJR7UCNC8kHCnUMt5uZIiKYQZJDI+L7UHvipI1op5P6TQJ81JtMa0LgLTYrLdzsfwuH6h2rjexgiK/0LLJock4dQegJdOQrJ4HymME+nvl+0EZ/Ov6DomAsvAdCzOEYZGOVkqG+k2mSfRh+iYUfvNMqSJBLa8brSw5ga3sTH3/yAZ55+nk8dvlJBIG5RWgQBKiUK/k2kyX01ao1lMplbO9sYzQaIQgCfPLpR7hx6xouP/I4fv7aT9DtdnDl8hNotVoYjfTpbCLYUojslfHreWhwON3uLfZBQ/aZKEZEOJqeyYkxFyleBhgBb4MB5Ppu65rLtWbScI4U+L6VW0w6GkzR19myc7l7YVQH5t1Q92AgF8McGneZTsnksE5uqdXkaTvkAscAlwSeliAVl/+bzfjgx7B/pRGbc9L7n0wAnReF0wT5C8qUgzjnhuvN7UQsuuJwkpC0iXuS0Pdc4/LPTuFQRalfGyeRO6HEx4w8AaAUErfoE3535EhHX4u0T0qOc9W1gUSn2iJ6EJI31KGkzUfHjq9vWKTz5OwXIzAT3WhtZfnPpsKFqTtJuznDinmIMQMn8QETixIak0j98EGK5rRldT+wyBDQ3zahj9DlMGalZFK/Mr2VmBlNRzpK4nWbFsRI8Xamvw00Mm7UOA94NCLzNzfnMQloFzDrgflCJTerH9WBBlA4zaO1hf4uRnuRYKbIPUZ4frs8wcuj1TyIcmKQ2K07lk1rR6viqcgIEbEpzTWW9WXPXpsEXi0QvLnHxol4vLna1kns5t4fPvfF2P3jLYypK2+x8VnGTbBvyLzjQxxw4MbNaxiORji2fBzDwcCLr9vtgDGGRn0K5XI5B4HAVGMKp06ewaeff4y5uQUUCgW89vrPUKlUwXmIjc11rCwfx3RzBr1eD0HAwMPQqidDpVxGfzDA/bX7aDSmxgrqHAocfLcfScixnEdYMMoAIA1m6EFuBlZEcIQqcnWApEfxRil8xosBWUwPV2u6pZl4vFgjS2/U66F94wb69+9h2G4DDCg2plA9dgy1k6cQlEr7D6bks6gOBx4gTYe+E/VYxR0SjTmKcZNOhsbD6w1u/IyR0/Pi6A2uRIoOilzuvURcAEUFEGg+28aX3jB551uy493rJEpgBliiX+6hK3pPcal9QWgwgcuTd7jWU4whDGlYJEofKSyxNARa9zBZFuBbKiEhTupTZ5qTvz7QPq8uWJ4YpGmJAj52PiMCZBvaTKMFiNNg4tAakhu/7rChXvj+bCYZKBKlcdXntEr2diJqz3nJJxKJVZPYEm0fj+psiZskdYJIXNOl65/VAZOpmfXESWJ3g/lrFeZ0kRH14OajWGZN70lRvKfTmWfDaUKgGs8xOEnSfQQ4uHWdkGtf5STkekBOxFjFZljSelDVGY9efyae/Doe15cB8rPxwRQ0RpaD3W+SefVYXhSzs/NgYPirv/nzRPlXKpXxa7/693HuzEO5iiiXK/j68y/jBz/6O/zoJ98H5yHm5xfw8gvfwuLCMi4/8jje/+Ad3F+9i1KxhFKpiv5ggGo0gwUQNsupU2fw4cfv42ev/Agry8cw1ZjaV9V/UeEBiV8w7j9Wx4Ef/vmm11CjSjIRHCUqTdhovboyhjTu6bkCzl2qkv1V7PKd6qS8SybUby9y9Dc3cf87f4P1n/wYg+0dgEfRwiBAeW4eS9/+NpZ+5dsoTjXHD6QYTgfHh++00N4dxiXJhGffkKPASdDmmyE0CXhge6FMCsaiLebJvnCNiShrTrqEbwz0qXgnBRNAl+Sb7qegpByxDrHnuS3TjaCIcSGdbW6m4zBwcGvzV2r92nnVJrJGfgsfUSh6jzkObi3bCGDP3tC0auoB7c1PRvKYLJxd55hOpa6Lb1xH5BqnxfiUsVoUw3VAxeuTJyjyA9mizFOUQ4IkPTaxmfaxZ+bx8t8/jmLJnJq9td7D//H//AzdzohkZHb2uI/++gmzyOfkvZoiwxOtOZ9z4Uwmgu6fWFTMe5kONLrnAw4yi0SPG6dMHj1ggN0ZjH4gi9J5OYt52sM0A+OrkBnyIxmP3T31OAj8h4x3X0M/QXCMhTcmGpiBZcbGuz9c8bImPz7/g/3hcl9ODp9f1iXhYgx44vlpLK4kzPqIbIa9nRGG/fG0NYc4TrjT6SAMR2DWUh4JYRgiCBhq1TqKxZznsES2RL/fQzv68F6r1lApV8EYMBgM0ersgYGhVBL1LZfLGPT7KBQKKJcrioZ2p41wNMLUVPPozkQBHkwUIzMJ2YkbhRyPPJctWJVvY1kmp2Uy4w3jiI42MFIbhq5tfDBi+SmGiIwQsbGeW5JXOLlWYAykDzZb5HFwDLZ3cPfP/wyr3/suRr2ueFcogBUKCLtddO/cxu0//ROMOh0c/8e/haBWi2bf+OgeHybtl08SJh8zmGQAZbKQxTH6xYeDqLvPSx8rt/Xi6PVTNoqy050vcEJyGE1utj+3kjrPQTeCjV4YgQ7uBj5UNMMNqOjfyG3kULqAW3nEDzMqxwB9qg4hfcTlHg7Qzp61CTqA6NhfoXGI9soGEclUv+nzSOKwsKgWOo0R7OGqll48aj4K4+aeKdRBjjxzXX+zveivvKFUZ1JbsVV0takm3q2zkYsmV13nCaxbwRjGoQJqvm9D2u4ktgctiln3Kg1T/cthjimNk7YxbUFfGyTR5q+ieZOhZ+L6JYElfVg5CX64sRIdQDH4xbNXQbx8Bqw1VY7M2b/9FIMkwes+yGL3jX/ieInMPai2iC91IpmOnpYHDo6qg+qRyUPCEBsfImSlMhs7iAIArXYLH3z4HorFAi4/8jhqtZqh/be3t/DBx++hXm/gkYcv5w+iRDP0KuUKKuWqS3+phNnSnPOclsMg9mahs0+ObAAF+DKx5sQgx54o2uTTlmzUWgGsLynSeDOVqRpQltFJSonWPUsDMZEi8mM5BUm2a0bgHOCDITZ+9hOsfv97CHtdsCDA1IULaD72GPob61j7wQ8BzjFqtbD6d99B7eRJzL/4cgxCk+xsMEZFJlD3fLhyFJiSdNIzUDIXnDFJJvZ6wNrcpS0u4DgOrslAJr8rBxx6kx9Ew0y67s4LPw8YQQv1TAcouJGHGw6knPVBN3SV90bAg8u8zMBhnzAjl+Oo/BAbwYrZiroa1P3mBoFMJaCLXrgMJCi9w9UzSgI9FUcHU6z28wGjKWwPkKZjNDmhUbQ/8+ThKqUM6xtFijfR2hapChUGZuLPwmDe4EoS6MKiv74yzJASM2rltpqMA9lxkNhNcxkALpZird3r4NP3tlAomjVo7w4xHHIzC3Sf260vLRgaqKFVjW0fNc2H/Jo105BFoYxrkBJiaUhH84HH2jXiGMz3mNybART61kjPfRgsUjmiPfeyVfZo2ugHTdXRrHUiHJSzlyTL2Bj7hcQEJ8ei3snk83L2g++gcLH0JDkLJ+H7fePyQaHIwAKohQG5gANffPEpfvST74ExhunmDC4+dEnREYYhPvz4ffzoJ99DrVrH3Mw8zpw+O0ZBiB8HGess90v7CtIhvpXS2m/8cF+O03mImUGODVBF068PVMgR+1x9CAuspBJMe0ZF3HzVch1FK6HvSAOSdzQaodftAQyoVqooFAKFQn7J6m9tYeNnP8Wo2wEDEJRKqJ8/h/qpUyhNT2P9Bz9U6Ie7u1j/6U8x8+RTKNanXHp8xKc6Tq6BmQqTdO4y4EoNemSuq8Y1qWDKJJfxmNWIyTRpx3pfTrXjLU+oaOoOJePV3Musp8z8ZUaGsej0slfCLBRO08St6Sfv8vBxYnmpL5IL4rFvSBpdOS9qHTgxwge0Uaym8xxPzPU4kBvBygCIpoOrZyrYwfWPXY4OthCqonKcrnQMaTNAY+BkALgINqgtUuTME67LMZvJdLjjIHa8GUC97pTlrwziIwKz2kbJRrM0UWvt0DIQPctpXUgtUhhIrUjRMSkjm9pnRXOSotAOXtEhTsiyCZRdZJLlETP60ww3qxWlvX+njdW7HUIBU8XYy7jididk8h2H007JfqEcU8xXWQJWfyQOZug2jNCb4Q2yGa+ZXKOQ3SD7IXWJRfwkfM1/5phRhhsjPJGoIrh1Z7tcpDY+MUYr6TH/kssjGew+jumWdNPaU0vf0dsW/uwmu0VNAnH58Fq5EtoiN05OmBbwDp48OtuAmMCHOqyCJk0LrFB9SfDm63+Cy6DNYlI7SRZ8XiK4otFfShpt/oKolkmlMbGBzE8VqTukjMFghSJDoTj+bJS5uQVxbHCxgOnmtKkiGcPCwiKWFpfRqE+h8YD2IaH6dZxR/UDgAZIaX/TBEZVrfpIynciO1rqDtca0p8X6NsB2JptQGU61cEy90/0uWoCkTRvat2/fwfe+930MhiP8yre+gQsXHlI0h2GIGzduoPXxR+jeuqkwhr0eVr/7PQy3dzD1yCNmSZyje+M6BusbOohCCcyvgfJmGCvL/iBDgT5DxYuJe6+PGhxdyg6aNmo0m72VKa9xZXoYjI83TAxHwbOUQ8mgNMMsaR8M+51y+g5CIPOYa/OJa3i6Ley7VW1Pdk81gx5WVmc2ijCI9Z4lTLePfCZv1Ek55GQcpSIkDUw5Y9x5F1Fosp3FP5RuswXUiSBRN/HIyVPhWQ6lx9Sm6TFMEN8T8WBryKz5SGMa/oeLN7rnML7ic/oyeuBQ4G6iYpgYOghjG9OclhLFC0xnw7arua98koKRirjLklxcWq1r3lEp5HJgO1ji1JBW0i6HqeRGDuaQZFPnvKfBKOlPeiuXBmTgqwCPUTNmJ9N8oqvji0dkMjg1F8TISabHkMyu5W/GuvKYMKEhAAhB5Jn7vSwqOTZYFFGXQ2Fa3JM900HgzZDrIPCOo6NjdiE3hFtyqTFvEjK5MtLSGuxgtLdBAPU7zIeeu/0VlIONJ1VwxoJyDbHctDEGFEtjBlEYcOrEafz2P/0dMMZQr9Ut3AwXzj+MlaVjKJZKqFVq+cv4Co4YaMsQsG2zjI6qB8Y64lgbMObxg9JgUHnkoCB60SfgGKwj8+T1xAY7QR59kZyfn8PXv/51vPPuu3j9jTdx5vRplMol8DDEcDTE9es38dmPfowr7Y5pBPb74KFlxEe/o04Ho34vXhDk6p8cwnEMGbJffJkDHZPElRFSseWwBlxz3JNpkuSPYan4udF/mxuf+nyZphZ9BGdRpHqZR3raJCz0xhSW8fTFYoh/rJwSarLHuyKxJXPnIg9V6oVjRmnvJaYYfXyvjUdckONI5Z4kXL8TP3qfEpWXS2OVqXwKN4d5b+DS77SakGkpHmsPk9jGoc6eZbhGOBnjVv5IqdIgfi4+p1hoSqp3xuNs5QRbNEkzQOo02edUZ0bVFeNLplO0mUtsAkIiCbEpHLopqYKntBiPMt1Tk4WRaS9GwITwMu0fxhB9YSZGhTIiLC+b2w1D+CK6dMNF+o6aVyowRO0ViDEjj6KW/rlsLm795gFzwZOuFzOo8+UjFSGVMLrSyMCMtDSUkSSZ9VRzbiShPeCXg1YfKbCoi0tC0FgiT7cYN0s27UlvK8TKe/oqXxdauTxI8mgpM1cycePjlZcGk8eVnB0MfWE2tMaZ0/AxkpvSRe8oZXUq/TDC4vS326C5+t/bSJY+yoorkYAxeiM1y3icnlYoz9LDGdUkYyJYXqowDHoMo2HGjDI/GBDA3GuEUCaXcjab0y5tk2yWr2DikCDC1dvUj1s5+jjXch7bSKMv5fGQesqoHwdVzuI4ZGuqHXWAZPqE+jLfQ1dsklfii1ej0cDDD19AsVjAX/7VX+PW7VtYWVnB++9/iG63i3anDRSLGDKGUoIBbCjvchmBvflQUmckjHvmmZb4FeSBDC03VuMeUo9kLGbS1BhuWnRjO3DZJUwG5leCIkWoZX1reCp5tF2SIZXyiM5oyIYlEdLrB3Czp8x3NgLZlc6sE/feWHYDpp8DoDP5DHRcpBCzTWxDWe9nYqCODFlGZp24dNNgSEzdbGACp26fSLsYNBCP0s2uneFUDy7tKTApIS4+3FLtSX6VR0+iDLR8azjoNrAwMVNzcpopxa8dx650RzxT+plFDzmln9gWMg7inUVkyIDo2iCaWU1EHBurSTVtJg3yIB4ZPFHJaXNx83kcG8QGNgyU2WRaLC4jgBaDyqhzsilKbTlaM8qh9iwUl660mvsgXcZKC1Ljj6SI6lt7HOUPi2TLcdC2ginbDhPy9Jqpe5iVMT2o4HeC9C13+lPzXrzbrhWC9jVYLEuMbSpOOpAyTpFxCZGceDK05Wy5nAUWCgylSv4giigqTZYetWjJpLnlAOEIk5pldnAe0nOczkOEn7RkiMHAwcD0gnPxZYuuj5Xkcp3HyK+ySvUXU40kX4cYrP5k+qUM4Bw/fgyLi4t4+5138c3pGVy7fh27u7sYjUZoc6BTLKA4CAk+hlGnLY46tkiqLC6hNDPjp9smKnXMm+L/UPRkaiE5jI4HpNgnX/ghVWSMYiZNmXbGbdcVyC8RXcPaLScub2wOTxYy6HM3SEIGJwqcMBJl8cYSgZj2iql8IumWF+d17T0BCBrAMPIRz1ldkpkhOg0n+5rIe1oEB4wgiHkPK482pmlgxXWA5Tcr43FMA9FZAXbrm3vDuC6fb5mpulVBC7fg2L7y+Z2ZedJWYm5m8fVNp9E5iJ5lTPWB3EzX6w7HDJvMyy8orjRI8cdNcsRyYdk3ajUHs9JGGXjk/LAoamHuI5NOr2+CitfH4+S5DJ5AB1R8YOCh+T0NQJc16SQexvbQbfNKou1D8vu5LClMwdz2sVMpnjKMQ3XtSshx9Aozb2k5qsm0sWqPfE4iZURaGVR58cdTkZFugijBlMqHO6E94kvPgRsYd0aKlvcS7LrTEZHAvyk8xzy1c4PBNma7Mpz4ByxWN+QGLx5XH00uWJFzY92UxJlxTbq9MoCcjVKuMAx6wGi4z7KPKJhNOxluORSYFE+MCfHFxmm+8SD3xrLSOHZdDPnQNKIZycw4J7EXMhWXueJNPM7Y+sYaIvLcaiPb7uAAqpUKHr9yGd/5u++h9dQefvMf/AZGoxE+/fQz/HBzE4WHLiL47GPw4Ugh3f34Y7S++MJQEEGlgtmnnkZpeiYjzda9Y8lw95Zpp4E/wLF0lPcsSYUvMem5IXdd/U5XEtjGSpagn8m2ZPlIxhze9zFetj0Z3ovayiqcNrshlMtkp3RvU8clJ39jXht0+dP7Zpzo55EctiIU5uwRcs3peztv3OwT8cBxXLmdR1SIE6FFVolBBjzMbUr9dbSb2BdAkV42M2YoJAlMvxupZ39kGBGeJBm20/PgkIY895DM1fIJzt2jmCmXMOevf28f/T6/uMjI5u5DwmMwlgmTfmeWClSKT+BQy1xkM8nZYEQUpEoNaq8k5XF4MNn9d790+Z3QBKJshCkk5Vdq3PqNIUb92IEI431M+zjvLH7OY8LYOsOQHUY57ixkXY41ljkHz7o/hofY8Uyw5EYYzzyZGHH7LlnqBBP8hMiesu3yuHKScUXpKK9S34Iwid/eILwR+SlQUsbmvjGa1iPLJ9dB+zRqU0iZHKWTZ0rGGIICUKkF6OyF466a/Qp+6cDWY9QgivcnfJBjJop549r4zErPHaGhhlC0ZlnvmUKmX3NiRzAbR05wAhWmuGcQZ3CfPn0KMzPTeO/99/H3f+PXAQDtdhuXn3gcT54/i/v/+f+D3Y8+BkJxlhYf9DHq93UxhQKmr1zBwsvfAIKCl4zELuG+hMnKQjgeh6QpI5i0fDr0YEyO4jIlfUAC2y3W473nrat39kl8Dq8ZwrK2m+mxMDL2zfxJvM2NH6+RHxNbdcCyApnnubukiSYw247JtMRJk1GD1PbxRA8cX5I+o82gbEAOwJ414tbDCIio/mfmC5WObNgp+0ktvSTX3uU8gmLl9JA0XPW5LjOL/vImydS4uvWU9Ew0cD0762QdW1zkNvaNyEaokdRVCZQJrGCKMSyok+IGXWxwnKFEwlLAIJq2p8fZA1TExNWVMmBiGzaczMzh5j4lOtZiF6LeU9r0SgM6no3IgSMT/G6Y2YLOCE5qOoI3TsokZ/bogLjUThIWc8t9bzWQJRqa5pTyrcHkjC0LWxxafei3J8Aim5tJjqfpTJmtlwzq2Uyx9UhRs9ktMYtqjxmXH6+HaxLw5rMaSa4kWhN1pPWEkX62GFKZtTmEvOxr+9uHT5czQ7cyX+qICH2+jEMj8rahL5N+kKtfMiTO3c/eCpnje1KBlEx7o+SEUiVAOAK67XHOO84J4w2iXyQCjjyMJ9/Gg3x7ooAQx/0CCoiMZOPI40hNEWOS2i3Gt2hLgdvo91VdA5GsEEej0cBjj1/Bj374Ezzx+GNYWFjAY49dQcAYyqUiZn7zH2F1fRPljXUEoxFU5RlDUK1i+vIVnPztf47ywsL+NsPNYGSZhp3Xdfwlh1/mlshfd+nspuU0Vb3nJUes8+sq4JgRzczh76PKtf+z1FkaAeQEiAyeumFeyViIQTI1MhyXKTLoSDlxRXqMT27d8JjkepNX8ccbODHSy5dyJqB0JLWLzaK+NJ3ykCCL0pI8qr/onlaknejyHd23pqXs6xJ7iUU+29qXOjOTEhcymcY0kI6+7bw7EFs5HbxxX1M9yeA7ZYhHf51gSoJlbNXamybRsFYICH2282kztaf9nXkCBmEcNHJrBFKiP6Ic/dB2hXRb2Us7OEFAc/hrrF3zMfWPv7gUoJEX5qlfnsJNlD7asrZFXpDtnhbbsR9aPaWvla9vOssmi1nBlEgGah5N4O6JeJQWksl5qQcHOfSXX+Nzi0fJiLNlm4XO9Bo8+GnwnpH3WkUbPoZk5yDSny73yRRy7y4LL45qlz1gqjIVP1ka5abklVqA0QgY9A4hkPIA4Gjy2wEBGbdZYd9tMyaCXEccJxYYu840Mux0QilLLS/FtLuiGIVbLI3NjE08lPPFOENQCHDyxHEMhgP8lz/9M9TrdQP5cDBAuHISLz71FGprqwjbLXAwFKebmH78Scw+9TTK8wt+gnX14um19XmWXNYrE8UYHJgIOVo6Q9KDm4Gyf7yZMEyS/H01rc/rzIkvJYDiDZ4o3qOzEGJIiDwblY7yLWOQAQ1nsz+WwP1eo82kWBRHzWzXKaRolDwiQ8dnFirnzLH4bLeT7lnh0uarg43SqaFyFtMDJwDZD4VHY07ilMEPtbEE9UsZwqgML35ZCJXDnvKpHFcmMDewuGX7wLKFTUKyQnZ56BryaQRmwWQGqtyZKTEUcveZzz+wM8TNRpVczyQnqyVDmSSLF9LSyVoyWX9PoMS4sSqrZ04xi6dy0GMPO/exl+Z4vrFK4cw0TLKAN+ChWyspH01DnVMXj5MxHeLaV43rNDzZxpqoBnf52ZL7WZfDcevaHjNGAN2lJMolZzT5DDIP48bwcnary0IS0/X7suYSMqdwWjpOdasfUK7Uz0xBRvvBVIPx40dIrew8LBmZ6jWLSMFn8prOxLQTQtSRqTWG+wikOP2xr95NKGQMfBlIyYR5colyAQuAap0hHP1i74/ypQukZGHxsWwsF0WutmHOxVgwfhAlCQwdzg17Tb23kjvODADzs5K/GFJKCsSl4AjDELdv30WpVMRjV66gVCo5Bc1Oz+DiQ+dRGI0QRkt5gkoZhWoVrFCAYRXFFJViihn5GSJjWGkCD1JPA5iPTCP96O02PRmYwPg7dMwPGpQz7IAevE4AJbI6tGMTGR7Kp45pL8q/nAg7Oq2WW+UkDSZq/djF2Hhl8hRDzRliBjlRSzj2lelguw64eWl+C+WxeQxlIJ/xqH0jQs2VDfqbqxk34iQvvdClc3HECMlv9hMnlRYznLl6qerFqfEp5ZXkCDOtQC02Ic8yulJE6gSAe66g23miZcj+IG1FlR/gHByk+Jf+kjHkPQUPUJvuJdGjxuxBWWYkmKNcFMUbBiluR9txAE86h9WZO27SHAJ6J2cixIuK/XGDGTzzBTq49ZsEnjQpMi4NKEXcekNO0TbSJ9PnS0EkBbPKYVYKrvkmnlrTOU4Kf0h9xo2nNj4pA1n6rOKJjBsLycTGYjLe8TjEHYQOnxjFmEEymka8tnW+fG4FPKR9wby9npFcsmxL6jbCL+bGzpRGmV/P3LSX9xyU+EyFDAVPhrYxsBwabQKkvisUGerNAjqtEMP+wVkNAB5gx/+CQZx4PyjIsFwkz4qSCQRRpPUSibf4T2AKfOaDExBI2vDL8yJuVn/yMBKCcXdnF++8+y6eeOIJvPzSiygUAjclYwhY4KEzA30xRGQJAkkllBhMIcjoxpA0rSnyrdJTZM0Bi6J9ge97vyfRWJi/NJChCZzkCQ6WEzyJkBv7gqgfaub6HARrtHObO23vR6ZJb/+kenDyxzSa4xopvjyFwXNKgT51Nmo3FdCQ8tAugetBbb2n1QkhX3NdD8vjcDZ5JQh0wMN8R41DTtuHpJd1oA6wamurPjKAZlfEDKxRBwWe1C7Evs80LLnzNzMo+WnuMeIDBp3WReOX7tx+q87w5RSpIsMImFjYDPoctuZkRgqljzn4XCo9kFFHpPqdkh5/s1npaIwpXl5JYL5kSXR72owuCTKex9WMOxcwW0O0trlMJI2wBMiYLW7PkPjsLJkyDvPUb2ZzVRyxOpPlS7vlcEmHezqXi9+mlhH5Fo1MMpZofh1M8QVSZA653M0zs9pHBnmVUx27FKYUlQ8vIc5uCDdFZrwujzDrjjuP3X2NCEncSkxvmdvbPh6Npd+otxtMYUzznCTG+DCg8jNyazamp2nHhlz9HFuwxjIZ2jSWzPgyJJxkuxmBlKkA3Q5Hv3PAS3smWYFfdLAHbZz4zQiZk+fA63rO6TChmSikyLgAAqPC0q/YleIchylj8ujgihtGkE93d/ewtrqOcrmC73znu9BT9ojFzxgYY3jo/DlcunQxcfA4HZAhqOLrPNsVFQ/8h7cRMonNSbFaSvogBv6YduEvQOHjwb5I9mQex18EQPkkNoBCxoJ2Thl8ktBjMtPXuvCIn80iuXnrnEEaD/7XHjq8Dpw9Prg1+IT5JV/FFxE5AHIw2vUB1xESK7O5KassUV5HPWNZkZw+pMt8GCmZm9WVARbvMiAelcrNFyxa5iOeUS6xlukow9RBsX/IhIeTMpNdBHo0sHkIT/zmtoz81RwRT6uaTUgfyitCI1MfISw0/scxQPVWXBiSCH/CgtxOwe087qUuyj2PRr52IEYlxUOanHMdMzOpNY459HINi//VTBEjgmORyuFZGUD307Bbch9AyJArCexm0/zrOjiWqPBATiNgrOrQUIVq5Hj0UgY6bSyuNHf7yDGfcg8jMpIs0xKf1I1n/ePJepMBUlLHF3PoEC9aubYILOKoPKb0m8ks/rBnqsTqd5EvVi3bU54Yh9StDGTGnjzwQqElgTZLCPDo9LdJ98KkVOVBwOHRNn5JMpASFBhqdYZCAPS6IcJRet4vH0ye/x4IjFGFTFmYfUM1IvMns5NmgOyn81iaW5eRUmKCfvIlMa8nMGxTyuMA5ufn8Nxzz2B1dRV7u7tWqaSmQYBer6eRJBraTrGJNDl5pYbxaAaVnZuEGMmNMjwtTPkotQvNjTP3C5PElwlXjkER05pj45skJNoRiHtpAjVULZPTDKBElrsye7hdhCvGEou3LT/712FcWa6LlRpxicLU95J7CLUMwrjVFnIoyY2zjS0lrLEkbDDyTVV56cR1VycAkOoC0Dt+MkvW2mm48Yz2rdF0sh/lJnqGd+Xua2OauvqpbAvFPbIoo++i3CF1UCxczOllu6gM4LpSpnGf7Go4ARRCq88nN+nluvgUJWC2DVMGui2zeDR1h8W0V3Z5Y2tmf0bZx9x5BhJAoczncd25wwCqDnSYeXsgxV9USayx56SVssx22pyBQ3AZeZi6FsOam+2g1KWe28Gi8aQ3MJV4JVJfwRnMvpg+lnzNnWRmO9toDsy8Zom31juTN2wwxyxJShuY5DcCzRBpTLQeq9Fm46g79OGPEmecsSrecm6PAUqs+YpJWjx1jm8vF4+hIH2vPcC8gSoykDzvs/CKqSdcBS5NVpBxYfNuUllCl7q1kjj8+agMIp1L6ZARUqIPpdznNL2KpOpACqOBFLsGAjmUXM8KTuLx+iM9IUtPkhkfS0+SGZd+Gaed9wOK/wOOSj1AsczQ73EMegcQTDkwIXskips8jFGByfAvt5JIJUBejdm4481EoUZw0nT6FBxZMk2MaRxnTT+v1at46qknsLfXwtzcLIpFs1l4yLG1s43RcITFxYV44hLo97ZHAk1MGtRMKz8nmWfdu6PmfWV4G1VH5i0M2X2ajDCJAIrt8nmDKWMUk/ZlOZ9Dk1jQPpLG1DOFNmkEmaxAprLKN5GFQY0mw9iIwc0ov8TRFGv5mU5crGnCYxZKpMoTw6xzbh265TNlGUJ+wIJcWqeXMrHIyHN5kPEQMpCi8UetTU/EgWxq5tIh24PrEqHSwwiKqJ7kxOhXM1R8+eiCG8vb4NycoSHZg4sZGIxDfQHXpFqOj8pIDNyY/VC8LCPLZNYz3WDx5cSAEUBRZdgnCmlabPqoRe9hIweBIFXKKZldC2ZaLx7hTrSz7caJocC3dErrbVjl0vdctYmsq7tnUUxbRQ3K1APNk3Y1fGC0sY9+3zOC1Bs8iStL0hoRS2dxqgAJV+IQnEcbYHN9vLJ8R5fzgSwPoKzqLumhkM/SMaSgr/t9w9AoJYlrU2jxqR+DZy230y/GE0qOpJGdiAxrWpYp5iMMBk9Y5TKtYxTdXMsFf/0T2iSm7cVmyi4Wf9Xj5BaPLTqOIt1uHg+ByE2VXx4Vzsxcpnz0ShFZYGSveouxKTCzWli5rwlI2the0MJH/Sp9KscnIVBVyd7bROo8IvsCzsHVceqaCL3ZbGLr+CvipVvaEGkazMLl6Wb6Mjdt3kTysGefn+CBVDVMLRlG/uqn+wUZTCkUgVqRoVxhGPQ4+v0QfBQvg3JB5o6aDLjFHTIB+4Wc5KYmHQeXWucslUF2HD44mI1lJwXsAFhE264Ktre38ed//t+wubWNb//KN/HkE48b6e6vruIv/uIv0et28Ru/8WtiOU9G3BlexaBiUf9GBoXEQRSTkPVMSQOPLifKwibAlbppSu7oATW5909pJgxHrUF4zHUm8ARQAOjjbymXJMwLs/jPNcBcgp0v7pw5LMqtJFHGeIgpS7O8a5S7dZJfnCMI9eChRjePCOTE5PGZ4IoCWlWJiBjZ8qQcumxKvpelW1uSGMEQ9YWWdILoQzn7hPmbgJQDRvP7li65HoEKnHmZw7ak7F8/Zt1mmgG88RJveX784qnuLcDkL38wWsvepKINkUpxekjh1pU+c8IzI8mr37nnoYeLZb+SZ6pO3Hyjxzg3aadlEWeTdin90k7pp7pKbsTIibRJApcOuO0a1ZEusXB5UBpJlhURMwb0hwvyPLplETuqGkROmdgkmZYmEsp9FuhzeTqRvwUsGlOBdsI46JKURT5aZHsYDjRgBTIorSZXOk67R874KPTSwigG0zkzxpeklZu0MkKfK82zwH5cwaTowbhWcIwAoo4/iXZQleun36aDBFCiTLFLEEm7K2zEdvDJSy1D4oAMVtpGTL7SvGwHTW1+laObRfKRMbmJrKSTfOCIcHBZh7H7xwRbD2bCmshoeeVKfBZbZ4wtXlJhskEBuldKochQqQcYDTmGA45hn2M0GpPYQ4tdSOvbtqe+JJCB3Gw1yhbwcFrJmycBEWMIcjTx0QiiJPDwgZ0oQzRrq9XBzVu3sbe3h7t37+Lxx6+gwAoAgBAhdnf3cOvmTQyHQ6yuruLSpYfTiDaBp7xyHkbGlrI7mNIHXB7NTPEyYvL7nAFSV+04WOqSwdBwk1y+czA4J0vf5Gt7EAXZ1n/OnMYMANfVlzxAv+ZKLvG4aY6hJA2R1BFL+FjzsOZryc3+L2q+irkPkr8yeE11vWu/80Z+hQEQWoag3lmWGFjxm3fqaEUI05INnQCGesOt7PI3MvbMwIn5qww/ANywboVTJ6iJvn7RPdiMGUgmGPWiXYToyxypfWw72FntB3RNlReyMr9vR5IIL09eukNDLjSZHVjiimOhZyfIL5+W12CbQGTHBTjzmOhUcgZaiqeWsk4Es5OMGWWa9OjBTHWSoWdgoBfvfe8kGdQB4jpYG3eikB8fN6rMQTa4Jv6TWRtLKln9ZZWo30R4jS/WpMNkLEadoMSj0eWc1CEUre2QsigSw1Vn2jM2ZAHxNJpPfHzA6I2DwhlzseAfXyzmmrIeN+4tZrBy2w6sTYHmP7MyppRxaRC3pkYy5ABt6micim7XGJinXHv8mimkfKWDZxKuT0QoczGNj5f0i8Uycdzmx2K2LoeHfeXYZTQftJ7zmCI2hDD7j7aA4gFjth/TiVSfRjrJOmFH85F1H7U5DaS4e6TIwIspByYF++ObfWDJkCUz1tzFZ9Xt2UHOSpF6uVhiKJYYeC0qMWLczCXbQzFvHVV6OrY16mx5xyj3MMFDV3ZZmK1S3lQ52oOoegN4jv2IDySIMskhoNciHxwsLMzh5ZdfxMb6Bq5cuYwg0KfzMMZw7NgyXn75RXQ6XTz88EXkrmGcFwFLsSuIovtyfEUJBfNpIc6Z3qdA/sjpxt7imE0KI7+mMj0AOfYlgKNX6cmOJReMkcXJl5ak8gl/UYHIKCPmJcb2dSiXRtGNeLRckpUw1jRtnDwT4ytevqh6RgNRGmi2c0WX7HAxNQRqmrSBkBFjn1DCNT0ynXIuOE1jpqUBFPVjpRP/W61rvNN5PC4oqaMAqV9sh0o7hxoLs/D6nDBtT0QCj+u2TFK6ti2h8XLjvcsO/uN/ZVrdpGYaM8hGzXizN5VjwMmYkDioc2nQr596sEX9ROU1zMZRxcQFhnSb6pTamTHoBuBbNiOT6v1DYmSK7MJIp9C9JBhg8BJ9LrW9UzK9tASU248e3aeYGDCcq6g3Td4ygzQqeBrVyVjeE9XFNoJla9qzjAy80TpBQY7VKw6zE34zGd3p/8AaNyq3Ue90SE3KYMhAB7jbozSzcFKjliH9QVGqtnayU/1D3F+67xThzdhgCmkgzsyZd4wxWNFSgkHzuD6DQKenwVBJkXveox/oMjKuPo7JdtG/yInXlFewOs/soaRuNbFxI25AZWcSMjX7xGbS6FfOAvHxsQ/cXhI2g7KdJe+T/pRtIAOmZn+RHZBIIIUzsbQn9GixLG0WSzyzH8B++OWFuE5zEh1Ofe39guheWAcRBEukRV1lH8VHAsZspuRstpBISWHrwYwEZE3Kc3TJ+EGUiSwoOxpQq9Xw8ksvYDQKUS6XxENiy9XrDXz7298CDznK5fJ4sQa797j72muQStuJjnGpwCNvTM1OkYav3GwtbpmPtGAMdRxDb1oFMzTAYQTCxgXuuYpJcOgw0aK5LXU8zoNVqls+l/8rtadMZcPn8TtAptfs0mAfJunioLSRgZGUljhsZMa54Woo09SZ+WIZlwpXVHoo6sEJNlUsjwwwj/OjyqE/ZLmNNPCMNuWeX8PwJPXi5rVK6sFn1E/WjqvuIfhdCUVdHtdHY8YP7WvtJNgoudGIponP7eIdU1adYEK6L275kg+P7FuDZUkfme99LaLLlYid6nFSH8PRk0kkvzCj7WjJqnochiNoA3UZnSAaiDNDMuhAEUGr/kTjRQa5aEa7YIPHPePWArNmvveyM+OZ2CMmzLdWWxmBJcWu3M0iBR0nG4Vyk1rDMTQxg1n3Ai8n7W2PFQ8tmmgjhe0H+9ghsJ64ks3MYxdh3pBUMSpdcZUcgwqNZHjd5nZX2TORaN8klSaxSh2ibSGX++xgCmCxq8JlpqKnsajtpqz2lziYfMbJdQZQ5TOqkf2Oej6fzwzBGscNK95lJHU8yXL2iT5YT+ouDieqYpIA7zEAXNBgcLvXdjW1t/3cd7CPDOYyYxoM6ceIJnNWitne9owUFUhxhDcHPSUoc/d4G5vQmAdfbOLcVGXKkhlrEkNlS3BgQGce7g/R/lGMV+wDKtgGmwy/KneyGDyUtSo+9cPohaNZrDIj3RxTqO8jWxwcjeU8cZC9HmODjEyWSiWUSv73jAHlctmiLc3sSyvYzageMeiZKOSdKlqmjS7sTQptg1yuMddGZiTs44zNDLTmhUku5TkEtviFAr8hQt6q/rX4xEjm21/BDZ4wWaCPZ0wryaWNkR3+o1J4LOf4noqCvRsSwnZKohfaCyJJuWoPwwGIfgz80cwJDlhBAf1FmwPG13c9C4QYn4aDZdu3dK22LNM0+GHkcT0R6tfq2nDnmbwNOclPLmj/6PNKSJMZEotKI5PvVD0yQ7zTRnmBG9Y9ocgja+Vjgy3pe6dOMaUm8bn9ijSyDqhokmk7G8oA2qCP6RoDvBvXQtfHNxvE4Kmo0YKAYWqmhHI1iG1/6bAOhxy72wMMB6GmwPqaH7egkFbDeU470GZk+PvXD2YJvmAv16+1C0MjJzA3lJW/nPSpmClh9oAYN9R8g5e/qKzxBpwM2rJBnKT04Y0t0Lo3RHxC28sPPbRU2sbqkra/XSyV0UZmbji/4tcKbnIyFpjqQfVXYiMjzBpfejz6ArC+hqMbFJt1cJWi2u0g4qGkGASgZwECujl8zgTdRQFWfQVnSeFjalsKZsjJxK/7n+owD9GqqzxBZ+tDQRzofuLGM0W+Cl7oGusZQlF6pq1hueeJETiJWY4jR7IxE5XpYv3U5hmd+8v24IoZA1NKlkNqgl9AiNOchwC+IjOMaea7zkC+TxZlq3ekkR39uf82m3gQJY9ZnApHeUTZa9hiZn0k4/A84uZ7Zcyr9dJaSTtfi+W0Q2nQEQudM06WhhIzggRTKDp1bT/MWclJ762SCd9ki5wMZKTJLw65P1GOwk3zgxhXkRdAZy34iHLcFuMZd9Jx7hpfDl8SSuLKSXK0tKFMx56NxP7CZSGSEFKj2ZS0hvFs24rSIAMz17lwXTLnnvTkV+Hj+lfTqx/SmTBq+RDX6QzDjuC1y3EdaNcAjjGfjXy2IuTGldvQDm/5mM3nPCWCL1G8cR4nwtSXCU7vda0slvLjZgCLdiTjIUfIPSKe2+3B6I2+JR6q1gl6gYhNvS2ofTNP5BvFDgYjSGeI5GBAqczw1IuLOP1QM/HLNwewu9XHT/7mNtbu9aBalOgWIN5JZLDaisoS+k4OAmNs+qiBt5+U3qNE2W1KszPLuYzKFnFPa48M6QhzqVvFGLK5yOewqzr7vDNrTJhjzQ/ZZilITAx2FY3XXuCxNJj96NHYEV5zW3PSJzQqZRYJMIZCAHU6UhiSsW4FVPRYF3WkS7F0z1hjQ6SE/kKVJoTc9+ZRyFZaVyBEeWD8+sGyCizRQVE6wSSS3bdJvI9i71byxvi1Aig2FllexAPyH4mrOBCnEqQeo3pJ6jJJA+1NTgLP8rFgH7qviewPfRKh2ixalWsvKxKtZwfiDHrG9VucvDHtuk/YD4n7xpSSJZPK/wpiYHI9O3bxCeClbOzAiX2TYPB5h1FKwTma8Zd+JsrEQAptx0jOiwdqLMggCV26o37sdaVRwMVZ9hPhtI9iE0e5MaNI/yRJUgZlRtdS+cWDB1inSRWdjkdLC9sVEw9ddyzWQTVsE49xTS0awAhOMJOU6J00s/3OPJ0eb78zylDjg3wdJvusyLLlaJBkeb+u6QGlCBaOE9c0+Y4s4aZTycl7bv9aM0m4viR15sTy1mNfD1Nu5edu2YBBE33GnJQS/JvmKjx2R1qYE/0yb5HJHOxzBmhQ2E5rp1ezBHxtZzk4FA/FXa4EmFusYm6pjEajBDCg3Rpga72P9ftd9Lt602DGbIHpY17mPiJXROQ77/w5OAkO+ZIxcyyqIAEQMIbGVAnTc+VUx5xzoFAI4LYQ1Tv6WYKrqX4ZSaccJfLQj4M45jIDmTlKK8kjwpmZVV9QHWo/UPzBjA8a7sazMKQY5TFni1SefDyyOxr84yPekdfA5D4gVKbTbDy5fbXETKeIcoS5jMwNJBktFGUsBAGmZkpYWK6gOVtCuVxAvzfCzlYf6/d62Nsdgsvpc8wukZbDyMck7vQCrQE9JYowwASA8I56Eo/cHU3khY2X6iWSwHviVVQno+6Zq+nfV4pSrAL7NrmewBqnlbTxBgzFAkOxGKBYClAsCeM4HHGMhiGGQ3HCCg9FUE0IctK+xkw+ANasFBiBFWgbW+axHpr60ZVzzHN96PBAC/8lhV/GNk82z/xAlVtKsuQH8QQYtsoYfZIaOyfwYIMo43TAUQc6Q2UfARUl9hk3hLLAK8qRBhAtw7KBHKdF2hecMRKISdlDJfqjjBpfZVK9o/1BJtRjlR+T6Sjy5jg0eQwWw0HmkZHgc7Lse/JFSToTQYFhfqmKWr2o0lNHNo7obnuE9dUuwhHhOTJXmR5dSk3NuP1WjP08jPIFTE2XMTtfBkvaMIqb1I5GHGt3O+i0R6J0Uiexe7f2MuTYkEaaQya9J9XyzUaRaRwng05poZckrWHc2gXb+eBzxJn05QzQ3cG9Dp0RO7FfcJIGfhkVJ0CSz3riXmXn20SVlkcb3OfYGlde/PrF9GwZV56Zw/lHZ9BolsACUX7IOTqtIa59vIt3X1vH1kYfPDQDkIy5dbZlenxAxT+y7Br4N4jVLoKxlEy+pXqLFG9vymfmMcsRpyDo9HlFF3Wq5BiRPFatF3D8dAOlchCD3HTdHL3IRf+EwxDDEcdwyNHrDNHeG6LfGyEc0TZICKYQ7jGCZFyWG3E2jyQXGSQkp7qSv3aIgopCI8YT2QHjgncFhq8tPbKAK4PAlRU2Ogax4a28jzMhvDQwoFQKcO7hKVx+Zh4LK1UUikEk48Uxpat3O3j/9Q3c+LyF0VB3lPgRFOh2k32lZ6bYG476ZmrQ8WTzk2oU/40HjQ87DeSZ+bP3sKscGMFHOVqUx0lSpmIwnKTyH1Nt9qDZwlpryXCqLpcbKkylVopIE10IGGqNApozJcwuVDC7VEFzpoRyOUChKIKW4YhjOOIYDTkG/RB720Ns3O9iY7WHvZ0BBoOosMgoME+5lNaEDqRInpFLe7SU1B9ztFzz60HaInab7xdy4/Iy6j7wHSAWCV/6GERKmx8OAfASYYaMc8IY/l1iKTEvswVOYnLSk2vzZXaT58g60SBKXkPplwZSghRuevGPMdvo1tdqrMrN7mTUn0T5mJWYKixz93eRX90nBFMSafc5UUcUvgQkRrBPSo1Okzc88VYXbZo7tjEEAMVigPOPTmPlZC0XWTsbfbzx4zVsb/T18jSjaOuJJzKizDUuX5vOs6IxMsLPX55BkGPX7U57iNe+v4pOqw1wcz26IsA+wpZHFpoRvLJmb9hrwYlhSWcEqNnGxNtRTgi3+kul0WuKuJPIaUKLu8gApjwjZQfhFyZTR8+MZrAVUIrg8Eob+fmdGy3n5GPWr69WnKbmZlDaF2qJn1JvziZqNIt4+qUlPPzYDIrlwAgaMM4wNV3Co0/PoVov4OffvYftzb5VjqZcOc7aN3WPWGVmarfuot+MWRFWe6gupLhlH0rMuqmSGsMB6jZIJ1fWSS2dILrJNvcMkpSDwhW/yfczcxW88PeOozlTNtvHoiSe6cxj3MOQo90aYnerj53NPu7fbmP1Tht72wP0+6Epi2Q2ptx0s/ZyzKqGJP1Fx7baWNs9NtfHvQ4omWf77x7PTrW/PWJgXfvKjQY3kb+y/tzqR1UY5WeDDx1x6Ru8Bn8UAobzl5p47ltLaM6WATBiBzEEBY4TZxtoNEsAu4drn+xZR7Uz9UO6BEBk73Bz01EWEe0zxC02iAW6O0fqlvqkOzT65EXLxGqzH3rvOTgJGMnczOIG0c9Kzls6SKUBxQuFiz5ReIleMGY7wegG0I8OhVKA+cUyTp1v4NjpOmbmyyhXAgQFlhov5KHYl2lvZ4C1u13c/qKFe7c76LRGSt7pD4ZEp1E6YAZSaIP69Q0ZH9G9mJkWN64eNPh6MlOW/SbJVFAuur4CAK4ePRBMOTrGS0cG4ljsTXomr0zMnV9DHj7MF0TRn1vcV7kQ/ZJAjNSPN5jMrGIjHMs1iDNCjfMmpaGm3xMdYRiyWpmYM1MAqCUKPtoT+5tpA/oowqFRtm/pNj6l/pyW+8X1zA4nvdX3hgFkJOYICiz6OpStopxzTM2WMbdUwc5mX/GKPiJX0kgIox4WTFZnYNGeQdrJ1fzHUauXsHi8hlI5O42ACBAxCONM7dAvDUN7rFltop5J4w0wnDFO299qfNUepCxVG+oEcPrM7kcPXVYbCvC1hyWhPFm4QVjkjHhwmfQw645+f7UKkcKJed5R/JaTRq9lS2sUZMmVaQZ7SZAPnWZjQMCA0w81ce6RaSeAAkjRz1AoAqcvNLF6p4N3XlnHcBRGKFzHQ16oN1bT0JlQykn1UZxQodDzTk67NyZQWe2aR4TR5VRc3XO1SbtJo9W0hjNC8eiFfYwxlEpMz0TZJ3AOVKoFzC1UwDlw6Yk5tHcHuH+njWuf7uDW1T109kZ6rEa6VulXqlwtfqEz6gzXnMgnQ3Vb7ruPJe0RYwYmuJkI0mEmglTRC/M6FmQe7xvBs4ooj4x2DB5rMNnFcy4OPgPQnC3j0afn0Jwpe2W35KmZ+TIuPzWH9btd7GwPXKOam/QwQitX9Zd2j1VDamhzu4fMqtiXqe4qkZ9O6hgDn2SMvZWVtHmEOZzGvG1FH3HrsVmKP4Biqg1PAIUKGg6wQMzqu3B5GucuTWFqpoRCkYkSMgofVgBKAcPcYhmzC2WcudDA/VtdfPreDm5fb2PQDyHtGkYEkQysCN1OGJ2+M0iWz6kMldkmEDiJGWuTgzEKyJBlEmS7+xR9BVnBtrB0G5oj3c0FmC09Xus7qQ8ocBK7p2IOSJUpaSqRwNHeE+UXDdSXVfIIvv7S1hmDaZTKP3R9OJ15LIeLsI2kkUACKBq7OVQi49DMx9xZKdRwtGg39q+wHQDDkDsaEGekHgWYDG08Boktbt3yjGtO3E7KD2MSKJwgYPF4FbevtdDrjnSpIURJzpccy90mDBmqOcLEWCODZm6pgqkZz9FbKcC5+KfwS+OegzStNkG5ZSxqYkG+6NH2k9e6n2jd1DW30+s/Tt9xW8S4nRSnbCWYRrW56Z5DJCnDP74JdeSzZmYnw65B7MDQjeY3FeyW4ookPzZ77JgGc6lSwIkzdVRrhcTAHGMM5XKAE2cb+PjdLYz2woiVeCSvzbz0a7ft28aNT98Thyc8DaeCJ0D8DIE8g5ybyak+sOucuEkt6RQjgKK+Dk9WatNjDhkTAZVyJcDMQgVnLjRx50YLn7y7hZtf7KHbGUI1Dhmncaa/WjrCzMYxakj1u6cf4wmXyBJSMc+4jOpLfT5uv/aBolMtblAyUAdy5QCnHrwrYWzp7pVDAbC4UsXsQkVt2BwHjDHML1cxt1TB7vaASlnTJqHylNksLuhO3BeWQQV4HD60BFUm894gwGwVuk8T1R16KDPCA7ZjwB1ZyJl37pRxZxWQQLa9kNxsRlUBcu+8jy6KpQAnztZw5dk5LB2viT1PUmRELF2StxlQqRVx6kIDc8sVfPLONj56Zxud1igyw0WDyTags8W4ZXvIO0aujdN6PNxsD4GjBkfR9j2KPsKXASbmK9iYbEcxpuxsD61X44ztfSAwZvhmLiwb5Aui+D4jkTJzd+QDHMnSUBsOhwjDEMViCUGQ70v1WGDj5/5vsTr+Db2sR7UXN7qCyc/jMqDiC6bIAIpf3pNytcGt/8KdlWI5QxwxQlDRub+OzsQqGfmJ2FLxmSbBmxmEEAXXSfIItYy4hKJPdrZi90LxTDuh03GNgAC30mcFBswtVtCcLaN7px090vv8iDIsp8+60MtV6BIeXSEOoFwpYPlEDWXPbIEsEHIu9rKg5coKRHe2b6fbNTKxoufS+FYbR7rNbJQjzWby0Zo8lfi5Cvb4ertaL+DUuSlxRG0MSFp2t/u4fb2N4ZCbxDGihMg0nLjmjOk13WS+fDH0pyBX/ewdas5DYux7i7JnnXD7dYSWoVgK0JhO32xV0lGfKqFcCdDag0GwETBgUDyqxi4zm8utp7/NRH4qMMxxr04qsdFESkIG3scS29aMRkOXcM2/HlVI79RfGUBRuuwQQM5wqNaLOHdpBisnG7j26Q4+eGMd9293EI643vCd0C5nnugu1mNUSTjb2bVd8qxynnYeo+WRl/ZSFTez552HBuJByp7x8yBREl5SWTTLVj63BrBRJEO9Wco044gxoFQOomU9oJEOTSmP+osYAJzk99FNqdF1J/liKaJ74KSn1m8TW5XcMPNFjMNuNG1kHCotS8gxD3ymyog5pCsxLvWvSUaUTTKLX4ZKHViqBHjo0SYef24OzbkygpRgWR6Q8nRquojHnptDuRrgvVc30d4bRd1JGZr0FwdZ/iWUu2xHMgzUXdzeKDFsnQwxeske3ZkgNjHLyJFZcOmXmXHFNIzxETYPvqMED4BoW06Yc8s4XKaKUzCWwE/QQSz2Zn9pnWSx6VNGl21b5Cs+m/6NYLzlPPsrc5+Z9g+cc4xGIW7cuIFPP/0M7XYHJ0+ewJUrl1GrVWOdLc6FMbSzs4Ner4fl5aX9B13I7BRDQEuJDSjDQxpL1NCXkXd1IgBZ1wmKwroGoJYmaH0XDUEmylTOXlQQg2n06zxSNZvfp8x6Yl/9nSlCnZIkxt3IhSMX5MA1adrik7odkdQ1hpNFEsnZKeMHxxhq9SIWVypYvyeckjDW7TMpJBMaAM6N5S/me47mdAnzy9WxlRvnYhNZp5a2k8AjJxFQjotyA4nhyCNDPjTw6NkejsozjE4ytrhse4+zQgTE1HQJT7+8iJn5cko9gRuf7mL1bhfDwdB6KX0SKWS8TSCAxb2wE1kVTIHYVLYBS6PNlF8TkXB/fpJZ+RMKEc8WQCF0ssDjhVEqCJFKroODnrRiykFq1vvA5lEen4MDnHESDExYapUAXDojHMYJcH560nDphLrZuHF/0CA3kaxPFfHIk/NYXKnh7Z+v4vOPtjHohtDjgUlSoe4i/UhPZDL5MJqhQqKwcvNKgkVdSR5Um5vGOiJU32tcudvMxs/cW1Uf4mt7Jp4Qo9i/PE61gZU5zx5WDLRNyPg3Nji2jgxnlmqjhpIBvk2syR4idhtEuNxDcD1Ey7dWt1O07mLJDLYBYzZp0BLEbAftM9klceNHXhKWh0E27Vyql6lciXi4WGK4cHkaT359Ho3pImIaft/AGEO5GuDSEzPgIce7r2yh09GzX+0NsANyTQMpNhjtavGzR4vIV9nA4UNiJ2TFFZvYlA6ZaKIVcjJo2vYbSKEKUiT5koVScnXQQRMxDgHJeZy32eMYEwygSLBHGZtcm+fA80u7nOfOnTv4y7/8a8wvzKNWreEHP/wRRqMRnn/+WfT7fbTabVQrFdTrdQyHQ3Q6HYADo3CEt956B7du38Fv/7PfQqPRmEwgRV4SA5HEUPQTTsQf0wpKB0KIMUYcHiYRKaTcs8xHYtZ3WpFIw40ZRqz+ciqUkVpmBI9ez2+THyAcCSIeAHDnztSvlkMpDR9qS8k0+3BmGAMKRYbFYzVc/WQX7d2BQZ3JgcQ4jxwTaatR45fSxCEM8MXjVdSnxhVzAntoVN58K0/KEvfcm0bboYzQGY1ruZmfJ6PxnMNcSkX+iraJ74kg+qqeJKfCkKtGNlBR+SElg5QFjtcgf4n75rE/HUozMVGaYaCRZAvseXjXmvJD+858DwwHIdp7wzj72oFua4h+Z6hlqzFl0K2bObOIm68p0yeCua+I7iYy6rluCb18gOuxx7UYyKLlTH5XFTH258oCTttLXLIihwhy3AQBsHS8hhf+3nFMTZfx/hvraO8No3aTy2st3o/o1qrXdFBNlvPNvTNDIRS3l1b66zhOibU0bzMMIe65Uc8YkdmGWPQgVm1gCp4wBNq7AwwHIYql5GgK58BgwNHeG6iPXZF41bOXFMvrgaQnUxAbLLaUmDfWMKWb+ycOVWl/Wa8ZDcJHNp4xCdxDhh32UHwHWBu3mwEDecXUhzpxb8h3T0F2dWh5VB9wqQC4xgsOsAA4fqaOx56dUwGUg5wEzpjYQ+nilRnsbg3xyXs7GI2sgCPtM49gl+l0M5G9UdRmab4cY8I+sx9uMZMi9ksWNDli4HKs+zRr7sQ3ebopR9p9yYAUuXhQ8GCCKJmM5gMqmnOEYYjPPv8cQaGA3/j1X0O1WkWzOYVer4f791fxk5/+HHu7uyiVSvjGN15Gv9/H977/AxQKAeZm53Djxk3s7O7ggw8+wrPPPo1CoTA5AtXXGN1IhoJUUj8KljDzuf6CqZ1QNTXb+pTi2FhS2cqlQSSNdtZE2YbShA6u+PA73c18D/2QmiyvnMiG9QGCp0IHQK4xGVt1rmn0cW6lA0mz75koAMAwPSeOHm7vDjTbK0NNe280cGLQLd1CabSRgEe5VsTS8XquTW9tEMfSSgNJEENnwlBH0STPGg/RzC5jqZyiWVfIpTJyZK1BQ0928fXAxOwv2xiOro0dEQjf0DKlI+fQZ9unRNbEOx1ptWEGP7grT2MCfh7+dWlwd1Tp9ULcvbGHMxemUK7G74vCuQi43L3VQqcz1M5EZLXrPS214xQ7Z4Cbl9QBsIPpEoi7qO+4n284ZN+SsUeRpIHy3ONlmHGQhQdixQmdjfKAxLfUrVPTJTz1whKKRYa3fraKdnsI8wMEyH2U1+goqcJt1xeG0hS+pysT5BPqUHt1ba52ouWT7ULl4xzCxA4mp8oilYDOtBM41u53sbM1QCVl7yGAY2ujh43Vnjqdx9BXBg1mpeSYs7rIySU6xayQHZig6GPbP0W105GpgizcyhRTpC9JyOmolPLRdrd4VL2oRgwkR3KAwwmg2G+5m745U8Llp+fQnCvhoAMotORqo4CHn5jG+v0u1u52oZYKMmbxh5SCsofNRre7wB1/PF3YZYGJKfJk5JMphrbXfmj6CsaB+Da329THuTnwpciCpC264nCNxy8yM/M9PTT4pZyJMhqNsL29g5npaTSbUygWi3j55RcRhiFu3rwFBo6z587izTffwvsffIBjK8dw9+49vPzyizhz+hQ457h5Czh//hyCPPNN84LHMmLkOVeOml5r7UwnBlNrVxnFRYwBwyCnz4jvyEh6QBZrL/HxL+axDTIwUuCk4KjJ3hz0+JOOXyE3p3TcuWYMus8Hc3NyeJwWro0tFWDh43ckY0C5WsDyyRru3WxjMJAWo2W8RwY1NQINmmxHOarT7GIFswtljC1WZT1DcSOMUS6bD2rc6eTU/dATeexBx6PlMSQawxiik5GJ4Wr4IrINaFub7W6vRJFHn+cJdCl6o/HtvpQpNC/JTfp0kogQ1/sjtLo0+RyBpAfGWnTLWTJn7dhIiKCMctBlUvLCTGFmCUOOa5/u4sTZKZy9NI1CweOYcI4wBO7caOOz97cwHOrjp93irL70sKzP9JFOlt0W3tyeL8WST6l+MDkspyAzZlJy/ZfwJncyeSpLHxuz47KTc1DAGEO1XsCV5xbR743wzqvr6PdHkP0qDEkO5ZQyt1+k45k8RuSjpET6R7OfpawzV4y6VFC8QrF5+SumGEdSETtC0sutfrbzb6338Mk7m2g0l1CfKnoDKZxztHYG+PjtTexs9aGW7DjjUVdC6ZWIfm7VXM+yI1KFk0rR8aun5sU2B3dusjibdE6YxQWp3Us0E4lj6KYWT+imypD6h0HMTAGiOECMPgDcgweiGwY5g9M1YgsFhjMXp7B8shrNkEyqh6krhgOOQX+EcMTBArE3VakcKBzJm3yLLp9brODsw1PYWuuL/b9A7V8ya8wm3yemIt3nBr79y1vGGJUHBGMI0iMgeycFqTZRTCcdxeVF+wpA5HkT2ybmRSZ6POZhLqCrN/aDZwLwSxlEYYyhWChgNBohjL407+21MBqNUCqV0Ol2cfXqNXS7XbTbbXBw1GpVPPP0U2g0Grh2/Qaqa2uYm5s9WEJ9xoqyYrSSo+uJjR3BlZ/DSDbyFZyZaA19oZSmqSRpcVDXkYEeKWSvYgUxmnwvdbUOGA5BE+T0Ow6qWN+96Zjb6TxH7kpjkUN1njkrZH+dFgTAwnIN9WYJW2s9TafkFcOR4OSe0ibpEg85gFKBYeWkPD1lbPJEIISTMlQ5kaGoAlQCQss71q0jKmPMniHOvLvvCidlqYEMOkrpOI/xgDWhmetLlxhQzojKpE4VJ8a9Y5R4GA3eRxlSWILKJS967dlTxkDLPakpIt3HzMhnN6uo2/ZWH69+/x76vRBnLjZRqxfBAo2y1xnh1tVdvPWzNfWF3PzCS2unpbBDqkmKH+x+J9FwJxAS+8x8IJef5QWpI2RtGGMJH2X16DDa3BdAUXRlhzDk6HWF00VxMMbE0ewFhkIhAAuSHTCHasZQqxfw+POL2N3u47MPtjEKRX3VCV5WcI6RdRWxPOqJfxizJOwkROFr2UJTEdGB+O5kildMcmCVra1fmZiR4tIFjjE5zyNnjHdMOM0fvbsJzoDLT81hZr6iZhZyzjEccGyt9/D+GxuiD6JAJSf2kEGPZzwzz4DjpKOYuqeZjMTa6XYwRckd3srKxXQ/IB8KK0jB7DlQgDGLMsoigntEHzFm7PnCmR7/Wuv4aVa6mchnDmrvUbnKMTVTxpmLU1HwI8OY48DezgC3rrWweruD3e0BhoMRCoUAtUYR88tVnDjbwMJyBYEnmE2BMXHs/LHTdXz2/g621vqEV/Qg4UyEr0yVo4NaftyczBgyRw1lGGt454AxFHpq1jGoGb8CRwLEnpgjbG3toFqtoNGoAwD6/QHu3buP6ekmZmamAQDtdhtXr97A4uI8lpYX9791w4QhGzXpqbwpErLZgZOsYIvjcTMepV7IHkR5UHNoDwCCoICl5WV8cfUabt66hXqthr/77vcwPzcHxhg2NjbxjW+8hG6noyP2AIJARLwLQYDhaIRer4darTZ5AhmEBrL0o6nDiIPDyP4nVJcRGc7IH66MC92t9KuQGUyhBjCZFM61ohS3ZImPVEo2yUb6mHp/BSakDLu8o5IzbSy7zqJ8Ye15Yj+zgin7XdIzNVPCwkoN2xs9jEYStyTLZFTDyKfrYRTp4ll9qoyl4zUEhf0xFQdXgQW6jEVuAMkpP/sMFcsJpGMirt204SkREUfJMI5JoZYDJCOd4/WMx6khXpj91mfLO2PZtilTykt6H+sIcpiBWg8BRpjFalNFnlNH/0wIzkOs3W/jx397G59/VMfyiTrqDbG+v9MeYO1uB3dvtNCK9k4ReWyiZZlCcOsTL/wGeHJbESltMCR1A5LQ2PWM5qNlHN+ar81nTPEiV/s9EHL1pZGPu0e8chKIyAit3QFe+f4dbK51CEEMhYChXC2iVi+i0SxhZr6CxZUapmfLKGY+yYuhOVPGE19bwuZ6D6t3O0qHSmkl6qV1o3inT0jxDya7LeJ/jUNQrMCL4foaU/tcsIME2nHWfSDvjA1J1SCirrbpatJZFBaZ1kwUkyK5X1S3M8L7r2/g7o0Wjp9uYHqujFIpQL8fYnujhzs32tha72E0CAkuqUe0UWTMTvG0rwoueNuG2Q812N3oaep4HenpD+aKyngX3MKrZFck0xjFpHmOyjzJQGrZjhI7WofQDwcmVRF3GARzo18NihnD0jFxbHUayI8X92918PbP13H7eguDXujwauHjXXz2/jYee24eD12eTg3OMMbQnC1hYbmKrfW+Git6E2ij40yeYbTmMSEVxWeChw/KrvVw5ZcLMlQgOWw1Prz22lv4L//lL3DixDH863/9O5iZmcarr7yOP/rjP8FD58/if/y9f41avYYf/vBn+OM/+i+49MhF/P7v/x6mmo3M9FA7WYLkS4c/4+wmK81gMEC320O9XkOhmLaNxBjBk5gsLEOaNOS5e3HsiMvhwr5nooxnpD84YIwhCIBLD1/EzRs38Td/87fgIUexWMTXv/Y8dnZ28fEnn+LV115Hq93GzGCAQqGASrUa5Q2wtLSI119/A6+9/gZefunFye6JIun03XgaO24Q2LNQaX7xFUc8MGeU6HTGF2frGeznoDqDmWmyzEqxwFif626Jnxs8LkRSoqMDtA8z0mfX1dBTFg41KyWyknyGIOTMBOlUkVkfnAM83F/DMQYUSwFWTtZw47MdDFvyZBiT6elUbGUCSvtdWY5MOVoLx4RDtO8vBzzadBWmM0EDKXb6ODwAyKk8tD7xWaSxph+6Ge3xbaSl03kygprYJkviAHPGIf0+7ivbhziuRKeWBu+nNJNKT3kCNkbjpafxuV1G3BISTZh0LtqtAb74aBtXP94RQTsOjEL3SCdRaoIzpko1B3zMeWcesGqgppp72cbIY7fdpEDWR06T54wEUrzlcb2HV3Qvx1kmPrBg2A9x/3YLd2+29UOqVpiQF+VygOnZCk5faOLSE+IUnqCQvJeSHCPLJ+q48vQ8fvbdu+h2hqBrsTjTvC0DKup+X7rNCpg5jUPkJyPPcusRC3UUBHJT2WOJq/SAqb8Ux9G1PQbNLjHDQYh7tzu4f6eDIBCbZYehWGKp7ZqEmtBiOHViTBnm24PGwOMzuGLtmDFdAEcW0ftkfnSlGECNO+PcRsk6ZCMl/YFN1ivK6x2yuk0YbVzJMfKQA3XJUSwFWDxeRTlToJJjc7WL1394H7evt5UepnQwAKNhiPX7Xbz10zXUGkWcvjCVOvu0XClgYbmCq58EGA5C0FMt7YU48efOuKEtYqIciv83yWJom042cQqeQw6kcM6xtbWF27fvRh/D+wCA3b097O7uYWNjC6PRKLL9xDLNQX+AMAyTEXvgow8/wWefXwU4UCgWsLAwhwsXzmN2djZaypZdJgMcH3zwMf7mr7+Lf/mv/i84cfJ4dkI4R6/fx3A4RK1WRRBYPmtC87IMaXyZxu6xIzbbJw1yBFHGMWGOLkxPN/H3//6vY3V1FcPhEHNzc5ifn8NwOMTS0iK63S7KlQpKxSKazSbmZmfU8ccPPXQev/3b/xSVSgWMHdyeKJSVuPeBvom1oaAVHJ1pyKgxZM9MsYxMLegixcuIGUXSchDjl+kNuwQNxFiXqA0bikpTFhX1i8NvNritYb9LepCCWfYHpy2rHmrDSlhQqp3pzA61NMbGxSWOyInMTZ8LjAHzS1VMz5XRbg0NY1Y7f9ISM+lRp9sQw71SYTh2uo5SZX9jk0Os6+acVlEbiebXPGqM69FIZ3CwAAhYdFpOASgUBH2jYWgEpbSxSPrKKD1pjwiTsyiFmSqs+l3Xyg3icRJdMemgM9Ns4kQQmiFgYl18UGAIOcdoKMqTdTcCUzxpNo37hpjwHmuWtKM3KikEYyFgYAWGYiGIpv5yhKMQo5Dr4WXl5xFOauh7v8SQ2UtmEkYa26Tb7v0gWnrCArEcrlBgCDnEMeHRqbsq8Md9vEJ4JK5xjYbMAVHQjkenfdDFBdKZMvYLoVkjRUKXHOpZG2PKGqZrS6uvWpeLAE23O0Lvbhvrqx3cvLqLZ15cwUOXZzN91S4UgfOPzOLm1T18/uE2Qk62V+QmP0je0R8y0ioVjZkACIoBClHfhyOu+DHkAB9JeaSDNLJMWvFsQWWq/C3+45FPLXmQAUEglkWNQo5wBMjZimYc0VPHkBODWfeSWlrE9GwkOaOCc4bRiGME17HyzfJyakv1WFSi2SQMnHEEgQigFQpQgdHhiANhpBNCiSNU7WT+6CCFdxypMmlbU1llu+hpIAuPeCVg0bInYDTS9IqN0glO54MavadGIUznhpJryxVbNpJspXKA6dkS0sxmzoF+L8TH72zj7s2O0AukGDNgJArY3R7gi492sHKyhmo92bUJAqA5V0axxDAc6LqoeaZk1ph+p2tpmuIcB7gzolvgkYYJEJtXxucExhheeOF5lEtlLCzMY2FBrED45jdfwtLSEhYW5tBsTiEIAnzzmy/i5MkTmJ8Xz/IA5xxvvPkO/uqvvoPz588iHIW4d+8+Lj58Af/md/8lFhbno1nO5lIyqHsqATh4yLGzs4vPv7iKTqdryhdRoDlGox22GWMIwxCvv/4W3nvvA/zzf/5bWFiYB6BPnmRgavwbbeU+SodxAihfssAJhRxBlAPm7EMGxhimphqYmmoYz8vlMk6dOumkp+kqlQrOnTt74DRSiA2oeGx2p6ciRUcDH+JeCjxi6JKvY9TwFQ+4ipyqIys5wcegvyJys9zYJT4GUTH14NYLbyWPHoz3/TjpoZWAG3cAqAPJ9QtmpqOTEzjnuo/Uc2mwaseFk/zqKoTppI0NYqPG5RN13L/dib4MMYSywBAy6mfkCRXBggklJdPzFSyuVCcjl7lsM124GjeEmdXeRPQhE8ZatVZAc6aEucUKpucqaDSLKJUDFAtiqdxoKNb2d1pD7Gz1sbXew85mH53WEINhaPSt1e2qzvVGAdOzFWe2+txiBcViuonHmKBz+WQNvU7ZbAIu1qS35AlKIH1hG8zcHL2MScO5jLnFChZWamjOlIRzKmdtDDmGgxDd9hBr97tYu9vB7lYf/d4IIQ8ROyWaFk3eV+tFTM+VEQRWGivbaBBia72Lfp+jUGRozpaxtFLD0rG6WDJQDsA5MByMsL3Zx43Pd3H7egvDaNlAvVHC9FxZOXiyvva45BzY3eqhtTc0XqikUcf62VXwVKEglqhNz1Uwv1TBzFwF9WYJpVKAQrRkbTAIMeiP0NodYHuzj621HrY3e+i0hyJQpZjVW1D0LnKEIuLGH91czQrTy+BIgISRMWXJdW7kt1mM00QZqDB/aUiGkzfy+WjEcf9WGz/9zm0MhxyPPDmHYik9kNJolnDxyizuXG+htTeI6qhxAzIwSRxNMlSksSolSKHAUG+UMLNQwcJyFQvLNdQaxWh2jAiYjYYc/X6Inc0e7t9uY2Oti/beUAQyIPe0MM/L8AYP7aoZ3qput2IpQGOqiOn5CuYWK5iZraBaL6JUChAUxcyQ4YCj3xthb7uP7Y0etjZ62NseoNcNEYah/kgjQ8GGTWD2DAAUSgxzC1WUyukyrNcdYXujj9EoVI2p+l0NTPmrOULyWaEoTl6aXahgYamK6bkKKvUABRlMHXIMuiG2N/tYu9fB5loXrb2h2OSUAc2ZMurNIuRmwj7gIcfu1gDt1ggmE3NUa0VMzwu55Xx5J3aZ3Adm0A8jHcOEjpktY26xjLmFChrNSMYGIuA26IVo7Q2xtd7F5lofO1t99LuhHlz2zBxmzFkx38lL8mtpPpWOPmcQuqBSKyC2gUhZrZ0B7t5sYTiUS3iYOmVSjixKUhhyrN8XYyD9NCegUiugXA7QbY+MGnpqq+8tR1XJNGbXeMJgoPUZxEcJ9tkGnqyTrvHMzDS+/avfAFTwAGg06nj22SeNdFNTU3jiiSuq8LwzYjjnWFiYx+/93r/G3Nwsfvyjn+GP/vhP8e57H6I51cDu3h467Q4uXDyPleUlvPfeh7hz+y5OnDyOJ598DI1GHbu7e3jjjbexvraBnd09hCMhR99770Ps7u7iueefQavVwhuvv41HL1/C8tIivrh6De+99yEKQYAnn3wMw+EQP/zhT3D16g2srCzjV//eN7G5uYW33noXg8EAj1x6GI88chGlUlHXMUtVmfcyGzDnIl+2IwKZgyhKaO3XZdq/x7VvOGqbA+0LYoIpSc2sDTZTCekZJSISQpWf1oZcRxo5DK9B2oX6cRRRgTsrhasMcoPcSBMZdEbG5wTY7iDANsLFXTZC7VTKB/emIp3sWiuO4teOv42Xg7EAnIcqnfKHqfOiDG7oXx5tmipnZsgCJtAv0oBdOVnHZx9sY2ezr4I7tGKc3igjmXxZ4wLP8ok66s3SRMa5qCtXjSF4VXSAHC8hGBAy8h4olRjmF6s4eX4Kx07XMLdQQaVWEF+VY/ZpCUNhCA76IXY3e1i718X1T/dw91Ybve6IfEFkRucyxnDyXBMv/OqKM/smiE4wyAJLJ+v4tX9y2uHhcAS88/NVvPWzNQxHdF8YWWNJl2o1MAbUp0o4caaB0w9NYflkHY2pEgrF+PrzEBgOQ7T3hli728Gtq3u4eXUPu1t9uDNpufeWMYaTZxt48deOoVxNVm+7W318/7/eQLczwqUn5nD24jRm5isolgLYh66FI45jpxr4uz+9jo21LhhjOPdwE1//1eMopbTvcBjitR/ewzuvrht8LRxtQHqWRo2YeFKuFrByvI7TF6awcmoKs/MVlCsBgoKYoeC0Chc8FIYcg+4Im+s93L3ZwtVPtrF6pyMcLycT1OwQuz2ty0ygj9+G+spmBFJUleMEWcSBzF4uN6aw4URfgQSrmL4z98Vh2N7q4Y0f30WjWcTZizNgKSt2WQAcPzOF5RN1XP1k2wxUS9xys07o2RZGzbhwMhdWqjh3cQbHzzQwv1RFqVxQswqcqnHBm/3eCFvrPdy90cL1z3exdrejZAaPyqZl6S0zmadZtd5hEM7midMNnLnYxNKxevQFP1AzZLw0hRzhSASGN1a7uH+rjWuf7mJjrWsG9ADPlYrgYWq6jG/8gxNYWKnaiUnji+e3r+3h+//tFtp7oZVQniCmbQ9hA4kGLZUCzC9VcPZSE6cfamJ6roxiMVABK1/dBr0QG6tdXP90F9c+2UW7NcSVZ+bxyFNz3nEpod8f4ZXv3cen721FM5aiscEYlk/W8PKvH0udRbG92cMP/uttrK/2MNUs4ezFKZx+qIn55SoqtQBBwZVfgJDj4ShEuzXCvZttXP14F3dvddDvjoReZ9qK0UacaQMyaY8R/omfKcYj2aLuUCgGKBQDLy/b0GkP0WnJAIcOoGjBqemSj3qdEbqdkQ+dBQylkpitA4jvNIGqLLEv1Aaz5kIvbYbJK5+R6oRgYu4OEbwFT56afWE8BFt/NBphbW0DlUoZMzMzYAwYDIZYW1tHtVrF7Ow0GGPo9fq4du06Zmamsby8BPgCnEnARfpCoYByqYSp5hQAjlarhbfffhdvvvE2jh9fQa1WxY9/9HN88P5HWFxawI9+9DNcu3odv/Vb/xD/9S/+Gj/4wU9w6vQp3L+3il6/j5CHePXV13Hz5m088cQVrK2u48///C/RaNSxtbGJP/zf/jMajRp6vT5eefV1fPMbL2Jvr4X+YIDNzS3cu7eK//z//d8xGAxRqZbxs5++gt/93X+Fxx+/nDl4ctj8e1S99px7ong8uK/gECGh3S1fxnFtPN0mdGFkwBOpx6C/mtEJAIYqiZSs2gDQM6jcJRkSkRlUUbgNBcnJO5iBlAc0mmg1tHkh31HPKB3soImZjXQGsUy4LzFpEycIY/tFDGI6Lxg4D0WbR8Z+KO0mtWafq/wqiBAZoCqwIK+zVTkVpufLmF+qiiCKOE84oU7UGdXXtXoRx8/UUSxOiknI1zpEs1/oVF9Q91csA1lcquDClRmcudhEc6akDLW0oE6hIL5AF4sBavUClo7Xcfbhadz8fBcfvbOF+7faGA6juludWygAlWoB5ep4+zPJqeuFmpt/NOIokNks5vHBZgcxxsW69PNTuPjYLJZP1KOvggD96uOloQCUggJm5gNMz5Vx+kITm6tdfPT2Jr74aEcs9bI9T4tHGOMoFBgq1UL0xTMeRsMCzlyYxvKJOk6cnUKxxGJpDAoQASoSdy4UA9HmleRyBv0wWrplOo/agTWNbQbBA8dO1fHIk3M4dX4ajamiCj6l7dMhnbhSKUC9WcKx0w1cuDyLzz/cwodvb2BjtWudVgNHuKg2ncDg1nM+aGDes58QTa2cGYuunGUbTqFblHYAyd4l0vPbXO/i7VdWMbdYxcx8JXU2Sr1RxJkLTdy6tot+zw1WmcsoSDtHY29ppYaHH5/DuUszaM6UM8kNtZymKE4qWTlZx8XH53Djsx28//o6Vu+JviYiLKoh7WAbv2iLUonh+OlGxINN1BpFNTYy8WAxmoU2V8aph5p46MosvvhwC5+8t4Xtjb61bI+SQXQ/YyhXAlRryaYq5xylShDZK6K/zX1PAD1bUW6WzzE1U8Llp+Zx4fIMmrNldfJPWt0KBYYTZxtYOl7D2Yeb+PzDHcwuVlCtx8+A4BxgUV5ND1TFg4CjXA0S5RbnYsZKfaqI5kwJjz4zj2Mn9dLVJNoLRSAoFDBdDtCcncHJcw188fEu3n99AztbA6XfpdEnQ572Um/1TkcmjWY22ks+Jl9khv0Reh1z9odjT3Gg0xpiKANu3LYPRXpDQnCG0TAUMwUzAAuYWlYk7DERzDKdZEmZP2DtKAvDdOXaptJGs6fehwzegidPTWaMtl1/CI3y/vsf43/7w/+Eufk5/Pt//7uYn5/HG2+8jf/0n/4Yi4sL+P3f/z3Mzc3itdfexP/7//X/w8lTJ/D7v/8/Yn5hLnshUb02N7fwR3/0J+Cc4/PPruL48RVcvHAen37yGS5cOI/f/d1/ib3dFv78z/4K/+A3fw0vvvg8/vRP/xteeeUNPProJbzz7od4/mvP4p/99j/GT3/yCv7kT/4rACAMQ7VPCwfHKAwxHA7x2htvoVQu4d/+2/8BnW4Xf/s338WJE8fw3HNPYfiz1/Brv/4rGPT7uH9/Dc88+wSefeYprK2tY3q6aS4t8sEkgifMuUhPeoQhZxBlAgGUr2IwBwtW+xrmObOd98iggP5aqGw8dcRdpD6U8yCVinDkVAAl+qUk6C+PXEtUZc+Q03wijCpY4jF6Ld00WRgDnzdLjKEel9QJdFk3Wcpw2oRbt1RBKTuGEwNOPJcGbRhFRcQMD6ZxRLEDY4kPNx3Y/QBjwvE9drqOm1/sot8No1iFSadkYEUDrSRjmFuuYm4xfef/rCDry6NzS007nxvBlGotwPlL07j8zBzml6qpBnkcqIBDAWg0i3j4iTksHqvhrZ+t4YuPtjHoh1a/H4ZAlcYsLcvkYBaI2TdPfG0R5y4JpystcGIDDbaUKwWsnKqLk1OO1fD2z1axud4z5Zc9Hnicc+5CrV7Ck19fRKlcyHbELR1UZMxkAeXYGX6AO9gZY5iaLuLRpxbw6FPzmJ6rqD1Q8oLMUywyzC5U8OQLy1g+UcdrP7iLm9f2ouNgtWAwbNkxjSUt5omEo5ccytH1yT+DnS21wbgnQw66fKDsdiMwyiOjFLh1bQ9ffLyNJ762lBqYDQoMx0430JwpY+1+xyrHzEtZp1oJcOHKLJ742hLml6sopGxo661H1GmFIhPO9VPzWFip4c2frOLqJ9sYDETQPFapWMU1GkU8+tQ8Lj+zIDboDvKNY02XDOgxLK5UMTu/guUTdbz5k1XcudHCKFoKQ07hVSSJ33ydTZekcoN7Inoi5IwxLCxX8cyLyzh7qZn9uF27XuVAzBhariFhAgqlkOhNOv5ZRF0aEoZKrYDHnl/A7EIFU9MltTdNNroFDsaAerOIR56cRa1RwJs/XsPmej9SdmqQAvLY3og0bvcRtSss6m1NwQHs7Qzx+o/Wo+VZkRyNPqqRFgI40NobYtAXG3vqYvwBFPmMBch8Il9I9ooxlsGSGdKKfuOjH1dt6MguH3wZPMEJw77cvAM2ZzgHtre3sba+iV5vEG0syzEcDLG720K5XMZoJD7YyD1LxJ48OQmT/hBjqFTKaDancPnRh3HlsUcxGx2hPDs7g4WFeayurqE/GGBlZQlTU1M4e/YMfvzjn2Njaxu9Xg8rx5bRbE6hOd1EwVqnTCVHyENsbm5hdnYGc3OzOF6t4OS/+VcIGMP16zfAAoZisYDFhWP4jd/4Nl597U189OGnOHPmFC5feQTMI8QmsnAjJ44v05DJt7Gs8ckPltU1BnwVUMkJosFSm83rnVsBQK4vtNELoy/liQr0ld7/RE/iZFR7Cv9cP+OAXF9LN8R0NqC16kZPEIJGM5bTbgR19uP1E6MeSOgJn/XgeWWTYtgkcrkG9T4ojphq6HdmXe1Z8WIGkegRe2aJUB6iseU7urRHX4vNriY1hhkDlk/UMD1Txv1OR5UhauN3sOgMoHI5wIkzDVRqxYku2TOXJ0hiiR/MOJrTZVx5Zg6PPDUXfbGdTPlyhsjCShXPf2sZxSLDx+9uOcsyJhXMSgNT5OvxXAiAY6fqeOYbyzh5bmosR9AGafBX6wU88uQcqrUCXvnBPazf70Ke1uISZm7cmgRBgaGS8oXbAR0Bya32xFp+ya+2uyG+is4vVvDMy8u4cHkO5Uo+xy4JGGMoFsWyr3K1gJ//3R1c/XQHo2FobocAY4jlKwNQMkM8sAIpBK8jOWPEiA5ykPdZfE0Ld9IrGhiVX9hlln5vhM8/2sJDj8xieq6SYlAyTM+Jo5LXVzvRvn6R5vOcxMMYQ71exGPPLeKJ5xfRmJ7MEkTGxJK5lRN1vPhrx1CpBvjonc0okGJV2u4MxtCcLuGpF5fw6FPzqFTT95bIQ1exBJy5MI1ao4RXf3AP1z/dUcfaK3oI8LHLthkGUb+KmV7Lx2v42q+s4OS5qdRTmJJA5qumzHpzaAM3ZTbjmWS4CC4HOP3QlFH+OCD74+zFJoYDjtd/uIrW7jAix17eIxSeb1aKwue5sqHfG+HW1ZZh46iVqRDjPITYtl7PhpMf9Mh9TBGVmji2PB3Ekqx+Xyz9ktokgBVAieppywm7ivpUI6MIanw6mXL1nJNYP8jthnkTjqHTYhPHn2eUH5d+OSmLjjHgqacex7/7d/8D5uZmsLS0CMYYnnn2CVRr/xbN5hQWFuYRBAGef/4ZFdiYn5vLV1DUCHNzs/hn/+wfY3l5UaguxtBq69PiGIBGowHOOW7duouLFy/g3v37aDansLg4j2q1glu3bmNvr4W93T2EoQiIl0pF9Hp97O61sLO7h1E4QhAEmJ+bwyeffobt7W1sbob42c9fw9NPPQ65weygP8Da+gZK5RL+1b/873Hz1m38n//Hn+HChXNYWVlCQZ7cw/bZ5qmZNZd8mYImNmS3II1wrWXx2MLftpBinPo0//Or+IoNnPzNlNQLRvfIoIgvCwmGSAdW6gLt45vBFN8xyOZQ4UoBa8OYLBSKDFnOTKKUMZ0lkGI5A/pxDo5KNLyp2iJEckAucZJv46bF24pPGhWcWCpcfVazHRHr0FPjUh8Jas440oQYgRAZbOHyOtRlcz3U6Zn34hk3HaYJwdR0CUsn61i73xUOHvQpQNqGoqdbSIYQU7NXTta968HHBlUwVzNj1KtIJNYbRTz1wgIuPTkXfWE7GJUwPVfG0y8todcd4fOPttWSjNwGy1hAjVhLvAfA8dNT+PqvHsPKqToY259x75TMxAko5y5Ng4ccP/27u9je7MXz3gFFlCLXh1xnz8kgHQQB9rHFjAFz81W88PeO49zDM9FSjsn2quySpWN1fO1XjqHbGeL29VZKYDlfW9r7nrDoS7bBDjwmkOIpWeAxA2b5ulf2mlQ6hFY5rmGOa6UPIwI37nexfr+D6bkykvqEMRHIXTpew2cfBtFX9AihvbEXY6jVi3jmpWVceW4xcsInOWYE183MV/DsN1YwHIb45L0tjIYe5UiUUaNRxNMvLePy0/O5Z2dko4sBAbB0vIavfWsFg/4It67tiWC8D/LM9rKqFlkb2vaI9PPsYgXPfmMZJ883x57ltR/ggNKhWv+njQYNByFbzz7cxPq9Lj58a0vM0ACiYIUZSFGzjVkataaSMNiNmktEt+o2IB9t1LjVY8g46IBYmEEBWFiuoN4UMyATqeOINte19k+R5UZ7oZD4W+ZghU5LDWVVY/jvUsBJ7ObOjM+bkNoSGakyFJhbwP7qt0/aUqDZnMJLL33N0Eu1Wg3PPPOk8axSLePixYfEDctZfpSeBfKEtYC+imaQCXv/9OmTeOKJK/i773wf7733Ae7dX8WLLzyPhx46hyefvILv/+AnWF/bwNraOgaDIYIgwNmzZ/DTn76KP/iDP0S700an3UGxUMAzzz6J99//EH/wB3+IwXCIYqGAF194Hssry2i32viLv/hrvPTS1/CTn/wcr77yOsrlMqq1CpaWFxCw/UZOkDP/ZI+vfhAwxkwUt8Km0tLOMbMTfAU54IAbjZELsvmrU7pUIlGHRjpPK1EujXMy24QbaBUz0DicLEPjVdvIApxsIka1V5pUtprMjeXZrouFlyc+8uZz8HFdWeMNCf7Q0As3ymQSKQBm6l/o9nOOELQMljC6pzMoVF1kUi6DEzz6YkoCXHS5DMVLljHQpT1Z7Fw6qyjOCBRfxgIcP13H5x9so7UXGjNRaDDJPhUoCMSGstOzZSSBccpOBmPUZT1lZQEQG9k+/NgsLj6WfhzqfkDibc6W8djz89hc64oZGdDOwkGD6GtquAqYW6ji6ZeWDiSAIkF8XQfOPDyN3Z0+Xv3hfXQ7QzCzV+D54D854FAMzyIZlTkrGVPkR7F0rVbAk19fxNmL02MvA8sC8pSSpRN1PPG1JWxt9NDaHUgqHS7KG4+KRJchj+Jq4kWt9EHkNDkbosbmTIE0u8U10aWD120Pcf9WC2cuTEf75sRDEDDMLdVQrgRqXxTRlWY9yqUAjzwxjyvPigDKwYwZAGCYni3jqReWsbPVw53rbecbmCy5WGC48OgMLj1+0LJMlLpwrIanX1zC3o44kUyCsivGQU4qp2Q3af9qtYjHn13AqfNTDySAAkhLCVTVG7bXodPDGCrVAOcfaeL21RY2N3p6JPhmpAB2PFKB4xIlNG+8fxBrqXltQA4RpJ2aKeOhR2ei2VPx5XIODHoh7t/pYCD3TyE2reH+kyo7hRObWNonDt2TZK80+/dIFXNIxI4JYRhia2sbQRBgerqJIAgwHA5x8+YdVCplHDu2DMYYup0ePvjgIzQaDVy4cA6FYiGz088Yw9NPP44TJ1acU2BLpTK+8c0XEbAApVIJxWIB/+Jf/DbefPMdrG9s4le+/TIef+wy6vUa/uE//A0sLy9hY3ML3/zmi+h0OlhcnMfxEysAA1ZX17G0tIBer4+zZ09jaWkRv/d7/xoffPgRSqUSnnj8Co4dW8bMzDR+53d+G+12G+fOn8G//b3/G95//0N0ul385m/+Gq5ceSTaE2hMyBdf+oWB/KfzEM8uzTiyhSAjz5nn9yugcLAtYtq5skN1ZMQJIJBgij4iGU5wQCg0rpWP3bnRV0k5/ZE6FoIEMpPDUGAyv6cyqfYHj09m6st4tNwXWKFmOIjHQVxbD1Ju3ErEjJSh96exKRcbwybj1IGSCB9pRxX0cJbvRHlD0YfOzBNnSQ9XwYxswDHsizXLhWKy8bqwXMPcYgV7uwMSRPHNvtFfzMq1Eo6fqSca/zLwM+iOUEoxtHQxdAtGHvF95NwxcaLQI0/OZTpSkdJhc1vWvIwBS8fruHB5Btub0TGXhyA96R5IyuVkYiPfx55dwImzjcRTKSYBjDGUygEuXJnDvVsdfPbhFkL5Bdv0iA8E1DiA5IvsBVl+NEEqAnHnL83gocuzqcfp2vQYUjwzD4lTVc5cmMa5i9P44K11c0lFFrrjqTJlJYd/NkoscRINA53Sz72JctKlvgI45EZY9b4HtITRSJzEMuiP0k+6YsBUs4hqvYi9HRGcskVkEDCcPDuFx59bSNyIdGLAxP4fV55ZxNb6bRI0EyDH8uxCDZeenEO1nm05ok+O6SKT8zMmjn8/cWYKF6/M4s2frGqHltA1VhDPq5fFEqezF6bw0OWZXONs0qD3bdLMzdXMygcH88sVrJyuYXuzj5CTMWB8/dJhBgHGzncqxThAMTji3Bm3OlzDGNCcLeHx54UeSgugABxbGz3cu9kBH+kgkTYFjfmmjtOsZBtz7UFupDAvJwIGPovP9w201r/YgZQvvriOP/iDPwRjDP/T//R7OHXqJD788BP8x//4h2hOTeH/8T//Oxw7tox333kf//EP/hCzszP4X/6Xf49Tp05kq1JkIl6+fAmPXr5kBucBlMolPPfs0/oBgJnZGfzKt78BzjkCFm1wzMSsmV/5lZfBORwb61vffAmc82ifFI3r0qULePhhMYNGyrlGo45vfPMFIMIzOzONs2dPGXjHlom/pAEUIE8QhdNpkURVRV+2lDFCWsi2Zzm5kGkdI+kXrYXHhn18W96PMiadZsQ+7CREp+qpnXIpiZAgSjGROAEgdbJ7so907jUJcr+UeBp9dXUfGbuxuJaZx7D24uSaLkkwrbcqRya2A0IOblI34wsaN98a0ShrXxffJY+cPOrwkqCJkZ3reqk6EkcR0YZaOp2+Di1cabCz1QPnHAvLtYRxzlBtFHD8TB23r7cwHAiiQthE6/QAMLdYwdKxJLwCT7c9xPq9Do6dnkJQThc2PntFfrWuVgM8/NgMZhaST+7QJItjP7udIfp9jkF/hEIhQKUiTmSQDlraKSClUoCzD0/j8w+3sXq3A87F8cjDYYhgwKz0yLTmXwbFfM70aMTVCR9GyzOG0xeayvlPA+p0jYZcbGzKWHScqMaZBGLj1RIeeXIW927tiVMlaBk6ZSo9Y0FMwDUN1IiWAlGhYmhOl3HpyXnUp9L3xJBjfzgI0e2MMOiNMBiEKJUClKsFVOtFdfpHGh9V60U8dHkWVz/dwd5OP4buSXp2KUZ10mvlucibfRYdJ7iidIZ7woHd7R563RFqjVJqUVW1LwP3VEls/PrE80uYXaxmI53I7uEgBA85gugUL/39I6mvhQw4c3EaNz7fxcfvbiIcmQGLIAhw5mITC8u1zDzY647QaQ3R3hug2xmhVA7QaJbQaJZQiU4JS5VllQDnH5nBFx9tY+1e100zRl/rw7QNRJieKeGRjONM4SJ8EoaRBiaibjynQ/enJs93/ktGbHQGcaSb89IoAtQFrJys44sPd9HrhgbjqjiKMugYkYU2/pQ+i7Hf9FgRCYJALIUAR7T5LBmXAVO6c/FYDQ8/PosTZ6dQKqfpOo5+L8QXH+5gZ7OvSoOujp7By6yxGyuftG1mH4UcnzYF5QOByVNjyNEjBK1WC5sbWwgKAbpdcVLYaBRiMBig3+9hNBLLvIqlIoIgQLFQEMtx8lTEE5Bn9NeDSy7v0a+JLndMLHmSTuDF6RsHDCae4AEFkn+RIPfpPEpey2k/nJvCz7ckJBklcU7FteO4/DKB+sKPA61/Iuq4jUeIIUtiKNZL/ZdDzzaRs7I5Qc/AwAPh4MsJTjx6aQdqFGIf4TYPQd+7Wbg3E6WeblZKy9D45KasNIDIDfYXMRYzMGLTZ4M7a8UO/ljZpcFPbyQ9slxuoIuW7mgkOihC1kHLXxU40eOey13KJX+GphGXBL3OCGv3Opieq8QeC8uYOOb32KkGGs1NbG30dWVjFmIXCmIJUKOZ7OBwDqzf62J9tYtjpxuJaQlFMjd0Y4uv6nMLFRw73ci0BwvnHDubfXz2wRZufL6L1u5A7PkSBKjVizh2qo6LV2axdKKmj8BMoGl6roKVkw2s3+8iDDnu327hZ393B4E6ilg01PRMRWx2m+Hr8sZaF5+8s4lef6Sqy6KvpvfvtPWsjwiaMyU88sQc6lNZv1xz7G33cfvaHlbvddDeGyIIgMZUCQsrNZw8N4X6VCl1RgtjwMqpBk6cncLezia0PxgFZX2B14mA3g+IrpfPnjv6S4gLog15l47VM83UCEOO1TsdfPzOBm5f30WnPRRHUBdEMObU+WlcemIOswvVVHyMMSwdr2NhuYq93b53bI2rhlLN8YQE5hHambCl0hIh9r53MNs2DGPodEfodkZ2Si+2YrkQjTfQTXAAiGDG+UszOJ5x5hbnHIN+iPu3W7h9vYXtjR5GwxCVWgEzcxUcPzOFpWP1aAlYAlVM7MFy4fIsbn6x6wTNqvUCTpxpoJQhGBqOOO7ebOG919dw71Yb/V6IcCRmGZYrAs+VZxaxcrKujmlOgtmFKo6fmcLGWg/hkCgopkV/ViDhf8ixxhhQCBhOP9TE8sl6rgBKtz3C/dttrN/votcZggWiHadny1g8VkOjWcp8GoxNKQDdZ2OyN+cc3c4Ia3c72FrvoRvJg0q1gOnZMpaO18UJPhmWLjEmPkbUp4rodfvGBBQZHDBQKMMuX2BU22TSmDSXkoOLIOGZh6Zw/Eyd0BDZQ0xskl2pFTE9U0J9uqSW8CTVkXNh/9y+1sLVT/bUBwN5eqSchWaPgMQakpfZ5dURCaR4Cz4YavJgPQy379Kli/j3//d/g2KxgLNnT4ExhsuXL+E//If/GeVyEcePHwNjDFeuPIr/9X/9DyiVilheXkpHHFPJvC3qhF+8CGSAJTvSA+GzX/I4TI6ZKOrKfcYAtVJeOpFUsMQJUi6VnJ4wx0kk95cxhhIPk2sNsyutSEFSOfI1SUYDIsqHV+9JWELrS6WcaeBEHUgolRllLuNoBkKiHSiIcQI08dThlwrUs3RGxSJ0GtlWeuYUCW9wuyk5xIm49JhFD02EfjKhy2lj6hJyTl5xfWF3JbdpigIovq9W1Dk08YpxjZDrNBFiefBEvmNegbs32jhxbgoLy9XEvVFmFipYPi6mFtv7SWjaRFvUpoo4frqRuJeE/Ip78+pu/pNjDJ4Rrc+CAAsrVTQyzh7YuNfBK9+/hxtf7GEYTVuXddrZ7GP1Tgerdzp46dePY+Vk3XvUnATGgGJJfIErlhh6XY6NtR42Vu0vuQwrJ2o4d2kGtXp6FXc2+3j/zXW090ZECgOUGWVLFAKGUw9NYflEulPCOTAahrj5xS7e/vkq7t5so9cbahkCoFwt4PSFJp76+hJWTk0lBpIYY6jWijh7cRrXPt1Be28oSyJiJ5+85Jyj3xthb3uA3Z2+cEaGHIWi+EJbrgTY3e5Hmx3remUDx/NQV0GJYeVkA+WUU1CEA8Bx8/Nd/PTvbuPebXE8LJUV2xt93L3VwvpqBy//+knMpsyQYkzMmlhaqePG57sIw1CTS+R3HuCSWLk8QR6RioQlPURGGfSpV+PMRzAx2ZqNWe/jSJIED/oh+r2RubLBV1IUBBYzMayAPBOBx4cuz6Ga4VQozjl2tvp477VVfPTuBna3Bvo0tCgwMLtYwePPLeGRJ9OXBjEGrJysY/FYFXs7fYN/G1MlzMxVUi3yMBQBlB/99S3cu90yg/IA2nsD7Gz2sH6/g5d+/SROnW8i6QheuQ/W0rEaikWG3tCfLiswDmtgCj6sNQo4+/A0ypVsyzjDkQgcv/vKGm5+sYtOayT2BIOY+l6uBlhcqeHy0wsR3ozLg6i+JvZEwi4gfjRcHLu6dqeD99/YwI3Pd6MASoQvACrVAhaWa3jiaws4c6EZzUhMxlubKqLRLGJzrQc57gx7QxvqxB60DBYgdkw79bByyt+AMaycquPKs/P+YCPTF1lVOecca/e6eO+1Dext91155Jpq6jlnIriS3EMJb+NwTxgOqZiDgYj47OGn8YAxhmq1gmeffdJ4Vi6XcPHiOeNZpVLGmTOnEpBlKC8rXc6NX2OxPEijtAfGE19aZpsc5DidB8qwlgrACJpAfgOIHGT9iVwB41R9iFwiGUlHBPMvVf9ksMhzGZJ2YmY/92EzHSUnpJKFABJooZvR0r1UbJ9CPTbS6qU8dgzFSxL33bv1UcG76ImxdIYLwUlnkKh3gJyE4BCjTrK0LAc5LdQ2jtwZJ3C/nsvBFFNHozhIJ0VjoCfuRAXAsC8pbi6fM5UOXMRORB/QAAoDFxunRDQHmRkzCICd7T7u3WpjbrGKQsKpkJVKASfPTeHqp7vodcgpF+SHAUDAsXSshrnlKpIlOsfuVh93ru3h5PlmduFPptILcSXap1BgmJkro5Dhy+2gL07GuP7ZLoZDJSUJZRyjkOPurRY+eGsDMwuV1GMagwCYnqugVAnQ7YysMSLwM5Z/RoZgm1BdxwVWa40izj08Ezn/yTjDkOP6Zzv46XfuWEe/amq7nSE+e38L3fYQ3/wHp7B4LHlZAWNib5iZuTLaewPzRY5Kc84xGgrH8OO3N3DnZgvt1hCD/gjhSEwpLxSjpRMA2q2BcKTHEcaqPTWUSgGm5yoZZjNxdNoDvPvaGu7c3DOOz41EVzRrgePqx1tYOV7HUy8to1RKPnq1WAwwu1gRwThrmCnEmSEtsSX8ecxzH04SWM9Dkk7rWeKRJgTI63AUquBnGrCAeZe3BUzshbJ0LCWiCdGXezsDvPK9O/jwnXXzSHMOgIvjKlfvdfDz798BB/DE80sp+02JWRQnzjRx4/NdDCOcLADqU8XoaPhkukbDEFc/2REz05ylf0JWjEYc92938N7ra1hYrqE+lXxaShCIDbPLlQC9Lj3RSFc3K+g9xghVTOyztbBSyzzb696tFn76nTu4c7OF0JqANBpxdFoj3PhiD1vrPbT3Brj8zELmQIox85M8tJdLJuXnIXD7aguvfP8u7t/uYBRaJ1iNGDotcfLRaBhieraM+VQdKeSRWO6k9b3OQgKhSgASo81LbGqRsXVmELyc9EEhC0jbZeNeF2/+eBX3brX95nZMENfe80UhzbsUIkNbTAIOqZgDg5xaZCzwLnWZ8NKWnHGOTBnzBlAObLXOl5nBJgzZDwO1FBpXjheUE6am/8sv3vK5TANAbKolnTuYacAg13BwrmfCptLl+/cggPPx/zlgcylL/c/JbkfZbW/cuBIZKCU8ri29tqiJCeDE/yKK2Ly0kfgLiZtdYN+r/hcXhlFCmxvWP5WQIeQ84t+YLvK804OCQW4aJzeADaVxFJJ/UUZu/CM4VTo7H01j5g9jaNb/mKqwt26RoUHpARfutAqgqPrIeuYbbkGBYTQIceuLPXQ7w8S4IQuApRN1zM5XVF/rvVoAubFnqRjg5NlGdMJFPL4wBO7ebGNrq49CMcilA+jXZNlWjHGUq+lOBwD0+yHW73cxtPYhUJuTRuhHQ467N/awu9VPbBsJ1VqAcrlAxaahZccSg6qONOpq/mOMY2GlGgU6UtBxjt2tHt55ZQ3r9zvkyzVz/oUhcPt6C5+8t4lBX5/M5AeG+lRJ7OEQMDXss7Sbpk20+ecfbuG7f3Ed776xhrV7HbR3B+j3RhgOQ/T7I3TaQ+zu9LG709d7xuS0ZowZCWTQFIsBypVsari9N8SmE4QiCKOx2++FuP75Drqt9OUnjImAmF52kUXgZwASqDYfGxrGg9ujm7jvbS5iCC30X3JqI9DJebScLZ0CBiHrxCwcLa0q1QBnLsxk2oR6NOT4/INNMRZ6I48i0nS09wb44E0xvhLpYoKupeN11OoFoxmKZb0vURKEIUevM0AYik9qca0hZ0nsbvv32rGhUi2gVA7AbZ7I3eGWLOBiqdvKyXqmJY1yyeGbP72POzdaUaAohk85x+52H2/9fBU3Pt/NJnsYifP6UGdCwrGx2sVrP7qPe7faSiaZ6CK+C4GN1S7u3Gg7s4Z8EARM84auqVG2b1zGgtPc9vh3whOigSbkpHEu9vO6d6uNV39wHzc+31OzdbQLwpStyqy8MJPGgN+iPdIwniA9eOBfklZMUCHJ2sVNx4wHzEkhZ/mzrIijrAcSQMlDwy8J5Dudh3uewe8r27aScYaEnN5rSWp5oqEtpPm4AyuXoPAYfQz5rPIcpUw2v+dpYkG0/Tlonb3TSmNwmf3E3OfGE4JZtitZ82Us8wEUjzALn9ewVpaDNh8o77hEWU6ms/mKuPS6ExwWTdzOpi+8z02Dx9t1dvPbCW3aPLSqwAh0b8vn3KY5JDRFGWjASSRnDu2xQbYYkNNyV++0sbXaRb2R9IVSbCB6/HQdq3fbGA3tDhUwPVfCyql64v4CYm37EDe/2MWgHwqHMaNA4c6V5tnO3gCba91Uw7y1O0CnNYjakUeGgsWY0U+nPUJrd4Cl4+a49EGxFM2Q8A4QJDNZLMg+pnnMg4SDYoBjpxqoNZKdEmHAAtc/3cXdmy0VBKMfLW3KhgOOG5/v4JEn5zG/FL/xpl7SVEexuIl+NI0in57gWL3Txus/vof1e13oI8GztleOdo2W9jnjNAyxtz3Axv2OZU3ZCTk2VjvodkcpwSXR7ns7fXTaAzRTjvwGA0rlAgpBoIYWs4Li+wOPXrXeKP5y5Bh58CCNfhUIz04EFUdSr03PVrCYYe8bsYynh4/e3RDBZjdF1Jossq04Nte6uH1tF4vH0vdUmpkrozldMTZlDoc8k5NdLAZYWBZHOHc7I2W30RkLUt/0+yP0uyMjCB8HZD9F+jSdoBTgDGrpTVq7yI8R1z/bxc0v6J4Z0XsfEzIRxFq/38H5S9Nmx3tB9ZwjY7MyeRgC9262sHa3DbkCz0altQfHcMCxtdbFaMRT928JAkQzaojNHqeKXPPRBee9lfgQHLKdrR4+eH0Dt6+3MAolQUa4hNiAUmXyxBkwSlMYpsQhCal4kToerhg8kywmM7DDaUVjqX5WSEmap538QyI+KpMJ90F11FdBk0TItSeKJXa0ciE+qM+elyJL7g8hfOgouhZ51do980d1fQMrSbmJ/SicWniwJKR5QIabdFC13UGNe9PhTzT7E6Wg1rRGMTQQkUZk7HPyUmoaJbRkvVjkTEavQ5dkkUxGV2AYeQbNxLk3fFLPtUsuj10u5HWqfHa9xTK+2Ju+1/ji7EodNBGzWgwKbPZ0cMg9CLThGnKOaJN7IzACaMeORWXJd0bwiUu8UR4exgSnkiEoiKm5rd0Bbl9rYflUA6WSX0IzJqYWnzg3hU/e21LHhRr4ArEB7fRs+uk4m2td3L/TBjhQLNhGlB98bS5v+v0Qb7+yhg/f3kzILcoIR1wcKyplqLHLsok/HIXi1JpUYAgC+fXY0wlpxm0iZlcm0BIqlWxOCQB02gNc/3wHva6eeeQ4ypZM29kaYGu9lxhEAYTBPzMvlgHIIAo9ijsNwhHH7et72Ljf0bIG0Jax3YaU6XPpBnl2F2BPe2/tDfHjv7kZLQvzyXkNw8HIOZ42DoZDHntssQ2FAhMbT0a0SrnHmBr82cFuGlIVdWnIQnJpGA/ccgb3C/t0CcaxBagaZAzzy1VMNTPsoRQCd27sYe1uW488izV0bcRudGLzWbHJa7UWJAZqqrWiCK7dABDNLOx2RxgOuPFtwwdBgeHC5Tm09gb45L0t7G73MBxwIFriScPD/e4IH72zjnu392C7K7boE4HmkZEfSjtlb3yp31RZXMy0mp4rZ+r6TmuA65/tkGVF2m5VEDExk3+5tE2y8BYH5CxOTnIw4ycVBgN7ZhTJGfWhfBOGYbTHU4hSOX7Wm9y7Ru0txjnkmmzaAubhPNGGs7mGl8QWcQCxDyc44BU0Z8q48twiOBiuf7qLwUC2mxZMoj5qy3C1R13sXj6e2vxSwwQbIUU6jl3QWIETCRn4IDeKhMx5Nosdl548eCcJbg9+uUdQzj1RYGg+3wd8qhi1kDXfSlYWwosKM/M0Em7JOg9JGeiO1LBa7iC+jvry2oIxrgRjEDJhzDMGsEB+iMgaOkwk3EOZH6nHj46/tzxDe5aDNPCcAFVMY3OJxNiLwDqGl1jWlDcMlFJpUbyWJHHycO3XOA6aLJLqZm67g/58+pKRv/Y7uDfSwDUcCdrObh7FZ2pwRTRy420Mje6GsqIsMXC0QSkDJNEUbFoPjmjcuTSqWSsSF20sX4OlQMAYgoBhNOS4da2Fh58YYHahEp+BibXsiys17O0OHPoqNbFvSillOcRwwHH76h5aOwMEBYagmE2NOsEEw04VgZF0p5ZHe2oUUKmVUK4Eaup6uVwQswDICRalstgjYxywxxNzn6bjSGsYBtSnSsIpyQB7OwPsbvf1aUzc5GlX5gKMcbT3+qkOHQDUGyVUqgF2d3hk9GaXvZyLzYZD31ndtL+dJswv3NWQsXCNRhzbW70YfaR1JIOYeVOuiKOwK9UCqjWTjwKyTK02VURjKv04XlodamTKfZC0s5Mf4lV3csceKZNqQjNRgwLD3GI10YmVMByGWL/bBpgIWGqgDOlaz51oL59qreC+J1AoBWg0ywhYtGc4gNZOH3u7fTRnS4l5GWNoTJfw/DeP46FHZ3H3Zhu3r+9h9W4L7b0hBr2ROsWr1x/hg7fWrWM043GHctNcCjwHL0RpGVd/wAA0GmVUU/aYkrCz2cfavY7QdUbBlh3AmLrOzyJCGvhn3mStrR0stqzuiHy5inc45HrWShIwaQNGeh96lpgRmSJRH0af5GwLRv84bb5/KcCY2NNq5UQVjallTDVL+PjdLXTbo0yCRnOR+YRSaFvq3H5IX5oXnrsUyOCJTwLfZOQv81ylQxoLTYK2TBbgBJWQ5nMbuda5mQv2vJ4IqUdG6X65IN/pPAzGkX3Gue0yHQ2yqIQEiSGI5Y8eNjp72lCiJXvCH9EXycGAYzgUUxr5iNTFU44tGm0KYkUCE4Z/UGAoloSxWyyKF+OvS3MzjmvPGTWJE/CqDLtHrbbw5pUzJqQC93sgtKu9+j+ZNEW7HfjgFiupcrhZdxkoYDIP0+n99ROJQo/34/ZF9CD01EEFM/zlyK9ZDjZPY/imRfv8P9knnD6LAl3OrDIOMBIsEWv5XToN+hmIk5UFGIKCmDnBIY7TvX+7jem5cuxSHHEsZwEnzzVw69oe+r2QvAPml9L35eBcfOW8dW0Pw2GISrGAQiHIRLbdZ3Sj5ETjngHFIkOjWcLSsToWj9UwM1fB1EwJ1WoBhaJohyAQbWJOZWeJpwz56uejVdfB5a0k8C2ntKqGqWYpdeNbCVPNEp775gpGw9AYcyZGk+IgYJmWPQBAqVJAuVIkciW/kHQXDaoXsTnyWxzU26KfClyznNahXA0wPVvGyskGFldqmJmrojlTRrlaQKHARFCQ8JHCEjkPuegj1Gk1bUjHDFhkelOT798+8wikrFlg1s7vAvkoJLYBA1jGHeQ4gFGows8AxKy62flqpk0yg4Dh/OVZLGTYgJZCvVFEpZo8LhljKATitJogYBiNxM4mrd0+7t/aw8qJ9GOJGWMoVQpYOdnA8okGHnliHq3dAdZXO1i/18bWWg9bmz3sbvfR646izbThetncch58xeZkHM6iTwWRHgNjqE8VUSql70PDuZix2GkNYR6MwJTpq6whY4ZoPiINu4X53uTAxZVal9aXolk+y25Tx5ZiEMqjgsWpirI0E7vZIvHlKsxe43Zcek0Qe0kwTM2U8OQLCyiVGd57bRPdTnpUSbaptm7dmjHrNxZ0ZWG3Z2YOchrZzZ0JnyTWy4MsoS8T8HkKkNt556IpBWhvZIHcM1AmFF/xxkxiE2dooV+g4MmYXHskIdeeKIxubMJNfk8yvB1EBBwT2pJI2ZqWKI7ocjjk6HU5hn2eeS0z91ylvxfKlkNMDx/2AVYYoVwWx+AVCsi/6zMH5Dps42EmAeM+8WZLwKW72EzkOI+kj3R6HUhxlAtx+BROmx+4lO1c4VbXNsNZQQJq7xuzJjzlc8DYuZjbiSwCTZq16WR3kZHWRhVXhKdhTHoYSRcFQogzQI0xZ5ZJhCFgAA+5qrKcgaT2SqF/bNvChzOqTJ7AHgsgAhgAet0hbl7dw5kLzcSNFoMCw/EzU2jObGL9vj7Ct1BkOHG2gUbC9Hg5e+berRbWV7uiGjmcS1sJytnNqt3dWCrK1QArx+s4c3EaJ842MD1XyXis5vgKhFu/5vMcHUQQxc1IYUwch5p26otIK75aP/zYXHYackKpyFCJ2lcHB3Ma34Ix8ufLXYY2ALWZqq/lX8YY6vUiTpybwvmHZ3HstFiyViwlLdPYhwFC5CZ9JCjb7/HCfrz+5+6zxCdj2l1UogqIQ6J5IgiCSHZlKzAcRZvKRkWUykG0lCc9b6HIcOrcNHAuU1H5gYklPazAgIG47w9CfPbhFs5cnMXcYvrySPFapKnWC6jWC1hYqYJfmUW/F6LTHmJrrYtb13Zx71Zb7OfTGVkbM8daJzRJvj62VGkQCPrS9gLhHOAhsLvdx3AYmoqNmXYGLUo3Qx45axhN+mKsgWbtLWjJMfNDR46GpPQR28LPFkJhmMEcWaRhASaAaS1yLmbpDQYhAmd/bCb+ZyLgKD5CpNeNMYZqvYBHn55He2+Ij9/dQTjkMc2Sx0l3a3HkIU30TaiAXG3BkeeokyMN6QEUnvAuJ/4vPXxpRo0Xch9xTK1rWnXDseA6Og7AWgZOojBIaDqqU3yJPEJTGi2DPkenHXqO4DsI8Jh6I6DX4RgOQtQaAYolD7kpQkzviZKtDoYxsp9qc2lTe7SojZ4EGBjpLG6+jrEXTF5y90vQ3OXbs0TZ/Vz/KgNK0kWfWRk5xZRkv9hpo2872g5y253yvVn3KL8VeTD5XKThsgKMkWVIOkAFAFzOLAHX7W/xjOyN0J6uo6IC9JOEJBxqRo0TNLGqnB04gkBvLhuGwP1bbWxv9LB8MvmL68xcGSunathc72E0FNOgG9MlnDg7lRIQ4ej3Rrh1dQ+9zhCACCYVCtlO5/FVkw5bKtdYAVhYquHyM/M4d2kGjWZR1XXSR+fZYKsg2UfU0ckMUUfLvapMrAwBA6r1otjfJqPhepDACgxBiegUznIF9gSSrBlcWZgX3ACCuSSvWApw4lQDT3xtGacvTKNa1ydAHVhbMqm3pWFHg7Y8Z43jUhP5hbgvif5+8D7dp2o3XTuqdQhdJFheKDKUyunBUOGMc7VHj8xfKgcoVTMcf4NDGDMMKJSYWmYjZfvdm218+t4Gnn5xBaWMx/U6MiZgqNQYKrUCZhcqOHNxBu3WAGt327jx+Q6uf7aLrfWuCFTk+DyWp27GPYBypZDhCHGxjKq9N3Q32I0Z9izhLg0Me8Dixuw4bD1ul8DM23EGDUv47h+ZcIoFfGSkoTcJVL885Lj60Q62NrpGmFlUlaFYYqhUipiaKWFmvoy5xYqYHZkaUGGoNQp45KlZrN3rYu1uz0eMQZVr/cbJrgwB5xS7f3wYE/H+VVrGQpCtoNQGzE/sfmag5C0tc+BXjpuctP0iBE/8dfjy1ixfECX63CePXArpNTiYxymOskZghV0YeevTI0kDintuOdDvcXRaIZl9wvwZHHoyQARTmAgAAQAASURBVBIqD4wGHO3dEWpTAUplzzHEsbgi89WZemETkkCo4ZnrKeK5auw4Utopd5LS5vb1vd2/Dq/YmWK+/lj+vp3A2FiSm+XTcnxNG2esaxyuwcOttPKCw6q7qpZ0VOyKEaNI3qsAClzHUKXXNNqzU+iyKnIQEgExnkWy6JqQ7NJPAlv+FkiEIBD7kUjY3e7jzo0WFo/VIqfczSOnjp8618QXH++gvTcECxiWj9Uwt5C88SgAbK/3cfdmS639ZwHEZqwZZLaThPQZrXWxwHDqoSae/cYylk/Wow1X97OULztQEWor2rz9Y+aO8toMzljKjIjDhYAxFArkrKNx6IpzMJgtzPZR6STRH12UKwEuPT6PZ18+hrml6qEF4ewlYfvGl4gn0kd2c1NPzNAyHmx5WDohbYwm8z6VexllgeEgRK8zFDZItOyhUGCZNmI+LCgU3DHc743w3uuraM6UcPGxhejjT84QmhVUKRSBqekSpqZncOpcE5ee6ODjdzfw2ftb2N3qaxsS8A9Bn75PAE4NBK43Ss3kv4Uc/d7Qu2SW1sp5m1PEcs8dhxQveeU1oPQ4ozPcYtLlpFBuIuvHZlgc/giWt0zT9mPG2BcQhhyr97pYlbNPLZuQAWqZTqUa4OTZKVx+Zh4rJ2sIEmZ/yxmLcwtVnL3YxNb6AMNBls1i0oA5ddB15B56TLk2Kdk7GRiDmgxZMmFNHap+LObOmw+mJdNEZexwSMxwlPhiMuD24NHi/ryQ/4hjy9nTMwoiR527ooQemyuCLpFHK5105j/6Un39Zj7xZIhvgIv9TzqtkfqSwK10MbXKV38kd7flzyAcAd1WiCAooFDMwSzUFkgtVb6P2tRZX0dMUq5ZNlvt7RoxQpcHg6Tbsjgo/1BaaCJ7soSPRvXMWmajgwaSRvMLr/keXv/QvteXFmPanEi/BFl7yhj7w3Cuv9yEcJuKolE0mY1pFG9U0MchMUFNiwcsNLRmiVd5BJ/Y+Z+hWNDlDgYhbl3bw8XHZtFoxm9oyBiwdLyO+YUqOnstlMsBTp6bQjVhGZDYQJrj9vVd7G73FbVBwFAs5Jgz6mNA8jwoMJy+2MQLv3oc88vVzFOLJwvaaTgItBQYY5mDUAcPDIg2KxY8NSGipLUTKyD3X44l+lAqBbj89CK+9q3jaM6WD5WHlO8WORhMrYuaUEhF8iWznhu35l4wDg5lb3jyThDiMNcaJVRrWcwljkE/RKc11AKdASxgmfZDOSwIAkY6XsPWRh8//95djEbAxcfmVOBoP/wo8xbLAVZONjC3WMXJs0289oO7uHurpTaiVelh9ni+3ibjNrKDhHxIpz/kSDzRyn4TpyuzwmRcBz0iHFyOATUejfrKPKXHxRZjd3ppiIhj0jbh9KlOTZY+mXaKLCtEe3eETz/YxuZaD899axlnLk5Fhz3E2RMMhRJw4mwDn76/g+2NvkN+5r5RCRPalsVcW6Xsnx8mKV/GoCYxC0tPEiVI59IctNGPlvSCMpoH1RixjowJs0Ra8tPwZQO3BycjDR8EZPcmOHcj9NxyzuQz2hjKEZRo9Kkh4h839leQ1/YMa9/Aog5gGHJ02yFC4pza6Zx/XBz/1mq30Ol2FG2jUYjtnR20Wi1F03AwwP3797Czs42Q81icvjKHQ6DbDt1pojFgto+L0fiP03+6XsYzeTKRXOrL4bS5+Y+TvmDgIRN55T/S7vSfyg+zPG5VRr6nD+nsEVpjFSyJ1ce+02Z0sIHWS6bl5IhBX7uok2wkz8fVj8tlMsJw4yE38Ieh7hNwsdWIgQMge8BI+nmEU/YwII8UdmbhxHwxU+1L+5E8N9uQuZnjgMkgKE2eI5ASiI0wSUwJ6/e6WLvXTc4IhqnpEo6faaBYYpiZq+DYqUbqRo+d1hC3rrYwiL40cQifJm19vFV0/HMGrJys4blvLGN+uRqtzz46imDylAiMjD2obz0u2LbR/pAAah2qd8pbXKZ8wMkFgzhi+KFHZvHsy8cOPYAiwWnHpKongp2RWqtJGwJ6Chybhv2B3fMsAKZnK6mngEnotAdotwbgauYif0DB1STweXbid2O9i5/+3W28+v072Fjtqv1d4mZoZC4xCqSXKwWcuzSDb/zmKZy5MO3M0Bm7FDlthSH6GhH9y4qQQ9mPWdOPSyw1d/bZqkDcqNoX4nReFbGDmCBX7JnHzHwWGUHJpNo43NR8xLF+v4u3f7aGzdWe896Hc3qujLnFsn8GrFuC/40hOGPajMdcTwwekKDMBIdDG4OYta2XtXP6Mi6TtzuzSmlbzMTh17I/AbNMm7Hsr+DoQL6ZKOSXfs6mylXIRG6klYytnnKmP/ZFHiZ1zszNL9MJ4wD6fXECT2bgwk29eesm/vpv/wrT0zP4B7/xm2g2m/ji+hf487/4MywtLuGf/Hf/FPV6HR9+/CH+5M/+C44fP47/6z//HTSb09nLgtinZTDgKJeBTHPhQ7osJb8goiKf0wdOlMKO/ZtWNFXy6o0vGOR89QDMGRyWda54x31sLyuxQT/TCOhGsrK+krd4VLYKlJiFwdgCl/KuXR85LdPAQ5YSSC/dribX3004B9l/QM/eku8BePaAYeqv2Y32UdImq9AAh9OOdNoLLYm5OF3QX5FyRewZUCjIo24FmnZriNtf7OHEmYY+BteXr8hw4uwUPvtgC8fONNCcLSOxdA6s3u1Ex1Xqx0HAMp+yoeiMgcZUEU88t4il4/XYE4a8KGWwdiiO1+XEcGcQ+yfYp62kAzMYRPNTXrUcV2E5hrigOSfWA4d9EMToH8IsyaY796QYD+aXanjqpWXMzKdv6GlQEM22Go2iPiERUhYwlMvpG2p68WL/NVPyDgAY0zGpWG/PXyJ9MzZdeXiDFCIvi8UAy8frmY4n5hzY2eyh0x6CtoL4AHHkRg3sAIpURrvbfbz50/u4eXUXF67M4dzFGczMV1AqZ9srJbHEaHnT8dNTePHvncBgEOL2tb0YMyfHeCD/9F8xPngG7mGMq71TknqKkQTm8plsHCrdKVeejAuG9bBPXBIHjEGsZtBa48PNatmS3k512yk5dms9ZRZeuRQ5hNh757NdzC5UUCzF9wVjQs/OLVZx87MWhpZNm7xvkx0Eiqc8tjoH4i1rxLbN/uAh34k6+dFz/7UNMSRkoYzF3njSZk2cKYD3FRxlyL4nig+U5JMaRQ9gfYIJI/6zdo05+eKnlZ7twNuqjxs/8iNDGHL0u1LSZxdmnAP311bx5ttvYm5uDi98/QVMNaewurqKq9euYm9vF63WHmr1Gra2t7C+sY5isYh+v5+5DFpWrxtGR+3ZLz3pPc957E1Cuc4TMm3aFua+Qskj2Y+uQ55CnApWxOcTSaj5o3lIpTGsJM/0b1mfkKmEbgDFJE/4HRZfRcEJtVZX8ag760XtSB/RhJA7s9dp3cxADVcBE7sbbFPInkFiuno2/dSQjNMamsi4jXuVA8CYCAT5pgvlhCAQZTPoHfhv3djDpa05LCxXEw30+aUqzjzUxKlzU5Ex70/HebRU6OouOu0hGGmjIMjuBHAgdoVMEACnH2ri1ENNBBmWB3HOMRpybG/2sLHaRWu7j52tATqdIQb9kZrSXq4EePJryzh+poFc6tS26yauiSNe4tDHFR8BIEN2/36I4nqCzLrUcmf/zooMmD382BxWTjQyBeI45+j3QmyudbC51sXOVg+7W310u0MMeiO1gXRzuoznv3UC80u1TLSo6u+Tb6SD6PW2mOucULHIQGS+l7gx6cuRx+dsN2fKWD6ZLVAajjjW7nXQ74cGi4xC7ixbORJgeFumhhkMRrhzYw+rdzv48K11nD4/jTMXprF4rIZavYhCMYhml4xXdBAwLB2v48mvL2N7s4e97cH+6uIBzsUG/1nkFQvE5sF+RLC2SJKfXiYRtADGYWxjnKnsrvvMzNsMkL0+2tLy78fiNzEZeSN+1e4qHrHhIo17wzEcAvdut3GpO0KxlKyXgwJDY7oo9mnrmxsdj9cbk+KFQ4YJyP0HUoyPD+QglTqD0efjQebgCcvIQV8FTn6hIPdMFMAUFUJAR46h8iqloSQdWTMvEGMsqXeeQp30TA2U0ZCLo8oAqEBKHHoyxhgDzp05h1/71V9Ho9HA4sISGBgeufQIfusf/xaaU9OYm1tAgACPXXkcALC4uISZmdnsspJ40qMhMBoBmU5YNU6Z8GRw4gd5hLfteJtaKxaX7cUbaGwO0UperniheY0SrJlMsc8kdubyj9p3hxjc6q81C4YTAjiXeUmxjFyT0jm31aSetSE/ZGhDyz56EDDamcT7KE5ZfJK97bRdjFCm5fvUe2wRnlikYBMGZxzmlf5M/8qtkbY3xOavc4uVxM0Xa/UCLj+7gHojTWxx7Gz1cft6W5zQZVmRufRpTCNVqgWcudA0Tk+JRcE5WrsDfPT2Bj59fxNb630MB6HoYxI4ZAAqtQIuPDqXg0CYFWJ2l/j5YzwQQcl+L8z0VZ1zju31HjbWumMcMx8PtDqDfojd7f6+gjpal0nG58Zzs/0SdEuu0gRMTZdw5uJ0qsEvZy9trnXw7qur+PzDLXEc6yg0Z9hFDTG7UMUTzy/vh1CH1sw5DHlvCn8ZQDFFq5ArPFru4bUN5Nfmcdo+ax5PuqAAnDjTjDaxTh5InHN0O0Pcv9PCSJ0+I+o/GoSZN7Ds9Ya4d6uFfidMLjI2AJI+4O/eaGE0JHmkQeRphOEgxNrdDtbvd/HR2+uYW6xi6Vgdx041MLtYxfRsBeVqAYVoll+emSpBgeH0+SZOn2vio3c3EJLjbCfhjnIOdLtDoQdS1EahEKBaKyBgZJkupcbRiYSX81E1Vi4fFgAema9Bq748LqydThos8JPNAXv5ju3DSiiXA7UxuffghKiZecjR64UYDkdwC9a+hX6ky23vDdHvjaJ91pJrWakUxKxPq33s1optOSd4dTQgt8rPwx77gNRiMvlG6o+Vl/AJs5/vr8i0hCzhLu3VVwGULzfkmoliuqLWNXWwyLVaP895ourgURpzlBnerJND5hkNqHGVZOQSuiK083Pz+K1/9E8AxtRSg9npWXz7m78KMPHlGmCYnZ7FSy+8DMZyTmeldkoIjIYchaI2JuMgnMAa5CRa4Hw3iBwH0oWmkWbm5zSxAUQR0fWy3NY3XBvGDp1mPhc/J78yGY1IWLNtol8lezlVmZIvOeQGyXQTEePoTxOdsUzN7U1PAIXLwIouw1fPWDvF89xRHEa14yiL2cNfBUD9Zl7UtGCJm0BmA2mzMw4MeiFufbGHhx6ZQa3h31eEMQYEYjZKGoQhx92bLexs9vzsk4f2mGE6NV3GwnItUwCl0xrijR/fxwdvrqMnjz61xRTlzxwQK1O5tB1yyCoGMUNQ5qFtJX+i+oyGHKVyCm0cuH1jDz/6q5vokiNfPcWSseZ/H8f/HKK/VeONtbkuA2NKCmRJnui4eMGnlhjD/FIdM3PpPA0AWxtd/Phvb+HzDzYxHHp6nsNYpZeHlRSrcOdpbhB9FZ9X6450/HRT+gMF7vY+A9CcruDClVlUaunBUgDYXOti/X6XzLARjTroj9CNjllPg157hFe+dxs3ru7C7BRCANGnTN1oR9Kl1QqtGjNjfO6i2+Y85Gi1hmi39nDnRgvvvb6G+lQRM/NVzC9WsHSsjuUTDUzPV1CuFDLtA8MYQ7VWxJkL07j6yU60DMpH8XgQhlpe8XKyP1UoMDRnyigUmAi6GE66QTW5zu99ajskd1YDWPQ3zoGTLJG8ODqWQqIG0o7uTZLO+qpQYDj/aBMPPdqMndUlMQ16Id7++Rpu32h77OAEajgwHHIzQBgHTATx6PJePabi6pMYrjoysE/WenCQV9THDuhkBZ2lbbKYT+NOcPlS9s1X4IXMQRTzy3Q0RJl56+Oo3HEAQz/ZQRUbuUgSZj6hzGMYcI52pwPGGKYaUwADRmGIrc1NFAoBZmZnwSCebW5uoFAoYHZmFizIs7GCLl4Y/CkWuGsbp6aJRad8IF/IJIEEmsDQwZbz79BgBwdIyZalbp+WA0Sn1xAv3udYyRLMU5+itCEgZyKJpWQyGEWp00E0OWdKBgYo3eKXmTxo2hfGtdcpNh5Z7uCBa7p4QwWA5/jCOK4gIRlutuG4VDFywznH6t0ONld7qCXMMskSvBRfg0e4+fmeCFjQKim+ykE517xC6ZiZK6M+FX+iEGQeDty50cIn722h1x0JcpgOIEVFTA4cuZAPu+2aK2OS7IDc3htg0B+hknA6EiDqOLdQRaVaRGt3KBHGE00EhWon0AUWzMjB7Pxx6BOAntvhHY4W/+wnrm2LsqDAML9URaWa3I6ci2Uin3+4haufbGMwdOe4aZ+dOlHZW4OIdtIe41XWrIuHBu57LhqXG3kJQQcZR/EEUACgWArw0OVZHD/TzBQsHQ44bl3dRXvXXpbCMOiH2NseGEGuOKjUiphbrOHaZ7sIDeOGK3lEm081DzHSjD6IOtdbLBN7O9UaJW9X0UfDYYidrT6GQxGACUOO7c0+drb6uPkFQ6HI0Jwu48SZKZy5OI1T56dRnyq69NhlBGJfoFqjiE5bt50gO3vHx5XQ2h2g3x+hWo8/VowxAAEwt1hFtVbAoB+38ZuizI2lHDpoJSJkly+A4srObMA9VwmpqFlLhAm1eBjEzLuVU/XU47573RHqH8iZJLYAEPdxYqEQsMx7lKkl4qQ+8ZZ9nP5JevjgIDM5R4jmJF/PSHJAwRMWe+NJm7XdmPfy6MB+DfpfchhjOQ9Z/UgtL2PJBHWTOBHwriPv3cTb9LpTgHn1rC1y4+De/Xv4s7/4U1QqZfx3/+ifYH5uHjduXMf//n/+MRqNBn7nv/8dzM3O49q1q/jj//OP0Kg38C//xb/C/PxCClUuLQw64JOqc21vJkPy1OgLN/sxDr1pgEVWnz0bw5pJoQ055uRRvivlF8knUVqurMMYu4k7F0YejQva8fVynq1a9LIb+YYrI9/xKow2U7GZDP1ETZ1xYLxc/vJo22jaSC6nPtRoif6O6VDajp2kor07xK1re1g+WUepvA9pzoGN+12s3m37Vx4ZEZwM9Fr9ywAEjKM+VUKhmL4fwHDIce9mK/rCGiGL+IgRXlU0aSs0M30+E9O8y17hAPbo0HjE/j8cezt97O0OMDWTMhUFYlnJ8TNT2NrouXtC+OQ80y+l8V8MGBaP1TAYhNhc61or2CydkrN/KQa33eyHJAyak/d9yYMA/3/2/vNLktzIFwV/8PDQIrWsyiytRVerai0ppknOzJ25I97c88Se3f9sd997e97Ze++Qc2c45JCttajq0lpXZqUWkRlaON4HONwBONzDIzJSFFlGdmW4AzAYDAaDmTkE0tloiMNfKarVJmYeFVCzV/RoR7bosXSiMQRBEvG311SRCIVK5zFAD0p7ecVVKF3wUpVgiUuhl5ZIhGByfw6nXhoKvEpdhPV8FY/u5lGvWx7e1RsUK4tlNBsWDL9zN2yIxgxMHujBnasrWF+ryezSkEF1wwdAJhtFb18CC7MlR25UhWWaBKdeHsKJF4dbOp7L82V89G8PsbJQked9ClBKYdUoVpYqWF2u4t7NPA6d6MVLb48hG0JPJDMmUpkoVhbKsnS0I8aUhUSJ6M1TdktbqdBArrc1HX2DCfQNJrG+1nAneCdQYY//zgaGDCHthjDgWlnCO4/66s74UUHXDD/LklKKZp2dot5qPEUiBpJpEwYB+BpGvt2SmZH8HBV5pRohBPFEJNRNWpSyrWp+ZxURImzzBuE3Zuvzwj9tx8NOCv5Qn982tCQzqH/aKdZZjMa3/E5h7zPoPrS5nEJ11XXmp95pE385x6eAKXv+sd/5j/BJQG/eqkGadlsgxieWV5Zx89YN3Lp9C6urKwCAtfU85uZn8WTmCQqFIgCgUFzH8vISlpaXUK+HPwDNoxNCOtws6KBeYdzqP8j/wfufCAQyJ536RZz82YODlVTLB5eRa6egTt+r3Ukp5FUoGi0knI3qaRPPwHYnUEf5SXvyufkhdIy0LYyHG2x+WlB42cIQCv6SG1Yba0tq3uicPn0FLUWQcPfVNXY8TVUCC2GBKtYG/9VoWph+WEBxvb6hr/2NhoUnDwoorTds+t3/WH3hqXXGB8fBEwyCaNQId9CkRdkKFHYAilS/Z4wSdthiOzf96GilhMjbcjpBpuJ16CQoFZtYniuHuLKdIJ6M4ODxXmR7NPvTieY/xyVgLwyDYGwyjbc+2I23/mI3xib51dZ+Gq29Plb1mV4jCnn4uR1tsla41MupwYgEHGSpQLNhMTkSmkxBJJxOMygLApCwX2OFcrLz2okcqha57ODIDl/QDGH3JYVUYiPgtxpTfW9GCCYP5PDKe+xg3jABlGaT4tHdNSzMlqW5j8ui1WSr7cqlRkv9Rgi7uWbyoH39b1D1WuufIJUycebVEbz/13tw6uUhJFIm0wtQ5zACMxpBOmsik4sG/tfTH0MqZQq1eKumYFuRS6U6bl1ZxqO7ayH0OUEkYiAWN9j4AmHhCluHtX+GlWAAgaBSamB1sRJqXknnothzKIto3LDtUGEbumOXQhJZQtjtcW3DhoSaOGNUXE2nMwU2PHYcEfQy0BPAEZjszhluUrVihVo5HokQ9A/FlRuxBOPQseCowwFizxe9g3Hfm/4k2i0WYLN8tv7ImozqGUk5FQy4uRkIxPND8xQWh/dlq1msnQo2TtMG8AWiCm8ktqrTM3bUAvY7yQYMWdvG+2GToTvC0lG1rd48LdDm7TytGmpPXM6s505kkoFMnFSpqFqNaORIzoeSeSM3UUzsnsAvf/ErRIwIxkbHAQD79u7Hr375V4hFoxgZHgEhBAf2H8Tf/s3fIZlIBq9C4Xrehybip9s1OqEtX1IyrjfghfqiFydH4nknJGrpcrfdCA60c7aGF493pQPx5BPtGX7+g3hzhnvzjWi827fuWEJ+GzUFhSHicIxhb91hWOx15vTORbvgZ8pwmn0LCcaVyHX3MEeHES2p9Du/ohU4vhn3KnktFFhZrGL+SQm5vlh75w5xLJSisFbH9KMCO3CT0yg4iH4umy9OQMYDxi8jEk7vRCIEyXQUkQhxzrHwk4IIIRibSGNgJBWaPp0Z5rXRwrWYn2Hgt82Io6vXm5idLuHAiSbiCf+zIviYHJ/M4Pjzg7jw9Twq5aavfrJHp/NsRAhGd6fwyrtjGJvMAGBf6b/9ZAZPHhRgWRbUTQpt2le+9kOQeFPwrw/tyajqfxEgtByZpoFkin2ZdZwQZ2+d/DU2Fo9g76Ee5Ppaf3l36BJXGoYyFoOAOv8SUek4SdTTZkn/iO91tkJH9OiX/0vzkQGkM1EcONaL514ZQf9wMvSNSatLFdy6soxqtSm0TVglS4HlxTJWlyr2ygx/vIQAybSJUy8PY2WxgpmpovdgZqL7yVqTTJt47uwwTr40hGTKxItvjsKMGrj8/QJKRflcFnbbUxOWBURa+J3xpImB4SRmHhf1X++V+FmtZiG/XIXVpC35yILHbFSJtlPb/e4Z0BS1WhMLs0UcON4b6Fyzq5eBvUf6MP2wiAe382g2hSie1twh6BtIYHQiHfo6cd8gL7eVw4KPX+/F0u6mznBY+ZugVa0ceGyruN5Ao26xgFkQBQYwsiuFwdEkph8UQZ2VJ3atBJAGl/06nYti4kA21HXkzaaFtdU6mo4+dbvZbQ1xE5V2+7XTk+ZRdjyTJ0wTvvelzKJlI/d1Z/jcF53T5E+bLz6NYSRNG36TsgZhK5qJ74P8vq15UPjguONB7pYtB2+120RIF2BjVxzr2ODnISiGuZZdJPDRlwJCXFWuA1WpiM/ZTBbvvvUeS7OJz2ayePP1twTcQDqVxssvvGwPrBCU+TSU+44hTLPWySIubmxSlz4q/BsKxD5SFAixDULVEQhDNptAdX2keOuBTHG1KjvLg7iTqNCpXBZAXWfAXfYp18V55UXD+acYH4HCu50gakQRvOaAlMvHySbOklkhjdjXHDtMan3cnBbEyZEI/KZArdLE9P2Cc+tN26gtYP5JCauLVdnAFMgkCDl+hfyeeihFs8lu12n1vStisiDCnWurWFmqyIEjAX80amDXvixefHO0rSCSjEVJoSw4FuZmHELYGRCGachjSwNWE5ibLmJ1qYqRXf7nDHC8sUQEJ14cRKNh4dqPyygVNbfpUNl5isUNTO7P4fnXRpiDYjth45NZvP5TA9998gSP7q1LBwi6BnabLoN9QI1k11J/LSqbvaFrYWMIrhaklKBhXxfdqrtjiQgmD+Tw+N4aioU645f6WZwQJJMmDp3sw/OvjiLZ1hhytz1u3BRkmKRx5vSvnmdM5NRACtWc2+Tia5sm2/HiwT2+6itisgNFR8bTOHCsF7v25ZBIhlshxIMQty4vY266qFj7bl0AUFqvY+r+GsYmMi1XIBECjO5K49X3duHbT55gdrrgOvRui4Tf7IDM3oEETr44hOPPDyKZMkEIQSoTxfOvjSIaNXDh2wUU12oO+ywLWFupoVGzEG1xQ1QsHsH+Y714fG8NK8tVfR/YXUgARE0DmVw0RCCK6dNGw7tEIUBkAkCuz7KAuekyimt1RAeDLwbg5129+MYIqpUGZh4XGd81NEQMgoHhJF56awRjE5kOaJR1V1vzkmifCcU8NhtD3P5HCa0zrHsfFlhb1/M1lNbrSKZbbZEjyPbGcOrsAGpVdjuUZX/4cr+OEdvUY+MsnYvixAv9GN2dCnGGEVApN7G6VPUeXOvoabfNrvuv5wPXmbpjsDffXOzADtsy8KdNF7chhvsu2EfsAldboGirhh3nE7SAnSwyTxlsMIgig2cSkL42hwCdDyjgVfczA8zAipjwRkfCVkEpSuUSmk0L2UwGhBBYloUVe2tPf18/CCFoNBuYnZuFYUQwMjyCiGHoLd8AOghBywO1XDpbmOqyfaqU9ckopgqBBF8a/AIiPu+4weOPUqRFUaGK4yPZotD85cXcmInkoIjvYX9dp4Sy1S/2TRxOAMV2miDhkF0KD/kh5W1rwI8Qos0lGQjObzGgReTcnivD7QAKCfcVXSVJrN9xVAm71nnuSRmry1WMhDyHwCGZAtVqE1P3C6hVLbesI+dUsDzDdRwPOHlMIwsoFxpoNoIdD+YYEoxOpHD67CAuf7+I/GrV3gbD6IvFDPQNJbD3YA4Hj/ch19/GKhzbOJZjHnIvN5vU43z5Qa43hqHRJFvibN94Qwywaz8jBIW1un1rBZBfqeHRnTUMDCdgRiOBckAIQTobxQtvjKK3P4Gbl5exOFuyt6dQxx4mhCAWN9A3mMSBY704dLIP2VxMdgIMYGRXGq/9ZBdMcxb3b+fZ1bGC5dXWdh7HJibCcKdMV2gLOK0KXYcKXJ6aTQul9TosK/hLPSEEhgHsP9qL/HIV1y4solSoO0EHfg7A8FgaB0/048CxXqSz0dByJG1305Rpw7VTcgv6U7AF3KHp6hnCs+gOMtKJb0iiolEDo7sziCVEU4cgGjPYmSEDCfTZ1/Rme2OIxrgst9ZtfAvt1P0Cbl5aVg4j9RZuNike3lnDoRP9GBxNtXTmjQgwebAHybSJq+cX8ehOHuv5GqymsH3AXhWX7YlhbIKt+BqbSNvXyBInTyIVwamzwzCjBs5/NedeC07ZOSbF9RoSqdYHRe/ak8WZV0dw4Zt5rK1W0Wx6V9YRsBVjew7mMHmgR7r9xA+qlSbKxQbAA4rCcqiNTrMUwMpSBbPTReT64y1X3BBCMGzrmEvfLWDmcQGlYsPRfYZBkEqb2L03g2PPD2J0Is22z7UV+Bbq8/wICYoHSpSX4pTQ7hlOfnrOl0SpEd7KeHKx0MDyQgX9wwnAx4QG2HvDAHbtSSMaNXDtxxXMPC6iUmKrpvgqYSNCEIubGBhJ4MjpXuw5yFahtOwLSrG6WMPaSl0wNt3GS1LNJyipPDzqzu8eMU+wYKfBlhLnH6YP2i6j7U4f0zwISIjMbdm0gtzv6D4OAsmBewbtQleDKGGgvX5qJe0AKPvaSwwCGtJZ4EABLK0s47f//q+oVmv4xQe/xK7xXZidn8V///V/AyEG/v4//wOGBofweGoK/7//6/9ANBrF//Jf/leMjY65SFpVYoMRtfeqc4O9m0DVxxYVEOVvS/Tc2PWPJHgCHyEICM0G7stzm5zK87wT8rCNL0swzuEEUNhf5rPzdRR2MIUIXz2p6+bvmDhJRyBP36xpgsftpzz5sxC48jMOqFQgDBDbKbbLUikFhXwNs1MlDI4mEYnonTo9UKwuVTH/pCwvNQ9wDkNR63qXvBpQsCBCpdRsebMKIcyhOHZmAEOjSczPlLC2UgMxgEw2hlxvDAMjSaSzUXtffdjAFIVBiBCUtftaWlJKUK+zszRCtBSZnhheeXcM+w7nUCk1AQIkUiayPTEszZfx3acz7D2Aes3CvRurmDyYw8iuFFrJALvKNIKjZwYwcSCLhSclzE0XbacQiCcjSGejGBhOYmg0hXRP1G6bzA/+e3A0hVffH4cRIbh7I49mQ1iT3SmIt5t4uMNA3sbWYV2E6SmryQ4brVeboZywVCaKl94aw+79WcxPF1FYryMaiyCTY8GAodEUkukoWHw/PG1GhMCIBHg0bYGoKYj0B1ADKG6i4rYIaRvTwJlcDG/+xaQSnCFO0M4wIG3DIHwyaQEc39JcGRe+mUV+pdqSekqBxfky7l5fRU9/QgjY6IHRRzGyK42+wQSWzwxiZqqApbkyqtUmIqaBdNpET38cQ2Mp9A8lfa8W5oG2Ey8MwTQNfP/5LNZWqwAI1laqmJ0qom8wEXi2ByEs+HT8hUH0Dydw++oKZh8XUS6z4IcRYWdFZXJRTB7owYFjvcj1xUMwE1hbrrHzsMQAluKkhgWd1FTLTdy/lcfk/hxSWbOlzjYMYHR3Gr39cawsssNy11dZ4CmTi6J/KIGB4STiiQig4XdrEGdOopX+MCBuHYP4k7p603sWUVjEFEHDweWzMOcI5oUO6lULU/dL2L0/i2S61SpGFkgc3Z1C70AcywsV5JdryK9UUS42kEiYyPXFkOuLoW8ogVQmAsNorUcpZVvNnjwsolKSb43Tuvc6W9kxOOUEnezteN90y6I83OKWVymKwROP6AQJX4ss2uyB+jYEIgmPXGDHB8uewabAlgdR2gN5SMkOvJtmGASxOEG11P5pIPn8Kq7fvI5Go4FXV17FrvFdKBQKmJ2dgUUpisUChgaHUK1VUSgWETEMVKpV22FvoyICxKJG+IHqHIzWgSlJ9V+HPAH3NsAvzqqlKyzB3ItW/EDfvApefpaHrm3OuQ7O5ChzxAmg2DhgueaMsxKFgG1hCdGUjmGTkLthILmqoEleFwTjgRfOB9s+Y0Ya2Bky7TfCpY7FvPhtXxSNBsWTB0UcONaDTE5zGKkG+BWws4+YUx5omLVhmbsTr2AZEtbatdUalubL9tabFngIgRklGJ1IY3hXGpa9CduIGHBvSm9/VY8RIYiYXKd4C1MAtaqFUqHhSfPSyHAMjCTQP5xgq2XcmAwqpYaz6oXD8mIFNy8tI9cXc7YOBNfBzhzI9sSQzcUweaiH8YKyrQhGhCBikJZOCU/rHUxg39EeTD8ooFhgPG1Xvbms84soqnMQXL606ZMQyKJEASzOVbC2Umu5fY23OZ6MYM/BHkzsy7FVAAbjGf/a30mwMBIxfFdItoONwg7SeoK39lZQ55YTvcnMP/hqF6N0qGbY6qZwW3PCAg+grC5V8f3nM5h+WIAlnpQPPo/AbRABCCVo1CzcurKM8T0Z7N6XY3lDyHosbtr6I4Vmw96iR5jtE4kYofqfEIJo3MCewz24dzOPtdUaALYK5O71VUzszyLXF2+NI2ZgYn8OI7syKBXqKK7XQC3AjBlIJE0kkhHE4hH7vJ9WDi3T+TNTBVTLTRDnrgMqaOqQUkh4Sa7nXYGxKMXMowKmHqzj4IneliuCua5Lpk0k0xmMTWbclSgROUDRGcjbYTvZGiu10Z1MmUlF+OchTmeHZDrI4ekG+SOWyG/vYKVC58xOlTA7VcLew1lwG8y3ZltxJlImxvekMTaZZltpmxSGYdgHaLvEhVk9BrAb/KYfFKVDbuW4iGAxKnapI5PEm+j3sWnHO9dbSCRxOEgdPnMr2yB8/ndze7gqdHIrkonnhyZP2HaHQPZU9LUKTx3BOwt2eBAlHBACxOIE9SrQDPPRVYDRkTF88PNfoFarYc/kXgDAxO5J/M1f/2dYloWxsXEQQjC5exJ//7d/D2IY7iqUNsA0GY2dBzHasCFFreDEKJTVB50AdZVdVxaviQ40gJZRKSrwwZnxmJHKbXdKAFiicUOllRSELzch7nYear+n3EMWLPlObPedANT5V55wpJCQcGef+v2YarwW9wBavxraB8fIE/i+NF/B0lwldBAFoCgW6ph+VJTOyPBUov7ukF4Ktp/60Z01jE9mWi6DB9wgRSQCRFqtJw9JiWmy1R1ez9M1Uhp1C6tLFTQbFGY0HI2EQLq3zbKUcJxdVbNBcefaKgZGkjh6ur8lfrcepgejBgFanMPgDxTrqzXcu77KvoQz0tlKs4762OuuOTdJeUSqXY3gjhXKjW9b8ayt1vDwbh79I0lEQ/CPy1nEJGwbaxcgFo84BwSLYtTRLUQee5cIrZcdO9n5YJqEn2/g0mHraldt7whYXazg+89mcO/6Kpp1u1W21++G4RXFY+vblcUqLn23gFxvHD39IVZqQNQfpOV2FD+glKLZoHh0Zw0LMyXhPTDzuIA711Zx+uxwyyvm3cBOBLG4gd4BsQ3tB4OXFsp4dGcNzaawLY8K46UdIMSVOWdFKbMySoUGblxcwtBYEn2DiVABEHdLFDq6NU2LU/PLnYfbEHDRqRMnYnE1IlGqCQFUwNNy6nTyuHYBH7+qbcADi+WShTtX8hgYiiPXH/Lwa2FuMowIENY00ECp0MDtK3msrfJbNsUIibeV6psgm8ez8zkg758fCFc8OMLp2vOiDnVBH0AJHTwJytyOO9aVVZrP4E8ROrVgdwxw2TYMgnjSQDvzHAGQSqXw5utv4b133kc2mwUAJBIJvPjCS3jppZeRiCcAAMlkEs+feQFnTp9BPB78tcZTTwSIpwyQSHvBB6r8t5FCHdmeGlzKhXpbD0T3SJwHArDDqURlTGAvceYP8ldnnkakt/xhk1vbgZETFi0Dt+flL7yaL+z2r0AjgacJxmX7tEkdIhFACUG52MD0gwLqNct7RoIOKLA4W8HyfMWhiWiqcKoSJvDwNMvyYTUppu4XMPOoEOKq3+4DIYBhEqSzMdu4J15BBtsyMjddQrnYCMdLXV32P6wWuY5SoYFL3y7g0d01NBsh+2uDQClFcb2Oy9/P49HddVCLuis97DvT2xu1xJUVAvtqUylZ+Y+0rxcoL07FB9RrFu5cW8XSbGlLeOcFtlIjlTE9TQTaHSV8kpALu/j8eebOKsSJY4upzhfLDsZuN6HZsDD7uIivPpzGzSsrqPPzeCRVpsyRTmPYX8tiZ6Nc+GbOvtJ9K8YM01mP763hwrfzKBTqUnq10sTV84t4fJcFM8LQxIYBUf5rhyaKcrGBmxeWsLRQEW+udZyqducXkdOcPh6MoRR48qiIaz8uoVJqbtN46yYIgifoZ60PutEhoysf1DnKagHHTiMAtShmHpdw/cIKylvYD+wQaAt3rubx6E7BWVkk6Snh2QuKzaMhWw78PSXy1W0b1Mdp4WOS+Wg2pxxzgut4nd50n1uRKqX7ZPaYSYHgY0T61Lt9M9MGoC0H8xmosMODKOFFkq9GiSXaMG7tQRkxDJj25x3RIDCIoTESwh8gxulKJEmor4ybCdse/OgUiPKXwjPZEVs7S1kFraY61ZKDzRU4M9GFL0/C1P8Uss3Vif5uCwDPtiephOgLEZHZQoY2la9j3MKdONVoh0Up5qZKKOTrvng4UEpRr1t48qCIcqnpGvJOJa7k8yraItkhz8ug4noD1y4sY2Wxsi0GeSRioG8wDjNqSN3M2mo7nZSd2zA3XQrcq94KKGUBLn7bgxilXF6o4IfPZvHo7jqaTbqpvKCUorTewKXvFnD9whJqVfEsFBLW5pHAMfAFN0T934bNI4FnIjYKiqX5Mq6eX9wyh1oii7Aze/oHk+65KGoEul2wo7B+37FVg9Oby19nkS50RSdAKUWl3MDtayv49N8f4+71PBp1Hm6WCVJtBKJpVa3WxPULS/jxqzkU8pvb75RSWE0LU/fX8d0nM1ier4BQLoeunlhdquL8l7OYfVwEtbDpNNUqTdy8tIzbV1fRbFiSQyXO720i9rwSe6hWs3Dz4jJuXV4KH6TvNmiCTZ0E9nk5ruv1aSLWcG0VNaGjU5V03xUBThBbt03Hrb9eo7hzbQ23Lq2iWtn8fqCUolqxcPvyKq7/yOpk4LbDtYGUbVAOEzVRAd3vpw26yXrvgljnJyFyonTeHLFlBgL35WWRLauW7NZu9UcIPE9z1z+DjcMOD6KEVPrOWGSrUeIp8ayBEIX5l8VOP3v4pBkmkEgTxBKGxqh8Bhw2xBV3nneNEwJbdASlTMS8bj73IyEVfosVMBnc4QPFA66h4y6jFxNVnovPlOjziHk7s/mErRbEpcoNcvAxSLC2WsfcVCnUKo+11RoLEljcqTFsvPygAAgObHvBRHFSd4KotgFgWcCTB0X8+PUCVhaqsKyNBxDYjR/8vxa0EaB/OIlMNirx0cbkyHep1MTtayso5Gudr0YhjJtE5SGzmTE/W8Y3Hz3B3WurqFe7bxRTSmFZFKvLNZz7chZXflhEpew9TFYMiIYCncGlevkAROnhCeG3ukimoQdbs2Hh1tUVXPhmHoW17jjUohy1gohpYHhXCnGfa33bGub2WCNe5km4WECOCShVHDLWez6rENrdX7QBoNQO0taamH9SwrcfP8Hnv5/C7FSRbT0RP7k684nQy1yf8feCnUFAUK1YuHJuAd999gQri5Wu6A9vG9jX97s3VvH1R9OYmym5N9KJgWbCVmrMTJXw9YdP8OjuGhqNzaGHUra15ur5JVz4Zh6lknhmE5ECKY7qDgta595dcUDAboj58ZsF3Lq8sim6qh2Qvx/QthorB164bFEFJ0tr2/YMoMNzDxCFsnyP/1Y3J8k4KyULV8+v4Nr5FRTXO18p2Qp44P3KD8u4+O0yCuvCxxlJL2na7FmSyN87/3TVZ+8WtE1Tt1kv8NVQ5JFv2QTgBAAdUSYaYlqsQPGW988Ufni1zrwT+70j+JNpyPbADj8Tpb0JhVK2rSeRBMyIgUrFQrPeff0gVwzttj0zBsQSBluBQmQT+hl4IdDt4YlKpqAyooHB5zseU3AORrVlhudlxiV19rXydF6Zbr/rTgbujHjfu5fxUeewAfGtDcK5KER4pCIv2rNwwS1ZdtU0GIUCX7kxU6tZmH5YwN4jOd8zRygFqAXMPS7ZhyR6DR7PuNNN0n5AXTyyFUCdV80mxf0ba6hXLTz36hBGdiVhtHWrkIiWwrKAwloN8XjEdmqD8fT0xzA0lsTKErs6mfWigtcCpu8Xce3HZZw+O4hkuvUhsBrqPI4JUXiyNF/BNx/NYGWxgiOn+pHrj4W6LSGwVnvwNhpsddLFb+eZg1fnh0KDfeGicneFB8W7V1EQWxeIMkocSW6zKlfnCAMIALs95NL3C6iUGjjz6jD6h5L2tsTO5KjRoCjka8jkoojGgg/RIAQYGk2jbyCJcnFdPEPZ37kIwhf0jvgcocnfU3ExPHMKqaiMySbbe5QZ+ZSyrVZL82Xcu76CB7fXsLJYdq4Lb3W7C3UiFUqa8lytWLj+4xLWV+s4fXYI43sy7MaXFnW0bIYdhC3k67h5aQlXzi261xqrBAnK17IoZh4X8cXvp3DixUEcPN6LdC7mXY3XIU1Wk2JpoYIr3y/gzvU8quUGXIdFDvj7zV+BYAutw317jAk+LwgB1ldr+P7zWVSrDRw7PYBkxrTT2quPUgpqAU2LwjRD6LqAj+t+K0q0IEQw2JYlftoQkTIQKW+bqO0HoqYSkbcB+CkgHv7PsrLCXA7LhQaufL+EtZUqjr/Qj4HhuH1bVvtbuaSq7QqaDYrFuQpuXlzFw9sF1KpN4WMZExRDlBciPoht89oWKgTasFsMeu2zBSBMp9r6BRknQl5WQBE2v9VOclXBDfVO7wCC/AYur5RPN6HpeQZ/nrD5QRTXIuoA2ixkazFCCMw4kDYjqNUo6jULlgV7iWondISoF4ARASIRIBpjJ9g7J+Zv5bBrocl3kqLn0BY9SgOcR8ext4MB/FnUy9S+ypg/UmHOdBwb2+DiVyET9zBVqeqdxkQNUOdf0Sh1U/zBZh4vQ4X33Fizg03u+9YgGlKMKps2wt+5dYKym0tWFqsYm0z5trBSbuLJwyLqNeoxujx9Rdoci4IhRewvUlQ0T2yGNhoUj+6to7BWx5HTfdh3NId0NuoE51ra1bbDUy428OjOOu5eX8WR0304cLw3sCy/KaO3P45IhKBhUeG2I7mPa9Umrv24BEopTrwwgExPOMeIClFE2aERf7sRzvV8DRe/XcCThwUcON6LyYM55HpizjWyYZ0UXm+9ZiG/XMW9m3ncubqK1aWKcIU1cZcIb9C5lkcIkfvZ1icucfB6QOEqYD+JWgdrQ63SxI2LS1hdquLkS4PYczDn3NoTtp8siwVPbl1ZwdT9dZx9ZwzjezIty6cyJnr6Y5h5TGTnSPKWQjRTrUYcc9IfL05qO9Oi08X7mNrKupNbTDz1iB61AJZFUa00UVyvY+FJCU/s21zW8zX7Cm3ZNXClQzGuNcY3FSxyZwulndxoUDy6m8fyQhl7Dvfg8Ik+DI+lEEtEBBSt5Y3LALWAUrGOmUcF3Li0gukH66hWmzLRIv3KsLYoxfJSFd99OoOpBwUcPdWH8b1ZO/ganh6RpkaDYn21ikd31nDryioWZ8to2Dwlyhll7Cd/197teOxcaRcPn++lDyD2sCvkazj/xTzySzUcf2EAgyNJ57DmoPY58kOBUrGBx3fWEE1EsO9wD0iLQ38phR2Ic3UNq7CNRopA+Czq8foBJx7AlWPYSlyaiPqev5NsK3k+lPHYwXbJ8JajFNWqhXs31rG6VMWhk72Y2J9BOmt2MGdw3Eze1pZreHirYN9EVWdnoCi4uP0nvtfpMIhclvSHyySdb7HRwONGIHQgpcskSlpSmvdEueKy4fYJAVybJCCgSHwf5He6JC4jtXodc3PzWF5eAQVFf38fRkdGEIvFYFkWVlZWMTs7h2q1ilwui/GxMaTTKd6QFhx4Bn9OsHUrUTwKdpOqcZxiwg50TbJT5C2LotmAYIAz2BBJfPwT+6pBk13RtS3BExFa8HqLuqJj0DmBSgYGmq9qjptPqbxiQjQARLBnGp7HcW2o18mB50n3YjshmFYLBAbnLAHUpfHaa0QFFrAizCBycQDlUkM4v4QIBrCIGKjXmuwgRu4YgRtXihNiQ2m9icd3C0hlTO2VlBTA4kwZi3P6M0l0E7llUZSKDRTyNU9+FcrFBhoNCk+AR8DHWWg1gcX5CtY+n8Pj+wXsO5zD6EQKyZSJWCICQ7OqgG0VsFBYq2PmcRGP7qxjdqqIaqWJeDKC/qEkovHgjWTUoqjXbANPsp9VflFUSk1cPbeM1aUaDp/sxfA428IRjRla2poNilq1iUqpgeWFMrulR2y7ygTwfqZ48qiIhbkK7lxdxa69WYzuSqN/OI5EykTENHz5QS0mJ6ViAwuzZTx5UMCTRwXkV6vsDArq1iPWKUK9bmE9X0O1IlzV5tTlykmzwc5lkPE4GkRThx38IBQA2yaxnq8hGjNU1BI06hZqthPLho/eOaB2QO7JwwJWFit4uD+Lfcd6MTyWQiJlsmtjDQ3PKAvA5JereHxvDQ/u5DE/XYJlUTwYSyGVifqOH4dntaZ9xgfk8WI7iuurVcnY1eEorNed27FcFzHIFJZDVU6ARAikOHrZURUEzQbFer6+4bm72aRo1JsolxpYW6kiv1zF8mIFK4sVFAsN1GtNYTuh5A3YOtBVjN5Wqs4a8SSJ9xZRyrYlXju3iEd38tg1mcXYZAYju1LI5GKIxSOIaFY6OCu16hZqVXYT18zjAqbuFbAwW0Kl3GQ2j6d6wWmUOMk9QnbY7IPbecxNFTGyK4XJAzmMTKSRzcUQjRnacUztxjSbFM2GhWrVwvJ8GVMP1jF9v4CVpSrqNctho27Q8DHC+7y0XsdaourJp0KpUBdWjrLCbgCPQqrOFrxyuYHrF5cx+7iIvYey2LUvi4GRJBJJExGTGXe8eXylYL3aRLFQx/x0CfdvrWJ+uoznXh0K5YwyO9QSZxNnUmnYeovNkV7g44HawT5Q93OEGpAhylBu1Nlh3CwY6A+UslVxfgSI8S5JjvhKIlU5OFdqicYFD4y6GJoNisXZKtZWFnDv+hrGJlMY2ZVC31AM8UTEljU9g/lc1ahbqFSaWJqtYG66jNmpMvIrVffGPskxFzZ+EqcLAmYWoa8UkRVnDmtbbP4OjNBNsFudbWSSjIgyLkzDPLjpyI1uHZWe7MAMIZLX1tbw6edf4sn0E6QzaTSbTeTza9i3by/efON1PHz0CF9//S1isRiSiQTK5TISiTjefutNTEzs3tbAWNdgR/ktTzcQGnIj4sf/vLTx2jRfgIIq7+0zse9oMkBovaW1+FSfrmXNnUM3AieUUty4VEBxvc37miUkwYmhWx8iY3vfilpVE4BL5+Drkijcr3J2AtvfLry3uAPCjC0LACxu0FLHeBbLw/76RHl9bTa7pbS2gU+flXoSxZUEAJyvfm5zhCgSgRsg4Q2F+E50nO2SBEilIohEHZNEMOfkcz2oHXCpVS0RkSZU5VIcTxhIJE2f6BdbqVAqNu3zUDyc8JQxDIJUJgrTbD1OLYuiWGigWbe8PNFS49IdjRtIZ0z09MUxOJpEKmvCjLp705tN5sAvL1SxMFPG2mrVPuiQ4TBjBOl0lH2NU+xkVdar5SYq5YZ2qb4UOuArqgx2NXJPfwz9Q0n0DcQQT5gwDAKLUjTrFtsOslbH8kIZ6/kaysUmqpWm5mtba75HDIJ4MoJsTwwDwwlkemKIRg2YJoEZNWDYX28bdXZWwupSBUsLFazn66hVmtL5MHzpum13gbuAoiMYi0eQSkflldmCgHG5pRSolBuolps2f9qxLCjiiQgSaVN2YbxDkNVTqqPC6/EoLnGM2q2hTFbjiQjS2Sj6hxMYGmVBOeZMM7zNBkWl1MDCbAnzMyWsr9bsL/wM4gmTrSBw8Av1iVso7NUL7MBF18Uj9niJxQ2nvIPF9U9ZcKNpoWQHUlgrZK/Ew12/aIwE1KNrzaiBVMZUnCovD9Vgr+okWZbrgNWqTTTqlka+XWL9DXhdIS3HW4A70AkhiEYNpDJR9A3G0T+URCJlwjQNmFGCiMnOfbIoC3asrVSxNF9GfrmKUrHhOOoiFe6zXzvkJHFbFwjjezJtoqc3hlxfApmciVjCRNQkiEQNEMJuAKqU2WqeUrGO/EoN66s1VMoN9zaUgMpVWy8SIUhlozBNw26DrIM5bZSyYGWxUAe1ZItE3obryoYRYbJdKTdRrzURiRAkUib6h+IYHE0hnY7CjDIdZVks4F0pN7CyWMXSQhml9Qaq1SYSyQje+eUEDp/sa7GChaKwVsOHv3mMqQcFhRMEsRjrb2IQR7cByvY2uwW1SpPpEw0vNExFNGognYmIXqwQEJcLscB500lhw5s4059UTju+FWUrvVLmCycbdWItFEDEAOJJE7k+Jv/ZXJQFEqPEdbzB5K1asVBcr6OQr2M9X0dxvYFaVZmrRIfesYU4e3Q8sd8rTBWDck4gRhjk6s08uuCp34u2PIeAaEJHHogPbWFxqTtxxKiUw10h0EbsQs4BxHYmwyA4diaLgWHN1ddqHW2mUwCNegMffvwJ5mbn8N5772B0dARNy8Kjh4/w6aefw4yaKBVLOHPmOZw+fRKpZArr6+v4+ptvsbCwgL/5T3+Nnp5cqEBKo9HA2to6Gg034B8xIsjlsojFwl3tHRaazSaWlpcRi8bQ05NzEwhQKBRRKpYwMNgPM6Ksm9i4u9oRdElqNw0si6J/PB4q7+YHUSQlGuj6eSA4iNLSJQ2mp70kX9iMrt9QEKVFI9oKeITI2o0ASmhcumTVHwGcvYyUBwko4yl3lBynjEIKrkiBFv5bNMbdGZ8FXTbEStoqQ2e4VLRqEMWexFiawHP+OYaKvWBbTUI+Z+EID0ZB+e2+lGkgagbNwnzqlYC2nJDATBp+O+0gQTmF95oUlyHe12BJhLBAAokQVy7t8wH4yjjV4fHURuHZri2XE9ju4zSqlHI7xyCwb2ZhxFlNCksYB2o9gNKVHJnwUlb7BO72OM4UXq9ruFoW3K+0Sr9wLnldU/W3LO8OqIqaewM8sBSgyD1t9cml8REC3rttkl/I7RBbSAwCwyBO0AmU8UyUIwkXcR+47iOedzZumxVePhDlN3VjLzqvjfsYGgeBKtnlY5BpIH9dPSW+k/6B0mgho9tINwBHAou4DqwgU1J7hQFGA1DYKZRS14mwi1KbDuqjQ+RxTJyl74YBN4BEgWaTbcERt50GWyZEwu0hGZzfRHp28fIxw94wmbRxWkCjyb9G+Hcp02XeNnsOJFZYodc3IvjoY8ivCAGGx1M48+owHt9dx62rK6jXmlK60zaDBavYwb+cGy55Q6NJ/PQ/7cXgaNAHPyYDy/MV/PHXD7EwV5GaKH+xd39Lo494VyXqhqDbvTpJ4AIrj2uGRxYI9s6ds1x6iEgi3PNY5Ho8Y1awG8TX0g8+NpwEe7WNKPdK8Ndq2rabSLdIiRAkcd8pacr2EScATABuGxHht0ubwErq8lwdIwJilbrg5CAg4g9N37WNR58QqEkUGXUF2nv2ifObl+F5hHc8iNI/FJNRkgBVrdThBxTAwsIifvMv/wOvv/Yqjh87Ksg3xZ279/C73/0HTp06iTffeA2m6QYclpaW8c+//hecfflFnD59KlQQZWVlFb/+zf/A8vKygyuVSuEXH/wMu3fvbk1wG1AsFvHPv/kXDA8N49133sKdO3cRMU3s27cX586dx7Vr1/E3f/PXGOjv9xZuS1i6B95qt4kQDbQTRNm67TyhvCAVNoGpASg7rq2jtj2DtkFnOCk2LveNHOOTwjknArCNWTtBMgwkf4wv2QfbFgS4X7Oop9qnHAQvQNc2wSZwlzUD7nJpuLdr8GCKM+vZhobTH64zp6KHjYdQPVdVA96/KSHDeroZnr8SHTWx/V6KnfLUtfzgOJr8ibKDPtEkMvmCBSxTQb3vCDT5HKm2m0JcFhH3vZpbLAPKHQRLJF+uVPrlTxsVjGTJIFXXloONvSZlBzJKuNS6BfH0yirR/LZzCkaXa1y7gTtnKwGBJ5dIoxQwEO1jpwh7YFsI4SoKLv5irUQ4G0MjT1R0YqiYyh0Giqa9LbXlpw+lg4j0jrpvRYeg1dzoXcvvMELGL8sNhdhF+kqcAye1jhfnoldPycOOSOkucpEeIvPG0w6BYmkMqXTz/iHeJAWYunQUjiva9rYwUa8SiZGcF7KOaVpA09NIH94SXbo6Hj0PHly67W1cBptN6hy466leqNIZNkTEqOhTj4Ov1KoZqrLeInKiqK/swUwB5HpjOPPqEPYf68HQWBIWLNy5mncCKdwpt5oURGibqgoiUQO79+WQ6wtncBfW6igLqzwcWonyRpBLLTuI5lFYLaLF76gXorBZbpVbNZHOv5ZkXRqmRGK9K632L45EsBvEetwFgATcRnC1iv1ssa1UTY18EIcKWUblbISjF0REyCC8d7qCC6vSZlGm9AEUjr6FYugabI8l6rf6hM+9PI8oNkTI4+pBnserS8Vh4TsMQrKZAKhUyrAsC729vUy+HdwE+/buwT/9T/+ATCYD03QP36eUIpVKIZ1OYW1tTQiIBwPbJpTH8PAQnj/zHAzDgGma6O3rQ61WQ7FYgmVZSCYTiMfjKBZLiEQiSKWSqNfrKJXKSCaTMM0IyuUyqtUqotEo0uk0DMNAsVhE07JgNZuIRCJ4/swZpJJJFItFfPX1t4jFohgcHMDExIRDP6UUlWoV5VIZRsRAOp2CaZpoNpsoFIto1BuIx+NIp1Nwb8t8BkGwrQfLth76W68c1IU5gUK0E71onREZPvnpBK3hDNeJh/BlnAiOlAFnC484ubPJ1p3ApTpUI26nMzOIRjHN+RpqWxpUzuCwEwKrbKNUze4OedFxsPuCO5gADCXgwWwWydpzMHktZi84/eiX6DSnRacRzU8Ctk9fQimaqdRpF6GaUwYU257yf4VJ3HnPrUrxa7liPOroIEIHUKrmCmikh1bVkRXOB/KMM7dv+BdDUEjBJwcxhSNb3to5IzT3cUg8s7dEEXlMOzkUHrnU2Q6r9FY2utVKhY+UQmPkut22CyiIeNqFawGyqx39z3vyfIW3+UWpShuVRUOWHqdaeSrjZ/uI+cVznwRLlQp94LWSFZrFzpTpl280CmeM6R0v2DKjpAllmLi7+ltlsU6rcKC8HSIOX5M9nAGtlgqT4sXrdSoC0QikiytovO0WRoGqVgUW8h+i+gnUnFKfKJUKNDlpHmTiNpaACojcYJ34ubIv5mWcSCYiOP7CIPYe7kEkQtDTH8dLb43CjBi4c20V5XJD0VHyPMj/jRgEuyYyOHq6H7G491wpiXLKgk2Lc2VUK01JDxEPn1R+CO0gHray68Lh8lw7S3j6VdSZ7K+7GoY47HJlhDj5nJUZvq2VKyUgvoEUhyZhzuK6TOR10M3mnhOsBJkmQntUHa3ns53fySfglGyHoNa3MlIEIsVqAzCGAz8N1wkE4CHe2VMVPr5QjkhlBLkhUOZX1gfE8z6AjHaaasuXaUYBAJVKxdNC0zQxNDSoLd5oNFCr1RGLxdvW/319fTh06CAiEXbLZKVSwYcffYKrV6+hXm9g164xvPfeO/jii68QNU386le/wK3bd/DJJ5/hV7/6BaxmE598+jlWlleQSifxxhuv4/ixo/i33/4O09NP0Gw2cebMc5iankZ/Xx8ajQYePXoMEOCrr75GKpXGnbt3sWvXONZpAR9++DEePnoMMxLBK6+exYsvPI9r167js8+/QKVSRW9vD376k/dw4MD+TQuibIb0bxfs8INl22QsBaq1KqoVdghZJBJBIpFAJBJpC1WtVsP0kycYHR1FMpFoKUiqUbxtB8q6BPz5BVJsENvmfN10fR9hhYnwZROufcCfPc49hbD02mu37gzw9qz2kF7OD+eRMweafHYa+Fcpu/2C0ePe1EME59ld9i9xzNlLTO1DaiExk2gNAeFZMxalpedBS+Odv0K91MUhrlSQBMI2njxVU7deVeak+jUWoGggyu891h7cQIWYXwxecB4I79TDfQPAYxY6h12o9FL3qyEny0lxKXEMJrUtxDZ4+SowGbmNRN9GNUWvZYnn0ZEJyQPkPPKKvCQDvKwHv7j8HYIMCbh5BXzECEEA4jBPGZteYsCNS1lelYOOVfp0hr+9FUDVc/rVC0HzlxKwEfpXJNPjgLUJru6mSr/Z41SsRKDAZZN89atzFpZCKJF6XE+nPP/7SJ3zj6q/qPBK7jcnpCc6lLZilejUghxQENWam06cceqiEr++qq1SdQ/Xi3BXG+qF1P6pSSNQhglx9YOHla10lrqWRtdfwvzEH51CBBGTYP+xHhx9rl86ULu3P46z745hYCSB6z8uY3mxgoZ9wKu78tIhH4mUiT0Hcjj9yhAGhoO38XC6KqUGZh8X7YNO7blD0Y+OhhFXLilp4gtp3tGBjs0OnwjkYILQTrGsE1RxeesHatyfP4mrf/nqYHuAe6vWzAOyhpHbJwUmqKvunZZRmWZ1PEtpIm5pFYo4n7E/6iqr9kBn53QKgYqiQ9DNe/DoDvGGJk/wg7gZOc/FlSlEkxYqgOIr0/75OfT29iCdTuPBgwfYMznBttkQVSZc4Lp5dnYWxWIR4+Nj7dQMALh37x5+9/sGCDEwNjaKsdFRLC8v4+zZlxExDHz62ed4/GgKAwMDuHbtOpZXVvDo0SPEYjGYkQj+46OPEY/H8df/6S9x7ofz+OSTzzAyPIxisYRKpYJXXjmLyYkJ3Lx5C9l0Gm+++QYWFxcRjUZx9uzLuHz5KorFEur1Or77/gc8nprGO2+/iYcPH+Hrr7/ByPAQfvjhHHp7e/DSiy/iwsWLmJqaxt69e2AYwRcbPIOtDKJooPXQb08xNJtNXLx4CZ9/8QVSqRRAgIldu/H2228jl82GrmdxaQn/+//5f+J//i//Bfv37fOsTtHB4uISFhbmcfDAQURjUU/6tgdW/tRBJ0zcCCdEuK3HMRddZ4ZPgjyfgI4HC0QjVP7Eqqk3JHmbAi0qUkIFvmWZ4Qx5rrf5JwVSAMnAcHYz8ICTOOFR+Qs+UQ9hkIyo8O2SvroS7piQYFYoW0wkB1cBx+CTXspfpB1HjcC7JUmwFZ0SytdU949Sj9gRxM4o+XxUtO28Rl8IyZPNVRGHQJiYV7HvHTLB5UOHmb/xHvbJBxrh7QHcAB0AJRrnvoLCCgWl6yeolpkr1DKFgmum6Q+GV2NcEiWnRKobcHHueRLaJq8+EVxgjy4TBYg45ZyzRPy62ckvJBNhqb1PESo9qI6WS7+bn9hj3aUnaM5T03xX5/CVO1SQHQi9xwa7Rw4cw9zWdsFnE8jj2CObSk6XN65EEGcrkVJesfiJwjeRVqHRAgrq4hHfSc9ueW7yuv6rGDShQoqub3TjlbhNtfH5Zve0XeCnT42+9fNinuHG+9WuRD2PS9AEophSsPOExvekcersINJZU3bsQJDKmDj+/CDGJ7OYeVzAwkwZywtllIsNWHbAPJGIYHA0iYkDWezak0UqbYL43BojsYYCC09K9k1yNmfE9ohN554m4Ix7WU8o8ipCO7wmaj6i7ztnW66uLp0GFeWWdxHHocif36oUuwhLFutQaBDQEY5P1e9ScRmXJ4DCV6H4bDn2exOG462ybSys0nnJMDj5KlPOXfc7i8JDW3Ql1ccDdcRlv5uPaN/rSGm7hRpxTSYSOHH8OL76+mscOLAfe/fs8WU89/vW1wv47vsfMDGxG8PDQ+1SgXq9gWKxDMMgqNVqyOay2L9vL+4/eIS1tTVUq1WUymXs37cXly5dxu1bd/D48TT27JlAvV7H8vIKfvrT93Hk8CGUyxU8+t3vsbyyAkopxsZG8dqrZ9Fo8CvsCXI9OcTjccTiMeSyWef8rGqlitmZWVSrVdy7dx9r6+solysoVyoYGBzA7dt3cOnyFezbtxdHDh9miw82Cbws35j0bydsaxAF0NopSmp4oJRifn4eT2Zm8A9//3dYXFzEZ198gXg8jjNnzqBUKqFpNTE6PIJKrYrFxUWkkkmMjIwgEomgUChidnYGK6urWMvnUavWMDMzg1QqjUwmjYWFBSSTSWSzWSwtL2N5aQnZbBa5XA7ffvctfrxwAf/w93+Pg/sPIL+2hsWlRaRTaYyMjCBqbjur//RBECZ3KhWNTe4kCqEEx+CHJx8PGHi+arXwW0KQt0mgNL5VViLaMEIhnka5L84f+Hvliyr/x2YS56XoANkvFOeAPbnniahnKygkE5+m2U64GEzgDrmfBvGkiLad5EFCkCA3A1UNSjGowmkhYikxAmDj8/HHtX6DSBMvzzFrbVvipsMHNEJMhEQqvWk1ybl9535pVNBz58GpTBA0BWT26vLxvlHdamHUE42sSG3SvbdLGLI8eTB5EKvWuE2L083CGRDilZ9Uj8MNKNnSJ/YRgRyUI57iLo2CALlix61WYSsed3DssUQ8OPxaSwT9yYlSC/D6iVpYyEGc+rxuMavAufbY/Ueqj2gcaln7i9SIDQSIOFgFGt3Xwoyi0RGePggYKtrVgdp88PBS1EhqNXyrKoE7DoDg1usr9R/13kVqQs8TVq94BlkQhFopLit0YSK2/4orcZQgvVAAhBD0Dyfw/KvD6B/SrxwhhMCMEgyMJNA/nEC9xq4md67IBTsIO57g18Ij1HJ3SinKxQbuXs+jVGwIzSFS04SBJOh4UV/ytuoUvuenp238Y5CcyYvL/bhEbRYHKgAtiGtH3JWHrq4WNzwqS1AAAhjiHGJ/kBG3bapaHxDKQxYXiddyQyHx2Amg2O+lVTpU5rNQpTya/HSgCmGEfxtAGfDO7Tmyhrf71d0OylksrkJxAizCezl4wm0GvlIJCs+FyroBdr1HjhzCvXv38emnnyP7qywGBjSHrdpQrdbw9TffoFgs4v3330UsFgs15kU4duwIfvbTnzhBiVu37+DzL77C4cOHcPjQAXz08RpAgaGhIQwODuDipcuoVCo4dOgQDMMApRT1egOUUphmhJ2tEomAEMAwDLZahGguIVHmKItasChFPBbD0PAgxsbHcOTIIfT39eGF589g9+5duH//IT777EsUiyW8/947z1aihIAd69nLQ9Yvhy6dIpVM4tSJkygUi7hw8SIePHqI/Noavj/3A8bHx/H6K6/gy6+/RrVahUUtvPXGmzh96hR+/Zvf4O79+4iaJtbX11GplPHxp5/gxPETeP7MGfzrb3+LgwcPYmL3bvzX//7fAUrRaDbx8osv4vqNG5h+8gTXr99ALBrDf//NrxGNmiiXKvjlBx/g9KlTm8GmDqCFEbWt0B3aRDuEcuPbNiL41hPXv2B1uo6eaJxDCCQohqXwbqu56a3Ta0TIyQTibSfqahSPT0B5fuWd4MSqi3Hg2EEuNsf5EAxv7gh5vI0Q8xK3eXwnWZ8E3XYmx66SrTHpt1RK+RomhpH4pgGxrHv6BC9CPAaKHPygotgpRHFnQTTyvLm84GN0O8keC5DXxkoR4Y2zblcwK6nbTvGXe66JYrg6RqtKuWiqigzi/wh1e4qrfJXzEEhcVKuDVJh6EpXKvGeFuHrDm5vTLa2gUOsQmyvEVtRE0RFwULRSPETzQCSs2mctDkktavJ5K3TeibQz+v0JJ9yIppKb5aTxwI+zskdyvhR5Uw851rE9aGUFget4CvjFvOqCstZ6THE8nD53AwLi0kdRFHg2LVa17QIYToKvovQlXN1e6bf1SZBMWZVqdSk8MhEIomolsG/7gjL4CJgDJg8ivorBNAn2HsxhdCKNSCS4XmKviosnIognNv41ttmgeHh7DVP3C6CWGGz3GYu2YBClv6QeFoTHtzeJcjaXTh9IPzn/qKNktPFQDuLh17p+FgrxoLB6Vo0zyiV5oPKwpPxDljdEJtYqbpMU88kcsuuV2my/4GITGDQi3jGv6YGQkt1x/q4DZ5vdD1wO1ICBGyRx+544H0PgNMTR4wSa1Sl2wJ7LuSavW2H3eZNKJvHWm6/jX//tt/jwo0/w85/9BL29PVJbKaWo1Wr4/odzuHnzFt57712MDI90WCNxgh2UUpSKRdTrDaTTaayu5lGpVFBv1JFMJrBv31784Q8fYmJiAiPDwwAoBgcHceXKFaTTKVy8eBmZTAZ9fX3w1dmEIBqNYnllBXNz82haLMCSSCQwPjaK66s3EY/HkUwkMTM7i3q9js8+/wL9ff04fuwo5ufnkc/n0Wg0EY16d1VsFDY+WnYW7Ngwk3c61oEmnQLLK8v4H//2b/jv//zPKBSLOHr4CArFAnLZLH71wS9w9949FItF/Oe/+Vvs27sPH3/yCe7evYcfL17Eu++8g5/99KdIJpOwKMXq6ipKZXaKcj6fx9raGs7/+CPqtRr+8R/+AceOHAEFcOrkSYyMjODFF1/A/MICHj58iMOHDtvXaHWdPRuEHUeQAKoW7aC4BMJKEtGa1lTDJgT5P2nSFcv7VbdF4GfyBr/1BhMA135wZ0CNsUIA6TMkYVsKVPOEuP846fw/6lRmG7ziRKwpof0fEf+6BlJQP/jiEJ4h4JLaI7TLkQnbAHAmfydd5Ai3HAQsihHrthUADDkvN9YIpPIOLR4Chf9CA/HHocq7Zp0tEYkRx00gIcEVuv+z+Sk01ukrhx38nf1bDI4J/1H7P00TXJlWAlx6b0BEoMiuJB/ecow+4tCtbTtvB8fjqVu2dR2Zs3lCZNI84qdBp2+ZJLIu7XJ/+IHYHtkJ4+f2EEr0/9l5+FlVriwp+Pl45QcsCONOHmKSUPqTa4iPGt0glJd477RLZKBuAMnP7i8hQiMFaNwBxXnuaDuiNIsQGGpwR5QJEV/rgS4gURoqto+I6cIroR55/tTpWxEvl1+lzULbpXmB80Osl/CekHnO6bCaFPMzJeSXa6DqdeCbCJZFMTdVwpUflpxVKJw8RxqI2zr+jziP8H6GPUJ4Nnn+lXkIEFe8pOaqvBd/CriFbpZEhEIarzxAx7MY9n86qeJtYfnFYJw6Y4itI+zgXElGoMiIWKGAxaNIBZlxKXLlp+XHCe/MJkuSHMx9akCZ+4htMztBa/5e+MFWElNhzLLFm9I8aFChv4U0W0B0/UdcIgLVdsdgIxwaHsRf/PxnWMvn8eFHH2N1ddU9N8sOoJw//yPOn/8Rr7/2Go4eOQzDcG3FMBCJRNDX14t0OiW937t3D/bt24OLFy/hzp276OnpgWVZAAgOHjyIXbt24ejRw0inU8hms3jv3bdBiIH/+I8/olKp4Kc/fR99fb3oybFdEHwO6O3tQTabgRmJ4PjxY6AWxYWLlxA1TfT19SIWi+GNN17HgQP78P335/DVV98gkUhgYGAAJ0+cwOOpKfzhjx8inUrhpRdfQDwe7saxjcNWf4buLmzxShR3EggHQXmDvmYZSCTi2LdvH958803snZzE/YcPMDI8gl3j4/jo43UMDgxgYmI35ubncPHiRaysroBSCwf27QMIEIu595Q7ky6lsCwLa2trGB0dxeTEBAYHBmFZTVy+cgWmaSKdSmHvnj148YUXcOnSJUQiEezbuw98R/z2Q3cFlqnTHTYIbDETQwGEQFoO7l59zL/5tFiNIqIn8ldj57kTIn0eNxs8Z6M47fQSItkX6rIcEOnAWZ7NtuHEH1J97kcc4mk38fxQSHLOh3CtvFCsEz9ScuuScFSixUiFBkPgjfvFy0Eh9b3wZVCx3VReyE0U6iaadN0hsQEGhudmHF/w+27o9yCUDMJNWmg66Sps+AwDlycqLuLkonIpopaQjwumUNOlauS/PL8kai4G7+1HXvl3Xov6ghvyEL41U3XrFBHqFKvwbk9T2+QJpIg/1e1QvE3C11dnWGjwaIHY44GKz35ZXRq94iOMHcpoZWQR6Rwrqc+dzNShQ2yDiFlXo1YO9E2UqRSDCL5F5bfS2S5Elh9HJYWaR7y1STIgyJlHD9nPQV3q8krWTG4l1AeJbiumpn0iGvHgTrU+6a1MgjTOnUCBK7RUk5lSYOZRERe+XsDL74ygp7/9ZfntAKVs1cXSXAUXvpnH8kLFoUeZGhgYahrxjn9AQ7OosAR+On+9eFwdq8Hkm5moXcWqhMBzJ9nVU36jznMLn7OqRbYRZDVKBAxenNDQ70iVbl7lP0SG6Ma08I4IBFFvTp83XYZuV6C02WWhO9bdNHvmEgKX7koSHlzhOORgKrED3lxXS7j4QCZul2y0PUHphBKMj4/hl7/8AL/7/X/g9//xR/z0J+9jYKAf1WoNFy5cxLnzF/DWW2/g1MkT0pXHYaGnJ4d/+p/+0d1yY0NfXx/+/u/+FpVKFbFYlAVB7OuPx0ZH8P/6f/4/EIkYzvaf/fv3Yffu3ajXa4jFYohGWZm/+qu/BAgQNU3EYjH84z/8HQghME0Tp0+dxOFDB2EYEZhRE6+/9irMKGvD3/ynv0a1VgMhBPF4HJGIgRdeOIMTJ46jXqsjFo/ZdLXL+D9P2IbtPH4q3C9v++j7+/rwFz//OWLRGAzDQK1WY0mERQeHh4dw4dIl3Lx5C/fu30dfXx9GR0dhRkxcuXYNqVQSlWoVpmkim83iycwTPHjwAMurqzgciWBwcBAXLlzAzVu3cP36DQwNDSEaNVGr1bC4uIhCsQgzYuLNN97Af/zhj7h89QpOnjzRflueEtiRgRQbZNoI5IiIOw2KE7ZrDXKTkkh5LSqnb4S6LQukaCx021dxJi4xVdm9I9pStt8iTHzgBq3HzXFx2W/U2410hr5jBPvyQrV6NBn9ykrvvSa6x+iirFn8UGJ1DzA/C0Uy+CQDXjG1dG0VnySe6wxU9q/HMRRmPMKTVGPIwxS3jF8ODwg3NChhAx/MvAj1JEo84cEGSKwXsUjOvnePndbjcLfPEOanqE6qxCYVBKZIvajoD6cRRE0TD0UNqFcYBEykfHpBY9V4JdhLg3dEAhLTvT6J4rxoJIc7rEq3ePSEUrOoOmTiiUSSJP1igAdEDlrqIzISbqK+CACRBNkP12GRJdU5d0IUE+rySSwtdyXlqgSqb+nm0NWre7L1Ex9Luq4PAK9G4An82Q+R/j2B3rd3lRS0ci3mVfWfyifKcXB09oBT1U6zCTy4lQcxgOdeGcLAcALEQNvOUSuglIJawMJMCee+mMfU/SIsy6beYUQwH72rJfT5xJ/O6hxNTs4LJf4nPPhs1HJ0Fyusm0HE8c9yCnLuOaeIFfLb1igeIitpK3Eu4xVqDnnRjgylzURGKKhH7xgXbRdPfp32fdo8T7ELNDKmrj5xecc/Adj/EqdThdVCbvcQJw1CHjcEp5XLDbQlTF4CgrGxUXzwwc/xu9/9Ab///R/wzjtv49bt27h69RrefutNnDhxzLmauF0wDAPxeEx6x/FEo1Fnq4x0QQEh2jLxeMx5z/PHlAtMxA//RsRASlgBQ2xXn4LCjJowo67rz/ElEnEkEnHP+82Hp2zMKLDFQZR2PcSg/N4plhCCdDqDwcFBRKNRRMyIrfsJctkcGo06ImYEr5w9i5nZWfzmf/wLsrksPvj5z7FnchKvv/YavvrqK2SzWfT19iKdTuP5M2fw+z/8BxYWFxCPx9HT04P9+/bh0ePH+K//7b8hk8ng9KlTSKaSyGWz+O6HH/Dq2bNYWl7CzOwsBgb68dyp0+0yahNBZ5rsDNAZ651lgjNRu84PdV448y4l7MpjP0PTxwng5dXDHdtfjbJ14LJNNI7tt9yXch7dLwraGI8YkJF455ob0rWdPpQ4zobCN9Eu0rJUdUh0SlixBP26RjW/pHyOj+neKOO4dlSmQ3Q+1CsUpcN1VcdLpUbTbrV9bg8S6Z1Pw4QAgxePWLKl+Hr4LpZi/UrFrDpa/CpSjCjvkGS8odKjQIHO2OWGv91XVHkPAIZ69o9QubgaQ98eQRacChy3wsah8lwZNzYeIpWBUkbNrwfvubtuA9S+Vs+OkCtzfxLJYLbfU9eRVY1fJ0BCZXaKBzE7+lKgwPGBiV1C66jYbxy9IXYMDb0iUOwhDxcEOfIz7YhYQuKz3HeOA+FQGESRLG8uqHpCww/Nk6ieu2MMt/Zy/PnFf6gDKRifN4stiwqfXNnjExjvQSrhpxSo1ynuXs+jkK/j9NlB7NqXQSxuX/+9QT7xOa9es/D47joufbeI+SdlNJuurDCZULfhuA6pnSykEpGByh8NvepcKhaR+KaTGt2zonf98lJNAtxxLwVTxLxh5UEYoJI8+YFGXDnvvXm9M4dMJg8UuHRQT05vfX40bSZ0UoXTNuWtG/BQM7sHwbI5QJRbccsWPHn4e+eWJkm8SecN6AQI69mx0TH86pcf4A9//BD////632CaJt5/7x0cOXIEkYjRJf2pVN0mzrbz+zDF897p4y0Qzj9RIDTM/b0APv7npY3X5lOVHwG9fSb2HdWfpO4tTUCphVK5jGq1hr7eXsc6opSiWCyCgiKbycCiFMVCEYViAYlEArlcDoZhoFKpYHV1FaYZBTEIctksKKVYXllxllslEwnE4wkUCgUUigWkkknkcjlQCuTzq6CUore3F4ViEeVSCclkEplMBmYkfLyKUooblwoormtOXA6NpFUyN84CVpG0ERTo9kqUlvjCVOfY4qKMUPcvteuhxFl+C2qvNLHlhlKAWrbjADuPZTsGgvPkPrdLto8To/FvWuMS3moS5aEumklUekUFvlFAu5vE9V38zInW9LgJxJMtzNomp2+7Inqii02UV64jI/7y2IKavhOOnNX3SSAt6rGOCogJoXhANb8CymtlUG2km8kr/62Jop4fenAcZJ9xofaF/4yhjoGWI1JPD/Vyk3C9wmnV4BdXKnjq9TAwQC+38J+kmgP7sF2wHVkVm12h9F5w1lrWJLTJS65uk6Eni0shgXSbR5CJE854FIJcUvY2+Cg6dYIcy+6XO1tpfBpXvjXNIQKvQ4HyJT9sSeoc8hm6Z4U6+R+NIe+jf4LabKdo3hClgDBS+VRHgEwuir2HczhwtAf9wwnEEhHnOtB2gVKKRt3C8kIVd66u4t6NPArrdfkgWUEInDdCmkcUnWCLHBGQ+Sc0CAFbxn3kgyhPopx7rQVR5weDtBpLxGFPlNRhQiv7oFWNXlli18gLQQCOo40AiphO3GyurQcphG9nDZBr3YD2b0UweKrxO+45GAffXaN2qxO4Iy5meeuNW44QMT9/5hnEs1VcHorDwclr00IIcOhkBn0D8mqMsLwIV0S5FsBWCktLyzh3/kfs37cX+/fvg2FsTgBlR8A2NquVFtoJYFkU/ePhzoTZ2iAK4GvZ6YgIF0TRlw5slESDPFM7ykhjgKmnN4vvAw21NoWkK0EUIJQ30JVgRVhcbQAV/g3I0BqPIm+Os0vd3+KXaidwQmEHT4Rn6TfcczLsOto5r66l9IdtX6u3SgZ9IMW7n10MpIQmUcDtT35roykYFCnrAI9WTsMpDMXx8eYgynMwIbq+cEurOPgX8FYaO9jo9DoUnYLk8vl77P5OUhDujXayjgYJsZco1hLeFn2+lnIdADp+awND9pQUPDXTQJar4DrZVG4e+Pwl43YIcYxNEZE8gtQVMOr9WxJa4jcf2tKkCK80rtStATZ5ujEX0M0uqb6ODf/S6sdYovkVBgTeyX6xDNTD9UCUfrkceZbeCE5PsKIQcPi80zhzvngUU6s9EJ0wd8BIfcwp88x30pPnvREhyGSjGNmVxO59WYzsTiKdicKMGjAi/gdJUkphWUCzYaFabmJlsYqp++t4dHcd+ZWafS1yQADF/oePFLka8ZkoecWB68NzT4cp8qrx9Vm2MI69fyDCk0taquudI53uEl/wPG2aCbbLrg1E+VAdnGYnEI5ToEdZl+fgainbofjbCof/i9D43JiHB410y5cQCHFkTZBfccWJeJC1J78wBJx0sU6xDQZw6ESIIEpnikQoLiPgc61lWSAk/PXlTz1scRN9NMWOg3aCKFu7ncfH6tuYiewt3RIf8fywHzVHVvkMJOk9DTYgtgVaOlpdcEw2EV83HCed6+PMh+Lab8eKUB0GOBO91uZUDPQwy8lbSmvHgRjlbZD970mzvz85XyYVx8TPCVHpEPbn6EaDw11WmZzg4+x4k3QWoJArVIBBcxCtg0cHghUoOQKuWUio4liKOXzb588l/lN0fh0O+qgaj5EKyDKu0KHDE9AVHuF2zS3qaYqk6n0ddG2JzmjzA+r+FU1m8aBv7po7Otzjabi1+omJ35Gvos6Q2qT2AfGyyXskrkiP/zQmVkEANyBKvZnF9jjOAvHnMl9ZRZzTudWGeclxqHWGkR63Y4wLuSSWOQY+deTKES/edQpfNU1W6hQHBIQOE+VUngFE7jhziU9EwpsiWArS4R5yoU6sCXVuEqVbpsduR4hKJPUDpS1UaF8LXL7pRPtTAVmzqvRTZ94ibt/ZHU/sAeCOXkGHUmYsr+VrWM/X8PDOOrI9MfQOxDA0lkRPfxzJtIlIhICAoGlRNBsWGnW26qSwVsPSfAWrS1Ws5+uolBrOKlZWB5dXpUOJX/BEfUeUfiRO+UB+UaIpAx8RJZ7jpOT5A57O86LxsWokOr2HzUq7NyikIA4/i0S/xqKF3glSjIpuV1Wyq6uJJ4NoHVKJtrDjVeacXmO0hUJ6EQqfw1e7tNNMefsOBbtthz27vOCrRZwgs7hSh0DAQRxcovjLARSfw69DtGGjIK5EYXSxD+H8ANg/iwDKNoBedzzdvN6Gg2XbgaebuU8D+JvLYTPscCCAdNuOA+4ScTHV+S0kOj/5GSo8mWdUr+/ZwSBv39IoMP7KsUfZD6p8BZZsQqEoe6HiVAIMyszJ/DFPD3jq0YLkJely65wIH7ye62LUYIvXmQ1qs0ORhjx/cSHgy+xd/4pKyX4I1DaJhqwngyczlV63xOWpmWrJ9DNClZfe95oxFdTLXnyagpAlyysZQXhkedVmFpxKnp+I6c4TDW4EDWA1RycELP1kSTRcuRzqwzG6FzpuawJNPnR6z/FprSBFDUMcHFThnq25CetBwosITj7vBM9yfuGvWqvzW2PVC4vabR4SIc37SwXfFPWTbFjQtCssUJ/fQQhFlujqIr4pUoY2k5Q5W5jH3VEkHGrpvLMzEwp3+Yvdg1Sc9SHMcex3rWZhab6C5YUK7t9ag2kSxBI8iAI0mxTNpoVmg/21LLDVqoCrP8XIgGZ7hzsuNGNH3L6j4zdxO8dTVBF62UW0uUOEvBrGu7wgkh3gssir2cIoY9ZP4kihUo5gVUI8ogAQ6VpypQX6pxaBXknsxY+pgl7RbGLU4tZCm0N8U8BmmzjlyuMHTp+zPnFXKIsBFr4iTL5G3X5PiNyf6l+OBH66pDM90g34swqc/Bk1dbNhRwRRPDrSgafGM31qSP1zBM8KEdVYFFZgOCBunub7wG3bDPAao9ze0MZrlKrl8pskPN6KhDSRIS4jLNtdEG904FmdG2g0W3Y8rgD3fwVjUmKvBoe8lNir4Z1YApHLt54MAjJ4PEpNiIh63khJRH0BWwakL8yqAOqNODeRhMyorn8gQgrV0ub77MsnZUWA4o3yoaNfe6SnVbWHNVk9kQrlXiQNfUSWOXjl01uld3CoMSsdeEm2HRfiFywg+gCT6PEr1fpLC4W0isvX+XDxqA6Bmu4HopoUgwh+hXUGsJcfYaw36nBEdr/U1SlEiic5b7gSFtS6s7TcE01pEYYgbts948mnmLsOwP9KahG/B3TTkeZBdED19BDpl7j6SgvilCCOVqlIyxZ5wMtzEVuQ3hFW/UiNFfBKSJXTDohQ1ul/sVdE5W6XtctQC6hVLdSqdWXOUedrG69m/pLZJs+Svtt3iNxnvu+EWtzzlf1mA94+AXS6QAoAuZm4bSNhbaF3FMxK+MXlv8spNwCkrmT1ru4lXvoJs1vcQJEoMnq+qCYhy6qmEm0AReyb8HzoAgSORQY6VaB2Lfs2Jp8bA+W3uH1HDMRLq094Xp5feBayC3SIlSgtEWQuuN0bhx23c+AZPLWwI4IogHdqYi+fIkHXNmDnw1NIctvgTuDqL/5b/Je/J1JGquR1QDHMOxMDTakQiDoVOTaJEm0gxTVrqINcNQbVa4qpgkNrpQTQEgSSI6wxNMN4vb6pHgb69ANEyQkikv3gX3vYoWUKIsER1BlxHry2fEkxBbvreGBLD3Z/+kUSlLHg32XEEzgR8TlfpQR69TEufmShFPKQ6nR4IhDjBi6J1nZ25dZLvI6nsiOhGNeSlakpLFBM3Z+y2DtX9brOpxQr4YJMxT/2mHMjUr50qFpKGSECUfZb6nUz5Q51f4pOB3VaKW4psjWgekexll/87A+3rWFmc9aPRHgWQxjqCR+60B1xHAQtKPIbRBjXhJ4BQvjYc918sfnik9i/UrUiCNt6+Cobj48o5dVQKg5AdazCHe1+ekw3/omY4p329C3S1C2Pazm/7mZyXkoaRspcbIsDvMwSQ1h8rnPHgej0es9LUc66kLaXiNwI0Cw6cRJXmAD+ARQdV5Wv9i4viaavfGgKSnPkxv3ri0vTNt12JM5L5+B9B6eqq4hcjneYbl6jtvSKq2QkjERqEvUJbrhipPQ3DwxIY1emGurTtgZQwmfjARBx+rHZ7OYn7nsQl59E+I/hInI+8T3HKciJGBzUiLmcR5sYrs3P4BlsF2xtEEWZiDno7FXil/AMwoEPr8VkBGfZZmjRgHYx2A/O+fOESocYsq06cEuojqNiGLIy/EfwwcJtE90VBMH0eLnrNtBrnImGkDtzMhtJCrvI+HRtaZNN4VsTMjVg+4MOl2RU8z8E8gGYinVgOb4wlWx8zidfalWHmRs/RJFjUNkA8hZ16RcrU5wN7y+fW1B0Nq8Ol5SPerM5Nbh/xUyyI+riU/fHS/JJ5TLBzoQSDlAyS9hF8pTYhoRVaYZoNHIfQhYP6r+Qio8rxbcIcKl9vFAi/VRzuK6/fz4i/Os0zO4U9lNn7IqSrjGaHSb6j0B1qwGlXF4kd0n5BSmP2i9+NXlHJrwBE0AImLjsdtfKtFZoVJApia8OKUKL/IVYyas0RcXr6Z5wE0uQP6MZsppM7iutbgogQ6eRHLEDbzplQWquh+3sHtEixDn4XRrrkg/svqTqEgbPPODTMUpb5TRB4/N80tjnis0dZ3JXSpt/QCGfXyLJq6R8AsDJ4pVbb2nvmS06UZPBDciI23ad2vgp/n5I/CJDos4JkiHOcznWoYxWZXsR8WhDxmupMkXi2wmghM64QVCufhP1oCwegjyKf4nQNuG9I8XEzeekCYaIficbkecWtQtVNczHw1bx7BlsGfypdunWr0QRB00AaOaxZ9AuhOC1fEbGToOQwtIGBv71UI9VWOjrGCYyAmmitdPUeX8rubmR+ry3Srmzmbjz3JBqcR1tA3C+0FFQxaGVTZIggjulX+PvBOTyOsdqtmD/xd0u4lwNaBfyd3Fdl8n7dVpbhfzo52yrGT0H+foYIco5IxLdgqMsF/UbKQpquI6N22o7p67BGr6p+LyVCphl78KnjLuWwhvM8eb1fSLQ36yjI1F94SGq9aYXnTPjW0+AU+T3mih/PfkdQ9dmLpHjKEEhEOlJoS3cOLe3TvK+VqxvSmVuidsoiOhhBjPUzqOhl7cV7vlXNIh+j7z7gZ+28tKgDhcnGEe8NEilvUIhPYq1qzrKl2S1Rs92h/DAVaY7aMW/fgW8us8NnFBvdiKQTWwZpkJe7VgmIIKydRxOSu0Vm9B3jJZyotBt/8vLOg6o4IkKtEvvhPqoiFeOKmlt5bCX3urmDbWEFler7ne6lmVkqzMJpFUmfiSK817LZigGhcMzPkmLoVVZ97oH/1JHrxFqr8LTDyy7n3baZhBbY4m6kLh2rla2+PiRtubY/U/cYU7sRHc7Dy/DAy38bBR3q6Cos6UgnG48hxPTrsJO671n8HTDNt3OIys+32l5p/r2f26gzFP6LHxC3/mdptJIwAMibkM9tzbwspIRKJQX8fk4XTsRxECKOw5Fa5HAgjBBCiaJ6FoQ4Z/ggAo8EyZpwSy/VO/87JczwEEWEBAp0b+Md6WA8qBpj/TlS70FypO5zcCm9gtkmzwlyl8pQcntCbSIxpPKN+KrP/xNGZ2T6TrzXkQ+fUW92HxB8VC1bFCpbGuQq8hlISLq3b66ck69Ps5bi3KhLFUiBg1CjBuxqB96IfjVSiod/8eje4nwodWnIs1rx5fzyS+Na+m3nlLvmQma0kT9SaSX1H8Pi4PFEyyx261TN77P/hQKvovfwPRVCDZPiZxdCz4doswvIUvKlBKbBurNwcmXjzFx+00a6prAk6PHuLMcSCpx8kInnwQyp5xnIhUVCSdUJFk0PuA4xsJAkSjxPAVOvareFgNb3vzSRW8tFKQzp/M/RJQ1mTbfuUioJ9xcAXcuUORMUCOCbSdYMDZTrQD8rDvadMEDBmxbeNqp0rHDGDjbGwVZ5KLlBkfk81HcdOLkY9nsVTyeYIqi/zXbd3zbG6wKnsGfCGxDvGxLYBvPRGltUv3JcftphhDdtePBaQO3XiDZDYqtpZRRnj38sCeWbeRRp13knK2hXZUiP1Hh+kTOL7le90R3kS4Vkcw6omepTRMJapjGSNHiEvs5qJ+UmZ/v6yY+3NVySZUh9dHjbaoUB+Pxq72tHHpmh8NH1Betymm9fm+t2jHnhzu4TncJvW7w+hbypHucWXAnmPoHDSD3qFtGTdHUptEvnleh5kUlk4SAGcCdbEEMs2PAqc//Ed6+IFI+p82C56bW3VJEhKTO9GIQxgBwSJadNcdJDpIbH/Q6aQnXFcG5pBiCGNuAJ/TtZFJT/DlC5W6WnCldKRevbtyJB5I6MUeO01HpboXerUCQVzjZ0UjPPCHQwlsseaBCAflmE8VJJnI+ytsgiIUugOLSpPSAElzX9g+R33u6VTcZS/mppNJFOtyx5C9TRJOHq1W+vVUMplDIN8ZItGoo9bTHUznRvtJJrCgzrUY1w9OmQ6KxTboKdlRZXFktyZz4j80DdYUJf5C27xA4q0vYPMdXq7hzqrMFylnZ4sq3M+78bMDAl8/gGTxdsPVnogD+loIKobJ5DeMWpvIzALDTNVjLPtxQJ6vmlgY1/6JhaTw7+6drmLHf/CyMMKRtvtR6rMvW9NhLaFpRIhoeLvpWzqnfK6256M2oZggILHD61ev8AvHx0qrdLxlmiinm2UajkKYY3f7OAzfUfUDjb7omvp8TwB489KkWdlBuDUkec1PDANEIdzMpkQENioAP9Jr+F4x0Pg49Wamc0GogOJZfkKMSAg804qZ4Mc5JQl6ibSfKrWMjgQCnpEIQhfeLvCvranAjfODA+9hOp4o9x7WKwichm84x9MpeQO1Elkq/QGkLLL4pHs1Gldw6vdhyWg6atYJfh0LdMlcbdoPosIUpL/Sr2o/OHGP7dmybjv2WwFlJart2NhLxHh5324J7Rg2xUYpREZECGxv/UiAJnkYgeQkivBG23DhBIKrwRNxGqe0DItVJlPfu0JYDXNpZq6UK9GhPL5bA+VyH083lHHStjGH1mbdG7Cp5HhXq1gyawHHkTAs+wRO1qeKWq+0A7SROPXTqts4423Xsd478OytK4Nm+4x4eS5wtjizRDZrwdLEuIsp6K72jo/UZbD5sI681o3QbqOg+hA+idGJfbBm4U6X4ZseS+wxCQcs+7LCTpXNghPmIneKvHF9JeAn2Sg2pOA6OaiCHomOLwn8h0TIecKclwK0X8OmdJeUSSSEwIRt0ch8EkRuqCfYedv71mk/mniBDADLV8NRu/eK/dR3ODWSRP0RMJhoa1JUuwh59xcn2ki+WtT0MDU2qipSdR7VvNJarBqXfC60foHDWqVcgQKpO1w4dOqFy1bfRdrVP/8vtJ9qsKt/laz80eAMUAvHw2C1MQQTHTQU7j80v6tMetTbnF4GwLQaaII6KKACxh4dhNaAfTj/L2jke1ClOdNn4YxuK2CuVGnAUCWOcE2j1OH5+2F1Evu0IQ7fYaN7/IYq1B8LKP49stlOTyhzdXSf+eHX96OwQIXz82HzgK0o4P+yJWdxK6M7q7qGi1OkASUELNMo2gLZ94hvFmXRzyh6lJ1VigYbHgi4kdkWyria8Na5eUSLSQbcghYN2DRx9ZsleEkXEoze9K1r9IiPa7gnQi4F6ivC5xOlMt44uQsf4HAFXZitFdarbdxwmE2KfcUcAwx4N/DwTQjwBFZcNgm1B5DrFVZ/qLUnda/gzeAY7E8IHUUIZa2GBj6RNcBifgQwh+ix0t3at/9uBFpW22T7vYapOgr3qRJlEbeDOsCO5fEm/UAml7jBxHJy2QWlQyPZ1C5z2cUNNDaY4Fk9Qrd4vPPJeY+keDa1Dq4I/C5QFzlQ2krR9EMhPJXihkwPhl7Z71ICC8JrJhm3QE59CAf1PPK+FN0ECpwRPBN/G4wy6jp4XH3cg/cSytbgqVHsbJMUkxGcNGiWnmyReqOxkV3yjQJTOO7XH3TrVMws8i74cm9OPU/41teKjZx96G0qA+MqdH6+J0rjWy981SDrMI0or8eb0WQ3WllLUkubehOIEK5yl62GrUBEHtAPcR6HuWNA5huL4oaIDE6J6FTzluD6mwl/FYwpApUqS6Bx7hytxJ1VfepQ6PEFd7okT+6c95gmrm1C3CVw/irfsSNuDBBrcIAv/13sOhqyjhA4j6nsRr8IDvjWW+NTiYY17mKdMjNsmVWur52NoUG8Y9Lha1Eh0wQxZZng+t9fluUPimc88L5fwAzc4IPVCu9t3RPB0dhdA0gm2jEuBTkjDlduhAF9BIuZxAx7uyhPhkFhR19lpkgw79RDw4AkV+OWnWp7BM/hTg/a284gzx46Nf+xo4rYHQrAkFNe2rf8DKgxJk+sW8lPL+RQs3L3ADRtu31GhoA65PZFYTjIJPm8jFCgN2iZRdpotBFMAOHzzJ0w/W7r8F/N0wxXT1bcRvH7msr5evdsncElkl9Ol4drvy2lfsQhnqVDlB3X6VqzNH1cQ1VRF7gGXbzoOim0Wh533tieVM/Kz/7J03yI+eMODXyn/L5/+vKZSuk/RDkmViyhGuF8ZrhdD1ddNpaX2sQo+AZ0wJNhNl9jo48fKr1Xmh/UQgh1LCthB/ta9IqbJfRKuP6XzQjy4ifrCW15Dj1Q7EbmkjHQPPnGusx06YWmnOxfZGko6X4g7wK6T6ARBOB7KfstEiTxSV3aIHOREyC32Ovty3WpmtbR49glRSxH1pyZ4otWLSmFouy4AJKny4JJqUJZB6aSOnycmU6IyQ9yCpLlImkollfzUZ4UN39gUNAYEzqirTTYSPJERwZXRLkQRBLxOwIO/EdP4ahpReRFbNgmcYCP7zTKyOAoFD6C4h8fy/hZkm7jBP6cCXt5H/p/BM/hThfa283DYqI3kzooSMo9Z0vbg88e3JdBNHnF83WpAIC4+ibS4E0ScX32zdPfK5JYskDyuVriI5Mj7uWHqnmn5tDcqZebThgVfsW5BEwOvE087kidv1YKn0AYeDy5nm4/7rD+Y0r8CD23a9gUTGMiSwDa2I5O2AdGhgyo5DaIhswGHV+sn+eYOh1Mygvy8yBA49bS1Ut7KaiQNPgmNVnCImltbj3pVr57wwJfadNHolnSer2Dq3vsZ2Pr3YjeFE9Ewjr5f/UJd/CcRc7husqcqR4V2akFTTcBG19o28fv4nO1hEeTP4yD7Q8v28MMZA2ly3wZrWv/XJDhXKFzaugW/2n9UBo0FtxDf9kgAZ2WJK1O2I+3cpkckLLINyd44asTxA7mOppDPV5LpI7D7zdtVrY1Uj2wQiQ4ivRGJdn/qgydBK8HkceuDOgA4P1XZ9gq6OrQ9Q0vDH6p9ck4+akmZzCDDN6/M14CRIg22ViMuBBD1B/EmtQvKVMACKGKCKL9223kX2u1if6i7XYdnIXbQRSgnr16hCo9EVrFJyG2pJozSqtEdM6U9eHatMbaM1+Gq/tPpj85WomwUQjhMnVWlV9FbDl3n02bjouGq2waGdpMm1wGhrqEGeCwvQtmSYPFrlTTHOj6DuKZFsOmo8twW+ZoCnbSxC6A3lG0mUOoxOPU+KZXS/VlC4T3ApDXo8XFcwTX64/J3yL34gvDLjkErDvgBVX911MkBLesYn6YtXRLAjQVig105J0XxwXTTujRVOYNaTZXXFnlEr2W0oxuznR+0MlbC1i01CFz7+TJwwzaS/y021L6xi52roAu2cAL8AlRarKHK6xzDsNCyPRDXFfjRv4FxYaPzDzuI7zqvj8+LLUZUALjluOPsuovUVu/UmZTF/hdrdV+7b4iST9wOJcVKuKp1fNQQzrD9sUWXLq6OgV8uovz0NKSTbXQuPk+/E28ebUk/ufUtE0yHTuYYrhDzqFSItk8bCXKn9aXaaqeT2VuqE36J4Iqi0JtE4CmvlxCJBn67jrPKhMsgD5h43tn4iSCnohg4URN1fajbixtdzNNtaL0y6c8ANiqAXa16G4npMmzjFcd6aNf0eQbbAC38wG6vRgkF7fum3gIODtfp4caM9hgVpZWOr9QRLZsJW0OQn9FClXQnn8hUzyEPelDDF1p8bRwY4aFNtKI9xWxDWE2gag7+WkmgSmYdAg14eq+lX+WPT1s0tM+kJnIXxwdXS3z+mTwkBRj8nnAO5cYlcdLVctpbcTQgG45UMGDdVJ3IeESPeKh0y7bBI+1I3pLhLTTIVoqs2mAGEuh1Z+tCAcnq2SRaEvQBNLkS/TMhujybZ5FI7Qkc6O0gFR3WEJkDXmv7MDAGoPK+jXbwceYUVU1vu1WOrneD+c5RLgIqmWwXF7u5TdbPuhugxJo1hCqKxCtTjm4kYilROYiGho1FUW6ylg0A0dEV8xP5Tfje6LbMi4QQXQqPjLq/2Q8FjZ4uP2o7Xw23Q4AIciFOGK4qhnjGibwlByA82CEeHMtXoMB7/ol7uC489Tiv9MZeQJpv9mfwDJ5q2J4gyqYZfTLiLbEtNxO2rAGSGxScbafFRrqgiGVngEf4betF9xWZyCXFYqDuRYM8NSgo6OW8pi/a4HvIngyNyxdPGxX5ZpX2BoSjWHWetfiob47WtKkOlAaXpy+J+6VUa4dzw4doHH6es4WvJ/ngEgLB6GzhtOiq8Pj2/hV58AYW1RfxxavWCsA911LPNE8VctcF9Jf9UkIXSvzUmrzGphaVFAXSOA+SoCh6SOhT8TIrDyoPDm+wxuVvGKUZpLXUaoOZF8ao9ji+IfW6XzbxDBfpr7bMFlvzJODRq1zsv7oRssG6QqYAAX2oqAp/HvsV0oGrK4WwiZLDGyKVzjKDdzSJaFg+YSRQ5eYkjtCDSdcW+RenlxJZrtVfuhCPqspbnqckrawQvVw/KtuEgILt4QwpeaKghVEcbQZU2oUt1gxaArgtyZ8hjggizyFOQASQtu3IARQ248rbd4S/YsXwstivWwjg3pDVUWOfwabCNnXKts+3mwydBVECDNotxREC8aZVs1Xw1Ddg47B5LHAxs1+uGcUP1qKqFSQSothbktOn1LIR2nSPWwVbVm34UyvdItgOluhr1bnIsuFumyaqIwzPCy1QtQKtt+lvoOuq8Pj2WmdfW0qfg2hI8pCi55TuLVHxtdXhrTNvlvyoeMOLtq4vBRcp4NpnN6am7ze/3gxHS5i8QVHA8MHMdmv2q8fjGNhjkD0GBxu7Bu5k4qky2KXU0dd+D4Yjrgs4VUcuVD1B3rmsK+HzKYIC7CpwtW5hvFEbnZOPH6JtO5NuAJhveXBfugf8aupQSRbyiTv+iG8JN4PTswKrlPCsAC4v9Sumtga23Q0KCLBsO23dAls2xLElvmc/Xclzt+LY+fkqLY6HQAiiEEmexZvIeAG1Xu9KOZegDnZiP4Nn8CcB27ydZ3vcoD9LCMHqUL2xbTPUxmXFxUA86ORbe2AfmqqrU3jnMXrQ6XmkWxis6FZF7SPiorPp7eygjb60OQldEnwPbeGdTH/atpSU9nBusJSniW21uY1Aiti9bQVq9IU80tIR/iAkMiLRn/Kg3zLF0kmaDlSHOey3zbD1bMEkpsY8SJhauxQoIYGPoVI2jruDelTcPO7hCLUajOFbRam7Ws1TlgdS5LLSddJQ1LvovCpkyerH9UKpJk+rdksBPk4o/FafhAyehHvVAjZpfOzU6IYnSrERPNqHjnCJMshfittEeWDEqY4HTng6P+uEyPncM1JUXER6ltKD4q3EPc1pp3bxM3gGmwU74EyUbQykUMCiFsrlMtbXC6jXasjmsshkMjBNE5RSNBoNrK2to1gsIpGII5vNIZGIP537LLsVSNk26GYgxZtApfXyRPp8zMvpvipr/TrSfkBlpwdSvMU2i+LOAjTdDgh0C1rTtn3EPg2BlI1BG4GUDZHSRqGuN1VG6InX6AI4O2h8eEGdW5+yudb1RUKs9eiS8+ZTUVc5t0XdoO19AuVqYyL8tbfQqrE2wflzk/gcL7iolDuZ+mCdM4aoawP40uyXQcksOciBq0+EQRp4KKpvVZ2DRpbaV4tkB+sZbJJMbxypJB8E0F5nzAMk8AZLeABF2qIjBFVUPNIBsuoYakXoM9j58KyfNg3aC6Js0yS6KUCBptXEgweP8O1332F9vQDLshCLRnHs+FGcOX0ajWYTP/54Abdu3UbTaoIQA4ODg3jt1bMYGxv1D6Roveo/MWgxo/Lz+Xc+E1hDeBydOv8C1GcdvrxvWTleVuXLNjkrXhHsXCgDm9ABWv9Alp7fHeFy8LVHXLjuCp8rPIpwzj5C1dxe7vZI0XnkLXCGKxJYcWBgIBTe4EyeHB0HUvT1hApstA3E57c+oCK+cALCG6bhzxiCnGn/LL5vN0QDkR+DM3dYR2hMbdTTRtDHPW9UlXUeSAE7cJZ49Y93J5wQdXIcRSnM4qWJ89iTgYhkePEr9OvayBaiqEES3eoTD1X+SNuG1kg6qqaFmdwers0YUd7SbeNrHTcLjccQfqulCXhAxZVzMYAiBku0Z6JIiNgPR4XoRMoj1/4NaqeNWwl/9rfyPINNhR2wEmUbgAIUFHOz8/jkk08xMNCPF55/HqZpYmpqCj/+eAH5fB7NRhNPZmZw6tRJjAwPo1Qq4crVa/j4k0/xq19+gJ6enqdzRUq3oGUgZWfb5ow+l0Lu3FDueNueBrHlRd8ewWEhBJRSx2+XJqydyohtDPIE+undoqkDXNoi/KWT2AUiOwikBOLZAEmdkRKcSRtSaIk3XMDDt3/agq1SYDKiQF53oS/DRGhE37t7QZ0/fdB9WPe3ANSO7TYx3lpaZt5gdV2tp8M4gDc2Tp2X7sXb1D0bHu4/bjnqloX7GUWmJYz3b+PRnlfkBmjEYS2X1l3s22r1yWYEUJ5u0PHWF9QI20YhQEzaVaU8gOLGLtzIh27liBRA4UERoryHfgWKuPpEIpog+DD3jQRQnsGfBexkl6fbsL1BlG3kdKPewOUrV5DJpPGzn/0EqWQKIMDk5AQGBgbwxz9+iEQyiQ/+4ueYnNgNI2KAUoqRkRH867/9O65dv4nXXj27NcRuGZ9aOzDtY+zOdcehKAtJvtdcospfb6p34hW/ZFHZ7vHk7xSUBnWle2zC2pz1gh0FeHjQMXQQlGxdov3O8HXUO8TbzZHlG5zYYM3diul0B2/rAE37gZRwkiKC5yicUPzQ1eMNpKjJ3bTrg2mhwTk0gQKn2J9DsKWFjxque4jyt0ug8Xv8a9lA3T486Eo9HcUANPOyNOdQZ+5gYiqsKnXk1j0vwgmo8AIK8NCKWK0/nSICwbn1aYEbviFKmoKH6OoMz7zwvRKMszMp0hK/QZxdxLUpXn/L3gos6bmYSLOFR1xNIm3X4YcxG3JeLve8IJd/afuOQmzgVd9aG+gZPAMvdD4ani7Y/pUo2xRIqdXqmJmZxbHjR5FOpR06YlETR44cQiRiIBqLYc+eCRi2tiIAent7sHvXOB4/foxXX3l561aiPKWhvW4EUDYNnHgCN6iIl81SRN794iU5FFT6I8VjduZBsxvD7lt6R8tolwIpXcDbzdo3vdanJJDi/N5stm0If+v2AF1YiBKKDl5TcA4xl2cVRhgit0qMO6hH2j3oM43rDUG/ijbJFuhC0GHz6ts+w9hzg54wKbtjyJ7TqRA2cQIq+oiUZmoXp3SJAidkExA04YjcgGyL1Sc++DYngLJJsJMDKDsMxHgJdQIdxEmjhAdJ7KAe0QRQ+Du45XkeCirl5fOkJ3iiPGsJ3VT4U+jNZ/DnBp0HUbppHHVwFkILhMJvqjwJvymFYRjuC1tjxaIxHDt21MUkfOEACCKRCJrNZjgyut2sjeLTeh5qljZWj7Sgyb1UsjuMcAMe8K+4DT552SGvMKH8SxZ/F8A7h2s0gICW/NJlVQq12T4O+u/PtCN83iLCJL9h2gDJigypG3zxidZBN85c8VQUvtHaYIIHV2Dt2qLa4sEVtUejr9x3CW9gKX/8Wm6FJ6kt/E6OtvC3V5+YQ3smY1cDEjqjtTWPW6EIHC9+0GJOCgSi/G2nSFt2ewcVdQKtHPKwhcIU8QkiBWPrsK62MbTIZdtr/FBYFs7wNog6f23HVNNmNxwC2cEUXsq9z7+kiDUoSKUPKN7AiWhV8jf+8hjMwICubAGqBx1YzYZwtY+PF9KX6gyXf+lu4guLSz2nhMC1cZ2jdghnARGuLLaDgDyNCLgI7NuobHkXEjyBQF2XqZlayGSotrbM1F2d+uwcFGz6NNVetX+6/WG0zuID3TTmPJZpNxC6k5z8xCAaNdHX14cn0zNoNhtugqOQuMKS6apWq5idm8Pw8FBrmjub1Vrj2yhweryfVoQsIYluQRO1/9dNpeY1PnwztQRdQIaglXGtr5tSP1GWDauwoA966B/bw8Xf2ALQgVz5fknrCi4xsX2EviW0QYoOcUmJ4WkMpq2t2qVcnqHcsqI23SRbLwaT1IGrpyuiRdOaFxsPOHSJ/g3VJ7tqnfMrXPXBB1YSzXMotB4MoWxobtCLhcL854NfR738Lkx7QrdgYyA4QuFr3gBt4lgOPbWIhkMb9WiKtA63hqiHKz17wpZtDNXiE1OYM0kFw1CcZojw3lkAQKntuGrwOvmJhM8ivC7xLBa3gHwg/VYHUBS50bCqfalqbQN0ZML62ACdq3d9yzqjTY8vDC7PQa9gfgclgEFcO9RZRWIAIJQFSAw4+oJIeYnwHxVWpxAJHxHrFGkIVCdqAhX+bVGkJUPcj93d0LQ7egX8VsE2saBLo/Wpge3fzrNNYEZNHDp0EJ99/gUeT01j757JQM+ZUgrLsnD33j2srubx1ptvdHJ8w84BPvNusmx360yUrQCHTntllHBEHZglBV9+EWE1ldep3Yntb+kRP/VgEIAYBNSisKSmusJPDOIshKN2pmPP96B3MI4nD0p4eLvg9KUvtwhBLG6g2aBoNqxNbJFP9diSobz5QICJfWnsPZxFfqWGS98uAwCGdyVx6EQO5WITV35YRq3qvwpw06WaAIl4BPW6hWZzM2rSfd0OCSEbn8lFcez5PvQOxGAQgod3C7h5aQU0tOi2rqiTflDLhMHRWX93b8QYEYJozECt0uzqYlqdaTG6O4XDp3pRWK/jwleLsFr0V/9QHCde6kel1MT5Lxb08tpJ/IUQ5tBR+NJACGAYxP6wQO3tNOwdAFhW95gVjRo4+WIf0rko7l5fw8zjkuB468IL7uwsUaGJRBMqvKJSSguqiFy1IhxiIG+jdmT7ARSFkKd+4thu8AhOS9AFULggGOKjGvBwgireA2Q5LvcsFGL/X4mWqKSGJr3bX8i6VuQZPINtg52xnafrIIc/dcFQgxjYt3cv7t9/gK++/gZ9fb3oyfXoFYr92WJ+fgHnzv2IY8eOYGxsNDwZOxG61Xch5GAnL63zfsUh7ooS4S0AZ64kVBcYcl1tsbUbGSabP8SEybXNirxFOK7WX6N8qNAX6fDaY0KAky/1oncwhsXZKq79mBcqcvEdO9ODwdE45mcquHVxDZZFMXkwg5HdCYBSPLpTYF8WAwgfHInj5XcGsbpUw/efLqJR9/dufNuqTQj9GcfbHy0rag1asWgpKx042IIYDo0lcfh0DxZnq7j83TIoZc7gked6sZ6v4/aVVd8gimojbvxQWG+BvYeyOP3KAGanyvjhs3nmmAYXaaM+PQJPj5HOuzWdjeKnf7sbw+NJVpsFrOfrSp8EWdlB3wv9HMXwJKrYOynjl94+5hb1EuDFN4ewa28al75bwr3ra20i0D/6UTayO4Ujz/VibaWGi98sAS0CEZlcFEef68X6ah2Xvl10gyiailpzwy108EQPdu9PY321hovfLKNek/UdIcDE/jQOnujB2mod579YAAWQzkXx/OsDME0D579cxNpKLbCeUOQAMKMEe49k0T8cx+pSDbOPS6BEON/M+Uc3UOV6giW4FYijyMtrMXCi+rUbhY7xtO//t6bAB19nQR7/Ut20KjsOQHWAzxtAIbJ8GLbNTFxbxg2oEE/ghK9AcZdQ2ZascLOTszVIR6OfDLRkSrcse72G3g6garDzqf5S/gy2AjrfzgPs7CBBENh0J1MJvHL2ZTTqDXzxxVcolUpe69T+krKymsfnn3+BbDaDF198AZFI5NkA4/CUsyG0qxroH+qNv40GQbaMtR1UtHW0dUIcwdieFPYdzWJkd9IvE0YnEth7JIOxiST7uuoUl6xeEACHT+Vw+mwfevujEpbB0TiGdyUwcSCNbI+c1jFsoD/SWROnXurDqZf6kEhFNlSR1ugKYVxtJAfxWdpO5H82DRLJCE681IfTrwygpz8upU0ezGJ4PImDx3KIRDRG5IZJC+dEavulFWYCHDrZg+GxJJoNius/ruDrP87i7vV8y1UNIWsQ/muXOhWPDLm+GJ57dRAnXuxHLK6T6UCJ0tC1cSAGwb6jOQyPJ3HgaM4/aqSyQ0NK+D5sow1Ek1/jvLc7WofGkjhwLIeJfRlEIvrSAyMJHDjeg4n9GRB79Uk8HsG+IzkcOJ7z0Utd6B+lfa4TKl/z6gL1+a8TEMo5Ti//j7jeMOlcGiMRgv1HMjh9tg9jEymnqrbBp9DQaBynz/bh8MlcZytkOpTrDVazzRA+COA9A4VIZYggJgZkuSXOS0GunK07PMBCRDGTCBLlX6KxmwLUBdiub/OUUjSbFp7MzODBg4eo1xutCz2DP3vYGdt5Ap3T7iGWnghAKMHAQD/efvtNfPTxp/j8iy/x1ptvIJVKOZkpKPL5PD797HM0Gk385CfvIJvJbAaxrSG0t78zobtbe7rNDKKXQ/Fdi30dzrYQJ6uGxg2RrRRuY9yEqrYr43CTBnPbK1KC8voZAMG0H3u+B70DMRTydeSX607O2akKbl9ZQ3Gtgbz266o/BeFWFIQXGgIg1xPFmdcHYEQIph+WUCk3g5fStGh3ZyS1loPOhoJfkCF4BQcNVwQAkMxE8Pxrg4jGDZQKDeSX3T69dWkVhgHMz1TQbMgrHdutxx90bQxun2gw+1VnRAhbgUKAmcclfPXHWacN3YfuBlJ6BxI4+84IyqUGph8WUavqoj5b61pRi+LKd0sY2Z3CzUurMuPVLtQ5Ly2hy+3RBBi6WrdPkeCAQXtBoc5KEvmXVFCWf3d9SphxQTw/pZo0BIaj2Z+REZPg8KkejE4mceNCnm1dagu8NIswsjuJ59/ox9pKHXevr4OG2rLYdUmyC3Z7POvxtV1Lh2SJgQ1KuD3sBk0A6gY9nUFDnQCKmOQE6cRTkjl+YQWKbrB7x4CO2BDtaZ2lI9go3k7Wx/AVKNPT0/j1b/4HkskE/vEf/x6xWM8GqdlG2NrpMKDKbSBkC2FjK1G6CSqfu8Z34v9EAMMwMLF7N95/923Mzc3jsy++RKFYAMACKKureXz2+ZeoVqt4//13MTw06B46u5mw2XIXzpLahGp37oAiOntBiroFl6fUzSaztyMLenugKzSSjuSrZZG2xlxA3rZok/tON+5Xl2r4+o8LuPTtCqyAS7sMgyBiessTAKZJYITUxhFTj0eHtxWYpn2+QYcdTwhbTq/vGq/7ZJrGpuhOQghM05+Bao2maQTwWzRI5ZTZqTI+/e0Mrp1b0Z7rQAAYhDC+OrSFoZ/1RUCOljg4bznX1RKGQZDOsu8mhbVaRwEUM0qkFVvdAi5HvunOP63nEH959IeoTxlCgGjM0KZRCly7sIJP/+0JnjwsKsR6w0gt/RaDIBptj7mRCHHOGWmB3UMTe8HHjUptm9CRJxq+kGEAprDqJcCq8wWPXHChEj7/E35ALSGImAYifEwp/0VjERgR8au/c3Sn7C2D9VEkVB8xegwDiAQtIAyJKrxsKOgDD7l1aTCjm6PLpdNUNxm2yiTjIkHhBlBE0RMzuStLeLq4GoUK5WQczjtQgIjXGst0dB5A8Rt/neDaeVAoFPHlV19jaWkZ0WgMZuAg3OFg851SKv33DLoPO2MligNczWxtlZFIBJOTE3j3nbfwyaef45NPPsNbb76Baq2GL7/8GvVGHe+/9y6G7ABKp/UACN+8rWBDi6a4B6u2gWuLui+UpLRLE0dKWEBF/40qCJ3f4RkBdYXM6ltvm0NGn73zcedPG/GJSoXDt+lAPD+0j2aM4NWfDCORjCCTY1t1Tp3tw8ETOdy5to57N9YxPJ7Ac6/2o7RexzcfLaLZAHbvT+HYmR7kl2uYul/C4VM5pLImDIOgXGzg2vlVzD+pYNfeFA6f7kEiGYFlURTXWdrCTMXlKWUG8eTBDA6eyCGeZJN7rdrE/RsFPLi1jnrNQq43ilfeH0YiFUHEZIbX6z8bRrXcxI9fLWNxrsLaZBLs2pvG4VM5JNMmmk2Kwlod18+vYmG24hywG8S2bG8Uh0/2YGR3EmbUQKNuYWm+imvnV7C2WpcEIp6MYP/RHPYezjgH8K7n67h5KY+5qXLwCqMWApHOmjjyXC/GJ1OIRAlqFQuzj0u4cXEV5aK8HDeVNnHgeA6TBzKIxgw0mxRrKzVcPbeCpbkKMrkoXn53GJmciVg8AsMAnntlAAeP9+DGjyt4cLuAw6d6cOB4DqtLNXz3ybxzkDAhBIOjCXZga38MRoSgUm5i9nEJ1y+ssNVANvQNxPHiW0OwmhTXzq9gz6EMhsaS7IDSqoVbl1Zx/+YaGp4gh5cZiVQEh070YPJgFrG4gUbDwtpKHdd/XMbCTMXh7YkX+7H3UBa9A2x70sT+LH71TzEUCw189tsnsNQ+EB5TGROHTvZg4kAWsRjrv/xKDVd+WMLSfAXUYqtcXnpzCINjSdy+sorbV/JO+UiE4MzrgxgZT+Hu9TxbtQGAGMDAcALHX+hH30AcEZOgXrMwO8V4VsjXsXtvGqfODiCViYIQttXq7V+Oo1Jq4puPZp1VQolkBAeP92DvkZzNB4r11RpuXFxhZ2TwxXsGwRs/G0WuL4Zr55bROxjHrr1pxBMRNJsUc1MlXPpuCQTAyZf7Mbo7hUjUQKNmYfpBEVfPLzt9aRCC134ygt6BOG5fyeP21VUMDCfw0tvDvttcALYK6MevFgCwMTo4msDJl/qR643B4Dx4XMKNCysorDc8ypUYBBP7Mjh4sgeZrAmLAquLVVw5t4zlhapvvSJF6WwUR57rxa49aURMglrVwvx0CVfPr6BcDIgE65B6gkY+nlqbyp0QoG8wjmPP96J/OAHDACqlJh7eLuDu9bXAs6d4ZdEYwZ6DWRw4kUM8yWR3bbmO6xdWsDRXtR1aYO+RLA6f7sHSbBXzT0o4fKoXqQzTs4V8A1d+WMbKQg37jmZx4DiTsWaTYm25hqvnV7A8X5PaaBC2quPoc73I9JigFCgXGrh9ZQ3TD0pOAHbiQBpHz/Qiv1zDo9sFHDieQ89AzJ0nzq1ibroMAHjhzQEMjibQP8TG8OSBNHJ9UcxNVZxDuGPxCCYPprHvSBbxhMHqLbF6Zx6W0dCsLCFgZ9gcOdODbA9zCVIZEz/5mzFUy018+9EiqhUmE5meKA4ez2JkIololKBeo1hdquHWpTxWluqddrWn3zpL9SvUJavCG4EMThaqF80N9bwT5z0PmHBcagAFACGG5jBZ4haAGzyhAv7u2VUdYGrpZ2wvsG08TZz/8QJWV1exd+8eZLNZmNGNbc3ml5EUCkUUi0XEYjHkcllEo9GuBB8pKNbW1lCt1jAwMICI5qtQrVbDjZu3kM1ksHfvnmdHUGwC7LAgCrBdgRTDiGD37t34yfvv4qOPP8Xvfv8HNBoNJBIJ/OT999Df37e1ArhjZH0b+iMkyJR1gU5t8ZAnr7XY6qOFbrM2JL5uB1KCa8Im4A1fc1sFNIUMg2BoNIFkOuKs/sj1RZHtjWJmihm3yXQE43uSWFsxYRhAE8zYHN+bwtB4AgdO5JjzaVHbuYpjcCyBh7cK2H8sCzNqwGqytKExYHg8iY9+M+MEPaIxgude68exM72Oo8nexzE2mcLAcBzff7aAeDKCkd1J5wspAPQPx9FsUOcMAtMkeP71ARx7oReRCEGjTmEYwPB4AmMTKXz3yQLu3VgPDGwMjibw9i9G0TMQY1d5NikMg2BkdxLje1L47LezjHbKjPHXfzaCyYNpAECjwfIO70pi9740fvxqCdd/XGVfSdrpNAL0DcTw9i/HMDiaALWAZpMiYhKM70lhbDKFT/9tBsV1ZthneqJ455fjGJ1g5+M0G8zYHNmVxK69aXz9xznkl2sYHksgmTGdVSo9fTFke6KYvl+w+ZnArr1ppNKmu4KHAAeO5/DqT0aQSEYcWswowe59aYxNpvDlf8xibaUGCiCVNTGxP+3wLJOLMnoM9hV6ZBc7n+fW5by33QJke6J4+5fjGN/DzkZo1CmMCMHobuYU/fD5Am5eZLzN9cUwvDvlrHZJpU3EkxGsr9b0Q99+l+uN4t2/3IVR+/wFh2+7Wf99/rsZPLqzDsNgZ2Xs2pfG/JOyhCpiEoxNpjE+mcLyYsV5v2tPBu/+1ThSaRNWk6LZoDBjBsYmU9i9L4MPfz2FZMbEiE03IQRGBBgcSaBesxCLs05KZ0289cE4Jg9mFD4kMXEgg3Ofz+Paj+z2IQKKsckU+gbj6BuMI50xWQCJskDQyK4kBkYSoBbF7v0ZNJvsoHAjQjA6kUJPfwyf/vaJc6Dw2GQa/cNxLMyxNvf0xzBuByYkdgqP7GBktqLn4PEenH1nGKmsiUadwrIoojEDYxMp7NqTxh/+eQqlQsPpEgBIZ0y885fjiMZsvWEyukd2p/DZb594+K92bN9gDG/9YgzD40lbVi1ETAPje1IYHk/is9/NopCv64r6b2UNqLFtsH3CiQMZvP7TEaRzTD4sCzBHCcb3pjE4msC3H8/7BFIYNbG4gbPvDeHQyR4QAkfXjexKYnxvCl/+xxym7rMVRNmeKHbtSWF4LIFjz/cwnWzr68FRYGA0joUnZew5lIVhEJZmEgyPJzA4lsCHv37CgsdgAZSjz/XihbcGWLDWDoZGxhIY25PCpW+XceV7Ni77BuM23xPYdySLRCrC9GmEgJA4hsYT+PCfZ7A8X8XAaAJDYwlbtgiSGTaG+dY2M2rgpXcGcPB4DsQAGjUKYgCDJqvj8ncruPz9ivb8o0yPiZFdCRh28I+3rVJuOrI8MBzH638xjL7BGECZLo+YBCO7Exjfk8QPny1h6l5pA7P9jjF6vdDpt1MiDBtNAEUOosjXEMMTQAHgrERxAyd8JRSrj28Rki3jjbShI9i5boMEfIXGw0ePcfnyZbz44guYmnqCdDqFqLkx97jZbOLy5av45pvvUCwVYZomDh48gLffegPZbHbD/iSlFD+cO4/p6Rn83X/+G6RSSUcOOFQqFXz22RfYMzmByckJGGGXOz+D0LDxIMpm+UnbMAANw8DY+Bjee+9tfPjhJ0gkEnj33bcx0N+HLVfwYY506OJxIEG4drI+5PtKW2QK1wAi+45ttZlAuSJU7KRuy44iABv4OEA9b+mWy1dbRZzPLO2fpNHyhA6+1laAes3CF7+bQywRwSvvDyKTi+L6j3nMTpWxtiJ8eZPWzLo/o7EIVpeqOHc+j0q5if6hGE681IdEMoIjz/VgfbWOKz8solRoom8whpMv9yGVieDI6RwW/8Aczj2HMjj+fC9ACK6eW8XUvSIIAQ6d6sHewxkcOpXDnWtryC/X8Mm/zmBgKI7nXusHMQh++JTdgrE4WwUBsO9IFsee7wUhBLcureHRnXVEYxEcf7EXQ2MJPPdKP+amyk7wQYVYIoKX3x5Cz0AMlVITl75dRn6lhnQ2yg7dHYjh5XeG8Md/nkajYeG5V/sxeTCNRoPi1sVVTD8sIRo1cPyFXgzvSuL5NwaxNF+xV6To+01LR8zAK+8NY3A0geJ6A5e+XcLaSh2DIwmceqUfY5MpHD3Ti/NfLMKIAM+/PojRiSTqNQtXf1jBwkwZsXgEJ1/ux8BIHC+9PYR//78e4bN/n0HfIHs2TQPXzq/gycOi9gs/t1MHhuI4+y5brbSyUMXFb5dQLTcxNJ7EyZf6sWtvGi+8OYjPfjsDS/gSbEQIEkkTl79bwszjEuIJE8+/zg6zPfFiP+5cXfO9CjZiErz09hDG96TQqFNc/WEZM1MlJJIRHH+hD8PjSbz09jAWZipYmqvg6g/LmH1cwivvjSDbG8XUgwKunVtBvW6BWvoLWyOmgRffGsboRAr1moXL3y1jYbaMWNzA6VcGMDCcwCvvjWBxtoJqxXb0fQxD9W00auD51weRSptYXqjiwleLKBcbGNmdwulXBjA0lsCps/04/+UiPvz1FEZ3J/H860OoVi388Okc1lbryC/XYBjAC28MYfJgBo06xfUfl/HkYQlmjODkSwMY2ZXEi28NY2mugtmpMuA4KgTJtIkbF1cx/YAFyI4814fd+9LYtTcNagF3ruZx/+Y6G2sne7HnUAaTB7IYGktibqokfy222zU7XcZnv30ibXkyDILjL/RjaCwBq0nx+B6rL9cbw6vvjyCRimDqfhHXzi2jWm1ifDKNM68NYmg8icOnenDh6yWJiUaEoJyv47tPllEuNDAwnMDJs/3oHYjhzGuD+PA3075XrZsmwdl3hjE8nkRxrYGL3y5hbaWGgZEETr8ygPG9aRx7rhc/fL4gq1ii/A3oW/2gDTlJ2dmyPVG88t4w0jkTi7MVXP1hBdWKhYkDaRx5rheHTubw5GER92+u+6I6fLoHh072wGpS3LyYx9SDIuJxA6de6Uf/UBzPvz6A+emyE5Rm23QMLM5UcONiHtVqE2MTKRx5rgfZniiyPVEsz1dx9Ry7IWx4PInjL/SidyCGvYez7DYx2OeKvDmAaNTA47tF3LqcByEEB0/kMHEgjeMv9mH6fsnRKQSwgy1NnPtsEfmVGnr7Yzj9Sj8SyQgOn8rhqz/O48cvlpDOmnjuNdbX0/dLuHkpj+I6G3tjkykcOJ4DAFw7n8f0/SLMqIFjz/dgdCKJEy/14uHtAlaXvbr98b0S1lfr2HskgwPH2XXy3360gFrVQqXcRCwewQtvDaBvMIZquYmr5/JYWawinTFx7IVe9PRH8dLbA1ier6JUaGMlk6bv20xqUSicPuoAcUt83hUhwrkmQgBF3q4Dh24iPIvBFKlO5wWVynko2rAJSjS/QhfxzbATwmZra2v44osvMTGxG4cOHcS9ew+QzYxsOMixurqKTz79DOl0Gj/76U8wOzeHc+fOY3h4CCdPnEC9XgMhBPV6A4lEHMlkEoQQNBoNFEslNJtNJJNJJBMJgAC1Wh2lYgkWtZBKpRCPx3Dw4EGMDI8gFo3CsihKpSKq1Sqi0SjS6RQ7o1HYylOt1lAsFUEtimQyweoE5Cj/M2gLduBKFBu2uk9tL8sgBsbHxvFXf/UrRCIR5HJZeLTXnyI81YEUBoH0tdMASoVNTErH++CglB0KRqm8/clZoLJD5cfLlk3q6W4GUkKAzv4PVaGyBYlawPyTCggB6rV+AMDyfBXT90uhcFcrbDn0rH0A4NR9gmxvDAeOZ9GoW/j+00U8vsu+hk4/KKF3IIYDx3PoHYw5uOOJCEqFJhZmK/jxyyU06ozG1aUaxiaSSKQi6B+KY3G2gql7RTRqFiwLiBBgbqqM5YUqKFjg4fgLbDXLo9sFfPfJAup1C6BAfqWGv/iH3egdjGF0Iom71xrQcX9gKI6R3UlYTYofPlvE7at58EUk1XIT7/7VGAZH40hmIogYJvYcygIAbl5cxfefLjpBhPknZfz871h9J17sx8LME9+Aga6fRidSGJ1IwbKA7z6ex/2b66AUePKoCDNm4LlX+rH/SBY3Lq4iGjWw93AWlAJXz63gx68WnbrWVmv44B8nkO2NYXA0iQe311EpNdmqlgjF0nwFj+4WfehgEnroVC9SGROlQgMf/+sTLM9XAVBM3S+iXrXwyvvDmDyQxcjuPGYeFiW79/qPK/ju0wVYdiCDGMDbvxhDMmUinTWxrlsRAKC3P+bw9sr3Szj3xYLzhXluuoxf/dMkMj1RnHypH5/+G/tKXio2cOa1QWQRRSFfx6O7/g4oAGRybv9d/n4Z579ccIyxtZU6fvlPk+gdiKGnP4b5J4rjxOOxPo5MOmsi28uWS9+8uIq715kcPXlcRLYniv3HcugbiqNetfD4XgFGhAXLmw0LTx6VsLLIHNCB4QT2HmY0Xju/jO8/da+dnn9SwS/+cQK9A3GceGkA8zPTEg2P767j6w9n0ahboGBjYGBkD1JpE3MzJXzx+1nUa6xda6s1DI8nkEyZyPZEMTel51lpvY67ylXHew9n0TcYByhw+2reSY/FDdRqFkqFhrNSCQAWZioYGk9i8kAGA8Ns5YF4fk2tYuGz385gbprplId3C2g2Lbz87jDGJlPoH4pjYUa/GmV8Txpje9JoNii+/WQe92+sgVJg+mERkQjBC28OYu+RLK6eW0aJb+sh7p+29XE7855Qz6GTPcj1RVEpNfHF72ftMQXMTZeQyUUxcSCNA8dzeHxPPzbjCQOHT7EVKHevr+H7TxfQtMd8qdDAT/52F/qH2Uq+R3cKTrnCWgOf/24Oq0usvif3SxgcSWBkdxLlUgNf/XEeC09YcHv6fgnD40mMTiQxPJ4AwLauHTndg1jcwNJcFV/9Yd7ZVrgwU0HvwG7k+qLYdywrBWatJvDDZ4u4e20dFGwuyPXFcOhUDtneKKJRA/MzFcSWDBx5rgcYAAprdUwJ7R8eY1ueSusNXDu3woIrhGBtpYaf//0uREyC3oGYNohSyNdRyNfRMxADADTqFqbvl5xrsYcmuN4HfvxqGbevrLOVXQTIL9fx3l+PItMTxYHjWVz+fnWHGIvdDKD4S78On0GEQ4qdaKtbwA2KCLdGEUjBFjGA4h44S4VVKUL9Uh3uh7uAOFIb4OLq9sLp7QRKKer1Or7//hxq1RpefeUVRIwIKpUyotEoisWSE1swzSji8VhbgRXLonYgJIHdu3dh3769GBgYQH9fHy5cvIivv/4WsVgMhUIBQ0OD+MUvPsDgQD++++4H/HDuPCrVKvZMTuDnP/8pEokEPvvsc1y5eg1W08LevXvw05++jxvXb2JqegqTkxOYmprGp599jnx+DbF4FO++8zb27tnj0FOt1vD5F1/i8uUraDabGB8fxy8++BkGBwc3oS92ssfYXdhZQRSH75sxXENs/OCBFMNAf1+f/H5zSAnOt2MgVJjCzdoiG48/d++mng2CQLPzkxJvO3y27Mi3DqkZiPLXU1j72o9MOauWmO6uIJEr7DCrawBs1YoUca5Tw2FKmMQtQ8Vc8Mnlm0ULlWLDdo5YIatJsfCkjAPHsyisNbA46xrS1KJYnKngwPGcs4SaArh5MY8719bYSifKthMlUhGYpuEEA9I5QZX7tD2dNZHrY0by3evMgeYHWZbWGyis1hEfjWNwJIG719ah4/6ufWkQAyiusbMJxIVLs1MlXD+/AiPCDsjM9caQykRQKTdx99qatAqjsNbAnWt5vPT2EIbGEs4S+bC8HZ1IIWISrC7WsDhbcdpBAcw9LqHxYh/S2SjiiQh6+2PMYa1auHU5LwVrVharuPzdMtJZtmVAWz3R/mTPhH0BJoRg6l4BK45jREApcP/mGo6e6UVPfwwDQ3HMCAeQ1usWHt0tSCtBimt1WBbbCpRMm1hfUxwem/SJAxmYUQPVShO3r8pXFK+v1nDrSh4vvDGIvsE4olGDBcu81PvyF6AY35tGNGagXqO4czUvHUy3NF/Ble+XkUyb2gN6JeNdqYYQ5sgW1xvI5KLYdySL/HIVM49LaDQovvrjLL77dN42Qi3v51fHAQH6huJIpk2US03cucb6lo/9Qr6GO1fzeOntYYyMJ10ZsxEuzFSc7SAEwMpCFZVSA6m0icd3C04ABSBYW6mjXGza7RU8mBb87OmL4uV3hmFGCRZnKjj3+YITBF2aq+LX/+/7bGtE3UI6ayKdjbKtHDauVMZEJEIcZxYAKuWms9WPdRXFwzsFnH5lALF4BIOjCXYejkqdfW6PGSVYXqhifqoE0x43BMDiLONHImUi2xtDqeQGYny6MhxoCpGAtIhJMDTGghJPHpZQWmsgGnOFbHG2gt370+jpj7H3milgaMzdJjd1jwWI+Dk1q0s1rOfrGBiOe65aXl+tOwEUAGhaLJA6sjuJQr6BpVmXr5bFzgYanUg651RF7G1fADB9v4hG3XJobzYo5qfL6OmPsaCa0PhyqYGZR2WnKZYFFO1tXMmUCTNqOCtm/GB5sQpqAYm0iUMnc7h3o4BCvo61lTr+5f/zCCDEg8PLfveNyNZd+1KIRAjyyzU8uFl0DtGnABZmK5h9XMbkoTSGxu2gX72diZ74Cla35K07+MKV5mf5qjqQP3P14axgCxFAEXE5B8o6kWr+Xln13G5jQ+TvjluyOc5NO+ta+OqMu/fu48bNW3jv3bcxODiA5eUVrK2t448ffoxPPv0cVrMJM2rijddfw9mzL8FsY4tPb28PXnzheXz19Tf4//7v/weOHj2KkyeOY2RkBI8eP0apVMJLL72IRCKOjz76FBcuXMS+vXvw1dff4OjRIxgY6McXX36Fy1euIJvJ4vLlq3j11bOIxWL48suvcfv2HRSL7LyVWq2G6elpjAwP4d133sJnn3+J778/h7HREdZeAHNzc7h48TJOnjyO8fExnD9/AU+ezGBgYGDDq270pXeUE7tpsLOCKIBtt7fvbIVELD0Bmmq2ot//1IN0T1v7qPKXQ6t2+KTxYlvDhk0OpHQbOqCto+YIBfyGNFFTu2182WSotDdtO7bZtNBQlt27h4m6NTabFNm+KI6e6cHYRArRmMEOjgUcA91ti3ddEYdcX8xxeF95f0gKaoAQJG2HQgrISDiJc7huab0hOXYAO/Tx208WnOxjEyy4UCk2sbrkvfp5bto+6DZKkEhFUFgLJ8eGQZBMRkAIQbY3il/806QUTDMMdjsOCNv60NNvf12tWaiWxRUTzKn48esle9rRSVlwz8eTEcTsPpidKntiesX1BtbzdfT0x5DOag6UUwqw5be24ay7WcPmSTxpghDm9FXKTQ+OtZUaqAWk0hGkcyZWl2oId22rW1EmGwMhQKXUsAMKboc0GxZ++GLBma79b4vSm7b1uoW71/IYGElgdCKFn4zsRqnQwNxUCfdvrWP2sXuNcVC4Ip01QQhBudBAXiNjs49ZIMCMGkimIo5jCsAjWxZ1u4OdW+LWZFnUDtAIDl8LwzMaN3D2vRH02lvfvvl4Tqqfn7lx6GQPDh7vQTwZsW+QIc7ZNeH0DkGt0kSp0EA8GUEypTfriAH0DrCvqT39Mfzqf94jpUcixL61iiKecIMLQTQEOeHyO02A0gdxLB5Byh4rE/vTGP7fZDr5bUnJlAnTZIdaq7hiCYPd9kSB13464tnelMowucnmoso4U4SCwgl6WRaFuljOOVjaod1wxsKR53qw/1jOQxcAR2c41VCv/uFBc+nsjACYeVTC0lwVg2NxnH61H4dP96CQr+PxvSKmH5SxYq9IFOn1gtdGBiHI9TIdWlpv2AFZFywLyNtbW3O9UUQMgmY7ukYNsmJzzJduB2S02Yl+BQr76eoPNYBi8ACK4QZbxG2CbuBYwOdUQt26NrDF+2kE+QNme7C8vIKvvvoahw8dxMGDB2EYBrLZLP7qL3+JRqOB1XweX3zxFfbsmcSpUycQaeO2HkopTNPEa6+9gonJCVy5chXXrl3HjRs38Vd/+UuAUsTjcRw/dhSZTBqXLl3GzOwsO1C6XMbS0jIKhSIa9QZmZ+awHF9FPB7H6dOnkEmnsXv3biQScczOzgEAolETBw7sx8VLl/Dtd99jcXEJ6XTK+WBEAGQyGQwM9OP69RuolCs4feok9u/f/+yw2Q1C94Io3dR8m9apeidjW/zNEBW3zCL7NxtvSAscba0gCdW+zhWgPz4OGrxq5EyTJTS/ASanFhW28nAc1P5LNEV9DLY2+s/fVe4cn0yR8mZDuDSp3PNqA3xJIKQ1Lo2R1l0gym8f2QtY6RKEeWAkjnd+NYpsbxTVMgtI1GtM7sYmU8rVsP74Y3HD0a2G4b2mvVa1gCo0XzzdfDwIw5zq4AHEnQnLYoeGqqzhtwAZBkEyZaKwJt+m49ciwyDSl2lm28i5yqUGEwuLOoclukEfhV80WAsF9VhEOMSXO/0iUArnrKRkKqIJjPhjJ36pglNVr1ksGKbw1mqyNpkxQ+BVm7LH+7puCec9CTgCv3W0ruv6hRWs5+s4+lwvBkeTyPXF0DsQx4ETPZibKuHL389idbkG38Agca+1tiyquc0Izq1DRoQgkTKdQ1rD0UlC5dLlIAQ48XwfJg9m0WxSnP/S3tInfCxOJNhNQxP72faalcUq20rWsDAwkkCmJ+qD3VuvRV35NpybgRSaQBCLR9h8BWhvECoVG6AW45t/WEz84ZVSAsGE00WRg3Da9JsmsedVb4DOsijKxYajA3XIuG6jNi0R5frzasUC4A2+BIw6PbEKxOIRyXxVaW82KEqFBmrVptfMtV8ETre+dRNUShY++ddZHD6dw669KeT6YxgaT2BoPIFjzzdx40IeV8+tysHzlmDPF7as1DSrYQjgrOhiAa4QeqbF2UltaSrJDg7G2xYQz49AfGJ81Y2EyAEU6fpoIpZxAyjuVh/q6noh6OLWwZSJvGXSzRCqzS1FvQ3OtVFhN2ww4nKurXKUUlSrVXz9zTdYXc3j5IkTePjwIXp6ejA8PIQDB/ajWCzh+o2bGBoawrvvvI1MJtN2sGF+fhGXL1/B8eNH8ctffIC7d+/iN//yr7h16zaiMRaU5CuNDIONm0azCUII+vt70dvXh9HREQwNDeDBg0e2X8FkIhIx3ENiKVCuVPHZ51+iUCjgtVdfQSQSwcryqkRPMpnAG2+8hsWFRdy+cxd//PAjRMwIzjx3ekOBlHCj408XuhdE6WYkYtOiGl7E2/bBvmXFIb8b8gmkG0sfWpTlrkao4Edop7t7gZTAAIrutR+/7AlLPd/ENQjVYAXRLmkSu6YlMWFpC0xW3rYpD76jQw3UhcAbHNtrLzDDIdi4JFIwhQLOtYzRmGa/AWxj3f7yWy019WdyOJW2cmOC6ZZxhS3JaDz6XC+yvVHkl+v4+o/zmH9SYVs+TIK//l8nkesLdxXf+mod1KKghODrP84718OqUKtavswu2AfOJtOmPfHKmfj2gGaDorDWYF9kogYSyQjK5aaEN5lm04/VpJ7riBl48ROwFTwsSEKxMFvBdx/Po9nQa5H11Rp67BUK/Au2DBQR02C3KjVo+HNZbCiXms6X2UzW9MT0zChBLM4MJOagahUO5BHTGup2wCaZNhGNsrM1xPEZS7Armus1yw2KtWnbFNfroJRdH2xoVppETALDIJ6v/K3DErbj3wQe3VnH47sF9PTHkOuLYf/RHPYdyWJ8TxovvzuMD38zBasp43QCvRRYz9cdGYsnI/ZKI5eXqZYy1kUQ+L9rbxqnXx2AYQB3rq7h5qVVVy7sPBMHMpjYn0ajTvH1h7O4d33d2UL01gdjOPJcb4gKGfAxRqkrG+JXaSaX1N5amMbyfBWf/fuMSI77l7LzNvwayB3meNIUAjZytrS9Yo2v4AmmXoZ61UK52EC2N4p7N9dx9YcVbT7LoigVG4jHvV+Imw12LlSjZuGbD+exslST2sihUm4qMXgq51KIbDVtlYsNZ2vdxW+WMfOopG1po0G1sf/OTDi7FCEoFRr48atlXDu3yrYQjsRx6FQOfYMxnH6lD0tzVTx5WGqBSwTGC3ZbU5LpfXi1VTrLxlm9Zvms6FPRUm3AQ+2fliAqXOKPoW28TiF9YIuCSs47Ie4zuzabB1B4IEQOoPDVRU4+JYACIR/EckrTecv4e6rJpwXVb/BlgdzOQNDi8nKuW8fJtkWbAk9mZjE9/QQA8MWXX6NQWMfLL7+In/30J7AsC999/z3m5ubxiw9+joGB/g6DDBRXr13D9JMnOH36JBYXFtFoNBCLsyvKK5UKLl2+gmQiiYWFRTz//Bns2jWOq1euoVKpYqCvD/fuP8D4+Cj27JnE9Rs3cO7cj0gmk/j+h3N4+603me9EgGajgXx+FckkW/2bz6+haTXRbDZtSoDZ2Tl89NEnOHHiOE6eOI6ZmRms5dc25DP+uQdQgJ24nQfY8n7YaOxhc6ADija5EW7AY+dxi0Nbfanz9O0gCY+VELCvfK0+VbM9luxBXrHjTG8IFGzvXLNzYAO0bVczKKVYnKli8mCanTWQM1FUVjrkeqPo6Y8x52K1rr36UQfqhOrnFrfEEyJPJEIwOMYm3fknZcxNufvmIxFin88QDtZWamja11Jme6PsTBO4kmmaBBHTcIJPOliaY+cFsPMbTCkQk85G8epPhmFECC58tYhKuYlmgyKdNTG8K4lHdwrukDOAfUfZgaCVctOzJSUQKFAuNgHKriBu1C2sLtWk4RxPRtCoW2jUKfLLNVDKgihDY0nnWlOAHdp79r1hZLJR3Lq86jkUtFUnUYuiVGiifwjYcziL6xdXpUNAB4YT6BuKw7IoC2K1CMiFhfxyDVaTItsbRc9AHMViwxmmkQjbBgGw7UR6h7g1LC9UYVkUiWQEPX0xafxEYwbe+PkoUpkorp1bwsO7BTQazIGKJ1kAh48nI0I8X+SHxhI4+dIAquUGvv9sAatLNawu1fD4bgG1yghOvNSPoTH7HBPhy7njaNhQtWUs0xPFiC1jTl4DznaKSqlNGQuEYD2ezUXxynsjiCciWJqr4PtPFzzb9gBgdDc7O6O4Xse9G24AhRDiBCN19fGVGqKc5XqiSGWioBYV+lsuZ1FgxT7vI5kxQQHngF6eO5GKoF6jvrf7AO7ZG8l0BNneqGd1TzRqYNg+06RcbLQ9B9RqTRTWGhjexa6MLhUbwjY8Ym/lYWctWbqjfsDO3KnXLMRiBqJxA6uL8u1aZsxAxCBsRYp0mHjw2AxsC2GrgarlJuIJA/3DCdy4wM8rYiUjJlsZptOxbduhAqlmzMDJF3uR64th6n4R924UMD9TwfxMBTOPyvjgH8cRT0YwOplsEUTRw9JcBQdPZpHtMZHri0qH08aTEQyMsDlqab7m2ebZTnPaLikFUDYP5DibHADiwRB3/uEBFDgBFENYmsWDKQQADPugWCgHzEIIoCh4WSDCRi7S1w4Ptsww20mGrAtjo6P4p3/6R4AC9Xod//zrf0FPTw8opbh46TKuXbuBn/7kPUxM7O54lcbg4CD+4i9+iq+/+hYff/wpAOD48WN47vQpdkCsZeHatRuoVCrYvXs3Xnj+DHK5LN5++0388MN5TE8/wdDwEDKZLAb6+7C09CIuXboMy6I4dOggDuzfh+XlZfT29iGTSePs2Zfx7bff49PPPkcqlUIikUCtXkdvby+ymQxGR0dx9MhhXLxwCY1mHfv378OpUyf124ZDgter6Shc+VRDd7fzADt1zPjCzu3ubaAsRB8SZapje3kt96OXQQRlH4yr2xAq+g54gifaDyfKIgztDE+F/+xJUMZFPP/K7oCCcJujed4uE960KY7B3d+5cGhZJH7e4dEvCiwtVFGvWcj0mHju1X5c+GrZMV4TqQhOne1FMh1BrWo5Ny4Et4ZB/1AMD+8YoE3q3KoiZg1klZLeiq2UwnEgevtjSGdNVMpNmFEDp872IWV/ARSXq7Nl7syJTGVM5FdqsJpsKfaTRyXsPZzBsed7sTxfxdw0O8cjFjfw0luDGBiJ46s/zGN+pqJl9sJMBcW1BtJZE2deG8C3H82jVrPsWylymDyYRrXcRLnURH65hqW5KoZ3setq8ys1rK/WQQi7tnnXXuboP7xVQLPJjUkNwzTw+G4Bx19g/ffCm4P49qN5lEtsKezQWAKv/WQYc9Nl/PDZAoprdSzOVjA0lsDpV/qxusyu4TQIsO9IDgdP9IBaFJe+WwJAYFls5YJhEKRSJiL2Ab76VSTA7curGJtIYmg8ieMv9OHGBbZkPpmO2Id9GiiuN/Dkoc8tPwHt9IPphwWsLtfQPxTHi28NovhvdRTW6zAMgv1Hsti1N+PwqdFof/wCLIiyslDF4GgCL7wxhLXVJygVGjAM4MCxHA7YAYrzX7DtPrUKc7x378sg2xtDca1ur6Tqw9BoUsIdjRk4cCwHy6JYXarh1hXGs4hpIGqvLLCE7VcWZQErM2ogm4thbaUOq0kxN13C0nwFw+NJnHl1AGtcxgxg3+Ecdu/NAJQd8Gs1KYLs4VYfUVvZ0gRsRcjZd4fRPxxHvWbh/JeLqFaa7OBj276klK2UKJdY8CGRMjFg365FDGDvoawzNgxnu5g7OlIZE8+9MoCL3y6h8X+z959fkhtZviD4MwCuVeiIDJGRWiuSyWRSyypWsauqq/t1z7yZPbtn5+zuObv/1X7YmXkz8950dVdXV7EUyaLMTKbWydQytPIIlwBsP0ADBulAhGcyLhnpEHaFXTMYzH64ZiZS5AsCjr7eD44HVpdFPHvkvnPYzNMG6msSCiUBL70xgNOfzaBeE8ERgr6hDN76eATTT+o4/cUs2k0W6EQw86SORl1CrsDjxLuD+PLTKSVSgSqD+WMn+1Hpz0CWqA7Uhh3gPbq7im17SxgazeHgK724enYJ7ZYEnuewbXcRL701gGtnF3H9/JKjDABlkeD56QZGJ/PKMz/fwvx0A6DKwqvH3x5AqZLC13+cxqJjLR13Y7UqwUxBlQiTBz+s4tCrvZjcVcDMkzLu3qhClpW6cfCVHmzfW8K5L+dw//aand1HO0BlY42WbI5XtkaWKCADfUMZTOwsoNKXUtrpqgQCIJU2wHax7f2lQFSj1gSBQ7bAo1GTIEvA1GO13S8r79LTn8+h1ZDBCwT7jpbRN6SU95O7axZwz5USmXbDltC5TBOpAAoxpXMc2wAU8zpKlggUDjqYYl5IFvo5ccqzGmNK7FM3w+bT/2bE5N6J1mvUk81mkM0qwF+1ugpJklAsFHH37j2cPv09Trx6HDt37jTKLyQRQsDzHPbu2YMd23eg1WqBIwTpTAY8r/TVcrkc/vEf/h7FYhGZbAbpVAogwGsnXsVLx45CFCVkMmmk1OvvvPMWXnvtBKhMkc1mwAs83n33bVBKkUql8Orx4zh86BAAKDwABIHH1olxEMJBEHi8++47OHnyNUiShGw2g1Qq1cVj4OeDujMSZZMQaTS9ToNwCkCWZKysrGF+bgnVlTW0223wAo9iMY/evgp6e0uhVrLeMNJ8ZnofUXNvhjmzgQE36Hw0RBlsMGoSlUKYnUQOPWWabk4/buDu9VXsPVLGzv1FjIxnsbyghP/3DKRRKAqgMnD7ShWz6q4LXi+URk0ZVOw+XEalL437t1bVXWxM6gNk1j0JcZxKooxHd2sYHM1hcEsWH//zGFZXRBQrAoqllL5uRTbP63lfWxEhijJSaR6v/2QIc1MNXP1+CTNP67h8egFDo1kUSgLe+8UWTD+pQ2xTDI5mUCilILZlfYFZuz9BlClBNy8t46U3+rF9n7J16+xUA5XeFAZHc5AkiusXllBbFSFLFBdPzeO9v9uCodEsfvqfxjH9uI5sjsPQWA6pNIeFmSZuXFzSt8u0e8PNV/OzTVw/v4QjJ/uxbXcJfYNZzDypo1gR0DeURTqj7GbB8QT1moSr3y/i7Z+PYMvWPD7577di6nEd2TyP0a15EALcu1XFjAqkNWrKzjH5ooDDr/VheDyHuzequHNtmWnLg9ureHxvDVt3FXH87UFM7iqiutzG0JYcKn1pSBLFlTMLWGFtVxwI+XV6oVGTcfHbebz1sy0YGc/jk/+8FVOP6sgXBQyP58ALBLNP67h1mW1zEGo1JFw+PY+3fz6KLVvz+Lv/vBVTj2vIF1LKjkQcwQ+XlzA/o/jt/g9V7DxYRrk3hZ/98wSWF1so96RRqhj1VMvwwoyyG8/oZB6vfTCMyT0lLM0pgM3QWA6gwP1bVR1Iqa+KaDaVuvnGT0Yw+6yOC9/NYX66iQvfzuH9X4xheDyPn/93io3ZvIBhtY7NTTVw/cKi2wyCwJ4P8tF7684iJneXlI43BY6c6MfhV/ssaRp1Cd/+eRqP767h4Ct9yGQ5fPSP41iYaSq7SfWn9cidTE4wRZspBnAccOjVPoztKGJtpY3egQxKlRRkGbhxYUkHZ1i0MNvE9fOLeOmNAezYW0L/UAYzT+sollPoH87q2y7zPIFb/FJ1uY0L387hxHtDGBrL4ZP/vBWLs02Iooyevoxe3g9ureLeLXP7GNT5BA/vrOHRnVVM7i7i6Gv9GN9ewOJcC70Dys42HK9s10vYMzUhihQXvp1H35Biz0f/MIapRzVQqkRBFYoCGg0JqYyLAE/rXLJDFKDv+vkljG1Xtpo+8f4gduwrYW1VxMBIFqUeZdCiTXdyle1CyjRJpWQmdhbwwa+UNvzCd4u4d2MVo5N59A1l8NN/GsOzBzUQQjC6LY9UhkOjLuHhbS8gF2pEpgIAf/D3W7A018KZL+awstjGrcsrOPZ6H7buLqBnII25qQbKvWn0D2VACPDkQR0P7wSIcolzzUPXwkiIzLYrOIjplOhAhw6WmL4MaOtfEMACoGj4qLHrDtWkORentX/QIpaf4F6I210xACjA+vSGzaAIpRSrqwrQu1JdwfXTN7F3z24cOXIYgsB3tlaICsCk0ymk08bzTqmypkkmnUYmm0GprHzw0KA5jueQzWUNOep1nueRz+cs11NCSncrz3MoFPKOfJoXxOV5TpehVK3OKkJMkOVzTfGPcrt6XOgc/G4Y+ZpCglubRIPoopSCYm21jjs/PMTTZ7NottpIpwTwPA9ZlvH48TR4nsfgYC9275lET28JfvMW497y2AitdJFnzp89KsXMo0ej2Ocv284JTAsvmrQy1DPgF2vCEFWUndR2NZYqb7IxQl1zrU4d2BakmaEyVaJP6hJ2Hy6jUBYsO8+sVUX8cHkF188vK4N4jY/CND1LUUYBXDu3jL7BDNJZDmPb81ica+n3tPT6osLU+uewjVKlXmk9KNs9DdijAG5dWka5N4Ud+0so9aRQ6kmBysr0nlSGR99g2liPA0o4/A+XVnDo1R4USgLyxSLu3lAGM/MzLXzx71N4+a0BDI1lMbGzoOutLrVx6fQCHt2zdYRN5lEKXDu3CEmiOHyiF72DafQOKoukNesyLp5awM2LxuKFT+/X8LffT+H4OwOo9KZRPKBM4ZElZevRs1/OYa0q6jpkdaFms890bNKET1KZ4vKZBbRaMg6/2odyb0pfG0aWKB7fW8Ppz2Z04OverSo4HnjpjQHdh4DyVffa2UWc/2ZOXzuk2ZRx++oyegcyyOZ4bN1VVKc9EH2hUrN9YlvG13+aRm1NxO6DFYxM5DEyodxbq4q4+v2CPojX8mnUDUZ4m17/vL9N37tVBaUUr747hFJPCrvUhUglieLh7VWc+mwGtdW2hdusTg/cciGq6iDcMxx/exDl3rS+RbbYVoChC98afntyfw1Xv1/EgZd7LWnnpxsQBA6V/rSep0Zdwtd/fIbXPhjG+LYCxrcrf4CyJs/d68u48O2cPiVoYbaB+zer2HdMWR8oXxRw68oS5qebeHR3DV/8x1OceHcI5b40dlUqAJR68OjOKk5/MaPUMdWXmm9lSpkNiaVMiMs9Szka9TVXVEAPSilSGQ7D49YIHEABY1NpDjPP6jj75SyOnuxHvihgdFLpAC8vtLCy1MLE9iJyBd4yFUpZ16SN1eU2Rrbm0T+U0cvj+vlFXD1v1DOtXdLaEqIafOn0AkSR4vCrfaj0pfXdq2QZeHx3Dae/0J4bdr2jFLh1eRmSBBx+tReVvjRyk0bnvVmXcffGCi5+N6/XDX0AGLAz027K+PZP06itith1sIKBkSwGRpSBRbsl4/bVFZz7eg6iSCGkoO9kY/4SP/O0gS9+N4VX3xlA72AGk7uLupbl+RbOfT1vRCDqzyL7Pee1zod5Ki+gTO/72++UNnZ8ewEjW406UK9JuHF+GTcvGeCmpZzscmEsjqxdu3djFRM7lWmqI1tzKtsiHt5eRSbL4eCrvSiWBew+XNYVLM62cPn0InMHKzMtzjbx9H4NY9vz6B1QANBzXy+AQsb188uQRIqDx3tQ6Uuh0me0ofduruL8Vwu+kS7rtfBr4jKJ0XRYFoo1n5tkEG1hWRCAUBAo63kYEShGLxgw7dKjXzOLVDUTq474iNisj1Nq52mUdPFZt7q2hlqthtOnv8fk5FacfP01ZDLpjgAUMznlUBw7egS7d+9CpVx25MUtb77jqAD2bu7EEz8RGmgVKOCz38yHkxzDeLjSK2D73mwCBe80bsNgFZcB1o3La6ipHb9QtsWZEftLXQVQrlz+AdPT8+jv78HE1hEUi3mkUgIkSUatVseTxzOYmppDqVTA4cO70TdQCdToxblTj6c8aj02gx7GYFg7N3WSqNLRVM4JoKWlpmsmgYx+EdMEtytB3WHDgdjMIVzLTqp1T6lXopByo8tylwkHakE4gmJZQK7Ao28wAyFFsDjXwvJ8C2urkmWaBoWyvoCQJmjWZWNLUqp8Ae4ZSGNoNAsqA08f1lBdaiOd4VGsCJBEiuXFFkCVeeL5ogBJlFFdEi0d4UyWQ6GUgiTKWFlqWwC4TI5DoaTKMq03wgvKtqT9QxlwAsH8VBMrS22kUkRf/2Nlsa37QxCUaS39QxnU1kQ8vV+zrAmRzfEoVFLoHUgjneGwstDG0nxLWTjWq1i0MQanrClTKAnoH8qgXpMwN9XEymKLuZCksoZKCgMjGUgSsDjTwOJCy7GjTS6v+E1by0TxCY9iSYAkUawsKVOTNEO0bY4LJQF9gxmIIsXCTBNLC019gU3z81EoKxE8AyNZiG0Zs1MNLM23HCHoHE8wOJLB4GgOraaMZw/WUF1WolNyBR5iW1mk0/z65AUO5d4UKj0KgLC82MLibBPV5bal/NNpDqVKChQKcGXeDSmV5lDuSSnbFC+19NB9LypWlPwPjmTRbslYmG2qOzjZpmMQgnJvCqkUh0ZNwlqVHWtg10hUHRa/PWtgab4JUbJWFl4g6O3PoH84i1SaKHViqQVeIMhkeNTVKB/dFxkOPX1p9A9nkckJWFlsYnG+hZUF59oK6QyH4bEc+oayqC618OT+mrrLijJwKZRSKJQFDI4oEVELMw0szjUtdYwQoNKXgSAQrFXbymLHqv36vRTB2oqIet2wk0BZn0NIcVhdbuvTArX0tVUR9TUR2ZyyVpDX647KwLK6PhHhgFIlhf6hLEqVFOanG1haVMq9WBYACiwtKGlzBR75ohIt1qhLKFfU8hAp5qcbWFlsGeUBpZ6Ve5RIKGVdIOMeIQSliuKvvsGs7q+leecz6UpEfa6LAnoHM8jlBawstrCg1Xlb+WnPB0cIlhdbjAG302na+k3lnhTKvcpW0QszTUteOQKUetJ6OWjAqUa5gqC3D6k0h6WFFpbmWpZ6mMvzyJcEtFtKO2r+wp8rWJ95M+VLArI59r1UmlPWLOpLI18UsLbSxuKcMt1MayJzeR75ggBJVsAx87som9feIcp6Svp2pepzPDyeA88TzDxtYH6mqdtbLAvo6U+j0p9Wdn2aVd4V9bVgawLl8gKGxpT6uLTQwrOHdWO6JVHbm6KAvuE0mjUZC3NNrCy2/afxrCOAErdcHTDR7iiIJABjup0eeQIYUScE0HfmUW8QTl0QldjSqY2QafaPxRRdDwBKDLiws3y63wwl1yWxeeOIIGMAAmDXwSJ6+r0Xy48LRJFligsXLuI3//pbbNs2iV/+8hMM9PcnCjbYQfqO87KBuIhT9YsB0sgU6NuSDpT2hQBRtC2rpqanIYrKPFCO4zA4OIhiseDGFcxkCoiShKdPnqJQLKC3tweSKIEXeNRqNUxNTWNycqs+By0SMb5AdBuIQkHRarVx5dJtPHs2g+07JrB9+xhyuQwopZAkGRynbNXVarXx+PE0bt28j0Ihh5de2odiya0crDriJGrPhPWGcWr6AEX1L8GwASTQtytVvhoR63VVrvmLkt9GH9TjzO9yMJmMK7GAKeFlBZIZmzxzgmh1ypOLBkoVXG7wi+FkxyDX37+d64hHTPDErikjNz8bkd+OtcUildjOu51Y9ibT7UuwM8kQbQbQo2mOwOViRyJ610NXUjpcB5gdyvYQ0FEdiM1eM3OMAIrOmAQow5Jg3gWGGuMRHdwgFnDFMm2HAITTwBYT0OJIZwAoFgu0tDB0UdOTHi+AQvyTBJal3Q5nYRAQJc4oFEoppqdn8PjxE2zdOo6BgUG9XLqeNsGTxEiWKfpGM4HSPgeLVgSj+fkF/O53v0cmk0Umk0Y6ncbJ106gUMhDVmOCOY7TUUBCjLBeZb9tDQgw9rnX+JqNBq7duIEtI8MQRRFXr17D0aOHUavVcfHiJQwPD0MQBJs8hShVFp/UFhNiPpzWEIKupalnc3j6dAbbto1iz56t4DgO8/NLePp0FrVaA5l0CsPD/Rgc6sW2baMghODqldt4+PAZ9u7fAZ4LNv84zm2PfZ3LxARM+ql7Wmq+FAEHCFTsXVk3VKMi2JZUnl1ZnKv9dh8xjQ/vBAeHp4hg8u2Ds2AWhedicoRyQXjrwvlrHUjtLFOmcR0K1il8aQaRyjq3awwjN04eN7uiDzT9rFvfDiWx/QbnCgm7dI7UMAT66AnHGV59kvnxyMeLNeTwII/BaGc+SMqDLLkmcIEYWyso4Id5kVm1T2QCUGCOOvGLQDEODbXEahE1vbniBVBCJQmoKP6XaZwAikbDw0MYHh4ydDwPAMomJUshqsALA6JIkoRGo4m33nwDo6Oj4DiCXC6HBw8e4vGTJxAEATt37EC1WkWj0cSuXTsxPT2N5ZUV7Ni2DY+fPsH01AxK5RJ27dwBURRx+/ZdSJKEfCGHSrmMVCqNCxcv4fy58+B5Hjt2bEdfXx8Egcfq6hru3r2HarWK8fExjI+PY3V1FQ8ePMDKShVjY6OYnNxqWeTHn6yNZaAmKVTi4LKazRaePJlBNpvB5LZR8DyPR4+mcO3qHayt1XVw6vGjKezaPYnde7ZibGwIU8/m8OzZHCa3jaFQcM4Pt6qLt/EyfTtAgLgK/QKl1ArkUHtCop8TKHOWlUiUEOvYmGykNms9EgWSF0Z/eFnBO4pecpkyg6zKypDla0oEIMXTj/rN8N5mDWfdFcYEpFgU2j3mUMqUGVx+IC5fPZ4XPYEh30SWlJ7uCQXgsMhdgFdLp69VEirvQYlV/l7UeUsSpVVfL55okhPuZHuIj3fgGQI8YRxHB6EC3GYki1VfbHrCyY8lD7H5xsYZq1zED6Ak8VwErI6AkR2tbTb3V4kKoBBTNImy9omCmChTdLQ02kCd6oK1U8v6KuY0ujGa1rjboAjyfH3X/WDEcwuYbKDZz6nHwlGIbs8LA6IAyuC3Wl3F0tIS0hllmsmXX36NdCaNhYUFPH78BBPj4zh77jwGBvpx5vuzAAXEdhuff/ElRkaGMHdpHvPz85gYH8df/voZSqUi9u/fh/v3H2B0dAuazSZESUKz2cTC4iIuX7mKQ4cO4tz5C7hz5w6KxRIuX7mKT37+Ma7fuIn79++jt7cXt+/cwS9/8QkGBgZC5ioZRDcsLS6sYHFhGaOjQ8gXcqjV6rhz+xFWV62LUDaaLdy7+xgDg73oH6hgcLAXt24to7qypoAoG5YdVbHtE7ebOdqibi6BKPoFCug7MWjpwzYybBsYL9CNrwZsigVI6VBgx5zrT0xbtYv6zRiAlMiJQrJ6yoyxZBLKIBMgsouIlI0Yy5AF8iRa6c3CoyBM3fxEuhUwwM5zwqa4WGRLEk1wDORWE2Lj6miQ7FWWcerpTH4SlFS9eB4AFK3UQ/W7AjVJ1jqrR4wo6AkICKhyaIAi2jm0tVC06TtUS2TarccatULMeSRmfWYzkoIlkgBQNikx2nRu8hTCx4H3dwtdbhtQ0KIo4uKly/jy629w8eIlEMJhbHwMhUIBHMdhbnYOIyPDkCQJt+/cxdTUNCa2juPWrdsYHBzAJz//Gfbs2Y0ffriD1bU1pFIC3n33HRw5fAiUUgiCgD27d6NUKmHPnt1Ip9KQRAm1Wg3Xr99AJp1BpVzC8vIynj2bQrvVQrstoq+vD/v370M2m3U3Xm9JY6KY/d+oN9FstFEo5MDzHKrVmgNA0ajeaGJpcQWgQLGYB6VArd4IpS/O14XTtdR6RI0z4w4xXSd6PJC2fgrVXoLUyt+51fFUBEOKTR5xXgoiy0uDR6KQck0yO3ADk82y52A4Wa4clt5PjF1ZYr8ZXrarXKap4SuFp6jwXJ4pw+txkxKBgyUiVG+d2I5j9gFLfOzEEsyyzs1iv/tuGQh6HkRPUNu88twh+Zjilwt/4SxFMdjHsC24QB8uD1M7a5U8BHakxyV1rPmwc7KFRK+hDCGM7ESmRKfwOI2N5AcLk/fzT0zXzIu+EsDUrSAGkKKyWsAV83Vo982giiHU4T7bMxiJAjgpvhYv5nYTAFH/26RupBexXILnKVIkCkGIqSXr8rVMoXQqjffefQfj42Pqeh3zuHbtOrZv34ZCoYhqdQWVSgVDQ0P4/vuzyGTSGBsdxY3rN5HP55DJZJBRI1gopeAFAaViUV80lhACnlf2DlfWTgEAClGU0G61wXEc8oUCDh06iMGhAfT39yGdTmNqagr37zewY/t2FAqF9Qshi9Hn2pas2pox1i042ekBZc9z83kYindtFE9F+haFLJdR7V9qPjcOqJmJmuUZ8rvuY2zI51KrsZYgCVaiWCNSolMguRGn+cRtr6dM/WZ4zdFsjUFPoHZ/vfSEkhicI5aKwBLiLdj85nDNOitRENUbQqx3ocsoIhRPQhTGbyFM6nxwGUGhTz7isSl8kqRLUst6OD0aF4PTIx+xtL+xOsR/RB4ngGJvooPJAMNxcTrB3yr9iWI2NaboEZsMNoBiWmRW/7XLMPiYhsROSXXWXsQB9Y+bvJ+WzfIOHIkCGEhlqEcvElNEIkChmEelUkahkEetXke9XgchBK1WC7Ikg+c57Nq5AwsLCxgZGUFfXx8mt03i0aPH+Orrb3D79l2Mj48in8vpDZ6ZclkFZLl79x6azRYAgnwuh7GxUbTFNlLqArM8x+P6jZtYqVZR6algbW0NjUaAaAxmnVScyGx4I8kLSQRIZ1JICQIajSZkSVZBJ/YWUDzPoVxWwKJ6Xdl6L23evYiY/nxVx/eQEotiYgU+AMACDJkqLEW4jjMbhfFlc7qF0VkLWQGsskzMZjkR5HnKDUnu3RitNxKnXBg9HeqZimUNW67ugggFxJAZp3xPDtebMeixO2xD9bC4g1V+Tw77zUhNVXib7JyeprBu+DJtEpPMbbubX12a2QBJQxgRkduv/NfDJpcknesNZlK4J8wszCzUW3XHevTwBqeAzh5VmxPcU4QUS4w/m6xIk+Icz5hTbmgfWJgoWBL8WmHLbjqggL4OivZHTTvwENM99ZhqcsNFoGg8ocnVUUYOA48pGI+AW6LOXiNO7s0IFBNtgCvYTwuYV36MFApE6WYqFPI4eGA/igVlK11CCLZOTODEieOo1dYwNDSIXbt2AgB27NiOV189jsOHDiKTSePY0cM4evQIFuYXMD4+htdfP4m+vj7s27cPhXweqVQKu3btxMjIMPoHBnD0yGE0m00UCnkcOLAP5XIJ77//DkZHRzE7N4dKpYL+/n4cOXwImYwy5efNN9+wrADtSnpD634zFB4VE3hVLhdRKhcwP7eERrOFYimPycktSKetW5HxPI+x8WH09JYhSRLmZxfB8xxKpbwzU+v8JdQadGD/oqTNd1WiX6ia3itQwRKRQhnXo9ho4XeRFEKBMymDOYLBgeTGQvbwn5hIL/qYBRPHQWhWV4vsIVAR5Qen8Ho8OfwzFo+eDZK0SS84hRgRdmX30qWqdzYwf74o2tMezzszDurK1sqlkxQJQNHIgymSDxxMzi9jXsEvCsBBlF4iAQhnbFmsPTz6Vsfm9VHM+JLKp6c36/EAUCJTgPdtYF8GShhX7fwxtEQRaQPbnfXr83cBhcgaoQHnWXz+m/moOiIzVXoFbN+b9Z3+omVBlmXLdBPtmiRJ+q442vbDsiwb8xht6bQtj2WZOtKDALIkQ6YyBJ5XdnJR00iSBFmWIfACCKfYIEkyAKpPA/KdykOV/Ny8vIa1quS8iZBujKmey7KM27ce4ubN+9i3fzt27JyALEl4+mQWj59Mo15rIK1ucbx1cgsy2TSmn83j/LnrGBruw9FjeyGkbLPHQoEBMWSEWlUqVYSq/1N1vROi/lIdRJGpmkZWGxPZlF42QBetM0EpI2sBzbeG6CcBomhXTd+JkgBRYpFputpB8XsP7KMLTgLssJa/lVIpAl7gIIky2m0fhC+CfLa55otMruAcgRGWDvUE0hcqEQAgneEgpDhwPEGrKaPVkNwlmB+xYNnpyDY/CXaAztOkSEzuRAiQynDgOAKxTSG25fBCkiBbfnieIJXhAAo0mxKoDMvHe33raR+RmSwPwgHtpgxJCuswLyfHMLgw5yegVF7gkEpzkCWKVtPeJwngEB9F0XJFkM4oz6IoyhDbNHCGourTfxLKT1DmpOR3VLtc+rWdAyhJyHUvRD3ggpiabxVAAVG/OlsiTKgFTCEACKdGT3AakGKNPDGvq+IAVBiZ6ygSw7WOkvAgV6C62WkcCsGugwX09KdikfdC0jq7xNyNYd998UimQN8W9kwLO70Qu/NowIR5+2ANSOE4TgdCzACGOa0zHQAQcLyRXlvbA1Th5aHwEy2WhwICLwC8Wt3UhpETeLUhDljZ1Brr1fUK1Zf1/bwdUAwhGB0fwrNns7j9w0NksxmMjg1iYnIEI6MDENsSeJ5DKi2AgGBhfhnXr90Fz3PYOjkKQWBUtciDi3jIql5prrXuPTX9gdq2O9YKiAKUKMfEDTjR38oIlFf2K52yE4WQRx1XqV8iX7lOmSYhEcqWzaL1PKKDKZ6m6PsWhhfsKld3RXjHurUSBMCr7wxgfGcB92+u4swXcwi5+blDvsN+kziOA/qHM5BlYGG2qQwoI+hwveEw2c7lX4F8OewJPAvLIyEBRrcW8MrbA+jpT4MQgunHNfz5N08hiTJbjfm5ZxoXhIK9M3IFHv1DGcw8bTgGuSwf+UonHn4M22eigJDi8PbHWzA8nsO1c4u48O28P18YYo2JWOcs203XRrcV8NZPR7C22sZffvMEa6uiJQnrFd47kEEqzWF2qgEqU6QzPD7+5wkUSgJOfz6LO9eWQ2bEZlQUCggiBNWyc38Zr7w1gJmndfzlX5+Gt8MxKIxCVi5eIHjzp8MYHs/hh8vLOPv1fAIAgYvhDGHRS4wwD2OX/zyAJw5Gp5TOwJNgkphbGWvXCFUBEQUhMc9iUqbpUBU4MXj13XlgAlDM04Ls/UTEAB54shP/JKHkhUq0jnJeMNpAt8T0JL6Q9EKAKG4UFLiwpjMPqwP09R3XzS/FCI2Vjxrz/fXEHwghKBRyOHBwJ65c+gGXL93CyvIqxsaHUSrlkU6nQGWKWq2Bqak53LvzGJIs48DBHejvr3j7bT0yYtdBnb+Wj8aW+9SMm/h+UNfvhx8XbgBFN8qXMyI4E5IlsNwkXB9IboQFbFmULwnIFwUUSoJH4xROjxtH33AGP/lPY5BEir/8y1PMTTcj2RxacfhE0Tk8UTDjRqU3jbc+HkaxkoIsA62GhFZTDlymujRPEMnPJvf0b/9sC7ZszeP21WV886fpSIt4s8xgUei4CqK8O7J5HvmigEyODzTI17PgBoow9HgCaC4DXzNPOs0hX1LXNOP9hzE9/Rn85B/Hkcnx+Ou/PcGTe2sgBCiUUsgXeWRz2hcWr0KNoTPKApHi0kIIMlnFL7ligO4iA3dIpN0lQLEsIFfgkS3w3mmjaQgsJJbhRNLyGTK7sitiPVh31awIFK1faNm2GNQCrpin7RBCTAKpIZ8YvwqZPjiZfpONvogge10BlE3apOeLXmgQJQ7a0JeNQ7m1R7nuthGgf6AHL72yH7duPsCdO4/x6NEUSqU8Mpk02m0Jq6s11OsN9PaUsXvvJAaHevUIn85Ua7h9xBwznGUGRKgSVmJN7/H1ndoOqPqqpda7gezwSqpIc4EWQiAOzqQuo4qA8vzl2iJdOo5KIaafaFEpnmaYgdQIO/YwzTG7WB/ldR6VYul0OUbnMQAPRJnaIAiKXHNEXjAkgG2ug4OVQU8nhtdn4QzVzzPq29i2AoqVFFoNGd/8aRozT+sQReo6VYOlxpELL1tCFiEvEAgpAkEwD9pZlBy44k1mvcGGCNrjYh5XuQWTdGKbO4+/NI4nEFIcBIGAc/1gYxshdUp+amLRRBhHgZIzL4ezp3NEKHr+gwMnselJUkdSspPYwtgHQIkk18HklOL7CiImAAVK66UAIVQHWYzFZGFCUtSIFGjXrAr1yTREkUl1sKXDpzcAe/xwR4ywz7oASc8ZbaArYnwaX1jaBFECUHcBKaFux2wKAeEIKj0lHD22F1tmFjA7s4CVlVXU6k3wHIdKpYCdO8cxPDKAfD7bHc9bgDG3NkdUWQfFiDzRGR2RK8agOFKU/oaFRawXacaov7EAKWETRGSJKXIkmvIIMgFbGFXnQMrcVBOf/h9PQCkwN9VgJ4oDsGElgFui6A5kcQaRxhGg3KvMjZ2faeD+rSpkubNCDFYHgyRS0nz16RTKPSll2lVg567vmyMOrnV9lXgimIrfFuea+NN/ewxOIJifZu28F8Fir2LxwBR8YIeQikJQNJzDR5gHdwAfhNPn4rnEKpu34GhlGVpNRJkJOcUHQElCHauuGECJ8Y9xDEu0iQaMWAEU033AssCsSYzVEKBzACVE5U8CQImVuqb/ukk/agAlRD2MDKJ49nVjZVpveh6MjDh6RHg2pihCkMmmMT4xjC2jg5AkSVlgFwQcz4HnOXWlctNaIrHZFmNGqPK1gLUQrI6VUGo61g6swIDyY25cApRPhBefb0RKKFkeVyO4mJ0dRsc0FtDDJJe5GI2/TPiZEgFICS4XvimzeR65PI9UmkOzKaO+Jnrq5gWCYllAJsdBloBWU8bqShsyI1pCSHEolASksxyoDLRaMtZW2pBEa9pmQ1YARWLKnNpJLKhTMzgeaNZlrFVFZHM8hDRBfU1CqyGBFwgKJWWBuLVqG+kMj2yORzrLoVmXsFYV0W7JnniJErafAi8QVJfbyGR5ZHI80hkOzbqM2pqoL/Cq+bdQEiCkCBprEoQUh1yBBwEwN93Qi5QXCIqlFNI51QdNGbVVEe22rBdLNqdMQSlV1EXuCEG5Nw2ZUqwutyFLukrkiwJyeR58iqBRV8rLYpduHkGxnEI6qyzW2ahJqNdENOvGIrU6/MgpU0MyGQ7pLI9mXUKjLqFmqwtUpvr6HXbieLVeZHlwHEGzIaG+JqLZMK2aCiCd5ZAvCBDbik8LxZRSvhzQbEioLmt1yfxMU6TSnGJjjgeVKZpNpS5ZFo8N0T5p8kRRKY9iOaXYzhM0aiJWl9uQJKrW4RRyeR6SRNGsS0p9ZwBchFPqRDbLQ0hxaNQlNGoiGnVn+eh+44BSTxpZdfpRsyZhtaqVuZIhQghaLQmkbX44/PNXLAnI5Hm0WzJaDRmr1bZlEVsvGRynlmeGh5Dm9Dphbx+yeQHZHI9WU0KzIVnLqK7pdCrKZDnkioqvmg1FtuPVxiBBUOo1pUB1qWVpOnMFpa1p1CS9ngNK3dSerbWqqCwOq+rI5njkC7xS7xsKX31Ncm0xM1keuQKPTJZHsymhUZPRqHm1mVZnK22V8pzwPNBoyKivimg2ZQtHviggleZQr4kgIMgWeGSzPFpNGXWtTtnynslyiu0UyBWV9O2WrD7LEtOiTE5p/zNZDu02RauptLHUFcAlViEeOQ5NAcCTSLKJ68m6yKWMVARK9868DTEBtCVQlP6GCThR0hjXlETUCqDYmgVi7lvENSb1lRMBoklCZsc6f2S06Y+up81IlOeWnMPLCGPUziwgBALPQ+C95yQD62+bp3LTuJvarlHjwNIRpLoQJ6hCzUKsr2MXA7wvryfFaUIgWbEBKbYEiAZ6xA2kBNKjX2A8wwQYGs3h1Xf70TOQAccDkkgx87SBvMvc/1JZwJHX+jC5p4BUmgOlCihw+8oKrny/iEZNG+0DfYMZHD3Zh9HJPISUUlfbLYrH99Zw8dsFLC+0AADl3hR+8T9OoN2S8e//8yOsVpUBCc8R7D5cxuFXe5EvCSBE0XX/ZhWVvgz6hzP4/m9zuHFhCX1DGXzwq1HIMsWtS8vYvreEcl8aHAfIEsWju2s48/kcqitttr+IAvh89I+jKFVSuPTdArbvK6Hcm1b80qaYflLHqc9msDTfBkCRTnN4/xdb0DuUwZN7a+gdyKDUk0KtKuJf/r/30W7JqPSlcez1fkzsVPwF1V9PH6zh7JdzWFlqgwLYe7SCoyf7wavTmobHc/j7/9sk6jUJf/yvj7E034IgEOx7qQf7j/WgWEmBEEBsU8w+reP057OYn23qEWvpLI8jJ/qw+1AF2TwPQgBZppifbuLy6QU8+GFVr2+pFIf9L/di/9EKCmVFLpWB5YUWLp9ZwO1rK5BlpVV6++dbMDyWw7Xzizjz+axeZXMFAcdO9mPH/hKyeaXuiG0Zc88aOPO3WXUxVCXtzv1lnHhvCHNTDUw9rmHPoQpyRaN8b15cwvlv5tFuyXoh9fRlcPydQYxvL+g+EtsUj++t4uyXc1iab8LeC/TuExKMbSvgvV+MorrUxqO7q9h9uKLsdkOU3W5+uLKMq+cWcexkP7bvLUFQy6/ZkHDj4hIufDMPUTQGvpkcj8PH+7D7cAW5gpIfSaRYmGng+y/n8OxRTR2YGpZxPMGR1/qxdWdRWcMFQLOuyL90ah7tluLgUiWFn/13E8hkefzxvz3C1KO6e84I0D+cxctvDmB0Mg9eIKAyUFsTcfn0Am5dXka7LXu2SZkMj0PHe7HvWI9enrIMLM01cfG7edy7pdQfQgiOnOjD/pd68OxhDStLLezcX0E6q0z3qq+JuHxmEdfPLUI2YV29A2m8+t4gtkwo9smSsqj0mu35tJaYQpW+ND75z1shiTL+8L8/xuKcsoYS4QhOvDeIyd1F3LiwhO//NqcDXf1DWXz8z2OQJIrf/5dHWJpvg+OA8R0FHD3Zj/6hDAinPCMri22c+2oej+6uOYCySm8a7/9qCwa3ZFW7KRbnWjj9+SxmnjQYawQRy2Euz+PY633Yvrek+0iWKGafNXHxuwU8e1jTkx9/dwATOwq4f6uKYjll0bkw28LZL+cx/biu6iQ4/m4/JncVcftqFaWeFIbGshAEAll9ls9+OY+nD2rG9wui5P/wiV70DWXAcUqT0KxLuHO9iitnlixAlM4U4JtN95KzjYinT+KeawpqhQBsgIc1KoWCgGNEm6hAiba1sU2tkUQTrk0Bog7Tkp6+Er/0JCR2dy1dd9p0x8ZRCN93vFhF50jxJvmSpYW23/C47c4SH/koj9u2UPJMFOilTI2ERrda1ahf12bFapE2hk2U2ssjgLUhMkMsRy6MAeWxJdiuRnB2YLkhyd0U051Y5WoJwgsltj9vxdZUfUMZvP3zIfQNZ0ApxeqyEq0xPJ5DpT/tEJHL83jjp0PYdagEjiNYmmuhutRGKs3h4Cs9eOWtfnVNE4JcjscbPxnC1l0FUArMTzexNN8CLxBs31vEGz8Z0geNhBDwgvJndsHuQ2WceG8AhbIStVBdagMU2H24guHxLIQUAa/qU3brUr7wHnu9H8VKCiuLLaxVRRCOYHJ3EYdP9OpTxln+IgRIZ3nwAsGxN/tR6kmhviaiviaBEwhGt+XxzidbUCjxAAgIpwycBUGRX+pJQRKpEmECoFhJ4d2/24Id+0vgeIKVxRaWF9vgUwTb9pbw4T+ModSrfB1fXWmjutzSI3S0/K4uK1E7HAccPdmP428PoFhJYW1FxMJME5RSbJnM4/1fjaLco8jieQ4vvd6Pw6/2IZvjsbLYwtxUA2KbYnBLFm9+PIItW3N6vve/1IPjbw2gUE5hbaWNWXXnnZ6BNE5+OITJXUXdV0KKU9fm4PSKkcpwePOnwzjwSg8yWR6ry20sqtN9Rrbm8eGvxzA8augTBA5CimB4PIejryl1Zmm+hWZdQjrD4dCrfZjcXdTT9w9l8NGvxzC5uwhJpJh+XMf8dBMcB2zbU8IbHw0jk+X1esqu/M4nheOUdUZ6BtI4dLwPBMDKYgutpoxUhsO+Yz34+X+/FbsOVtBuK4PlZlNGJsfj0PE+bNtb0uXxAocT7w3h6Ml+5AoCaqsiFmabkCSKwdEcPvjVKCa2F0wjJuU3XxSw+1AFIMpAt9WUkc3zOHqyH8de79eTc0SJwBBS5jVRbEMBNWu9Axm8/8stmNhZUAbcM02sVUXkiwJOvDeIAy/1WAZu9r9UisNrHwzi6Ov9SGc4LM62MPWojnZTQt9QBic/HMbgSAbawC6VVurE+I4C9h/rhSTJWF5oQWzLyBeV53FwS1Y3M18U8M4nWzC+vQDCEaxVRTTqIvoG05Zyd2vbWg1ly+9MjsfoZF6/XiwLGB7PQUhxmNhZRDrD6dzjO/JIpTm0GrIekTGxs4C3fjaCgZEMmg0J89NNNBsyevqVxZ23bM05BqvD4zkMjWZRXxOxuiyCQtlZ7J1PRtAzkDYldr4rslkO7/7dCPYeqYAXCOanm5h92oAkUQyPZ3Hyw0GUerRINKO8dx0oY2g0h2ZDiRABAQZGlLa7dyCtK0hnlLZrz5EyRiZyaDdlrK6IoJSidyCNtz4ewtCoUQ79I1m8/tEgBkYyaDVlzD5rYm1FRCbH48DLPTh2slfdCIGRH8fAPHp/Sc+wz/svknyiyg72Vg8h08zEbnUArW9n6k2p7x9tUo1lJx0C68YT5kNizoqSWEtvB2H0OGJG+EsSWxibE4SWH8D5HdWrTepq8n4qN8lOsUSiGA1Q0kwbT91ndgSLNiQTAZWa33RxkTlGXvuhxonbVB4tGbWGpJhYg20y65vzuMsjqfKNs6p1kY3+MokpIiW5h4dwBHuPVpAvCWjUJXz351lMPW6AI8CeI2Ucfq1XX+xVM2vf0QqGx3No1mWc/mwWj+/VQDhlEH741V5M7inih6tVzDxpYHxnEX2DGUgixVd/mMazhzUQjmDXwRKOvz2AwdEs+oczeHq/ZjNMyXW2wGPv0Qo4XhlsfPeXGSwvtpFOczj+zgC27S3a2XSqrYr48g9TWJhRQJsT7w9i+94iRifzSKU4I8LBg+prIr7+dBqzzxrgeIKDr/Tg4Cu96B/OYGJXETfOL1vSSxLF1e8Xcef6CmqrEiSJ4tBxJX2zLuPMF7N48EMVAMHY9jxe/2gYPf1pHHylF9/9ZQb3bq7iyf0a3vhoCNv2ljDzpIHPfvsUFIDYkjE0lsO+l3rA8QTXzi3h4nfzEEUFFHn3ky0o96aw+1AFZ7+cQybHY+eBMggHXD+3hHPfzEGWKPoGs3j370ZQrKSwfW8ZTx/WkM3x2LFPSXvvZhXf/XkGbVFGqZzCe78cRe9AGnuPVvDo7hok0eY3ovTZdx0oY2JnEZJEcfn0Aq6cWQSlFAPDWbz58TDKvWkce2MAf/6XJ5apN4QATx/U8PWfptCoKdNAPvz1KCp9aezYV8btqysgBNh1oIJKfxqry218/u9PsTDbAiHAniMVnHh3CCMTeZR6UmhORd/V6c71FXz/xSzabRnlnjQ++PtRlHvTKJYJ7t+q4tRfZ9BqyiiUU/jwV6Oo9KexfW8J925WIYkUW3cWsfNAGTIFbl5cwrmvFZ+Xe1N46+Mt6B/O4KU3BzD9tI5mXYb5uX50ZxWnPptBoyYhl+fx2gfDmNhZwM79Fdy8tIyVRffoDDulBA4vvdGPcm8aK0ttfP2HKcxNN5BKc3j13UHsPFDG/pd7cfdGFasuUR+DW7LYvrcMWaY499Ucbl5chixT9PSn8eGvx1AoCdi2p4y5qVkH7+2rKzj75SxEkaJ/OIP3fzmKbJ7H+I4ipp82lPI8WEbfUAZim+L8N3O4dWkZhBCM7yjg9Y+GkM54R5vWVkXMTjWwray0MRyvRGf09GWU3cQAFMoCKv1pNB43QDglEgUAntxfg9iSkSvwOPZGPzJZDk8f1HDqr7NYWxWRLwh462fDGBrN4vCrvWrEj9G6tJoyzn45h3s3V0EAjG7L4/WPhlAoCdh7pILv/jrrOndj294ShsdykCSKb/40g4d31gAKjEzk8O4nIyj3pDC5q4gr3y8a7ISgLcr4/vM53L+1Cgpgx74iXnl7APmigD1HKjj9+awlykeWKM59NY+7N1ZBZYqJnQUcf2cA2TyPPYcrmJ9SwL1dB0vIFQSsLLXx2b8+w1pVBC8QvPxmP3YdKmFiZwFXzi5hbcV9Kpo5i91JMVqnvY4twWTu8u1vb/tuPAZeYrzvtUgSM9aq78CjX6MmcAv6O9NikeNC0gBKvPUg8PT8LqQ4dqwLTHE5PYLJel32uBJd7XNS9uGz3BFtTudxJevwuCteSnGO35IAKzwVhVTpk9dQu/UEKDyq/au9kG3gCTUSqReo/uP4wsBUG0/hOWuli8wQznYmtV2JUPn9kWwaGZSBK5vWM2EgYwHlusrWelARi9BVvqnjl8vzejTCnatVPLpT0+vg1bNLGJ3MY3g8p7MJKQ7b9hZBCHD/ZlXp0KtZv3p2CZO7C+gdyGB0Mo+Zpw1kMsrEblGkWFlsqdMSZNy+WkWlL61PbXGQeq23P4OegTQkkeLq90uYm2qCQhnEXPxuAUOjWeRLpleKmjdZBi58O4+pxw01Nh24e30F2/YUlTUiKikszloH26z+8I0Ly3hyv6abeOnUIkYm8hgazWHb7hJuXFi2dEof/rCKC98u6JEkuQKvf1W/f6uK29dW9DUG7t9cRe+AMtVpcmcR188vYXm+hXZLhiRr+aCW6SxbdxaRyXJYnG3i0ql51NVpU88e1nDr0hKOvt6vT40gBOAFZarV8mJLWZOEAjNP67h4agGjW/NYXmiBI0oEj5BSokpWFlto1JU1pxbnlGk/4zsKytdvl8rICwS7D1bAccCzB3VcOrWgAyXPHtVw/pt5vP2zEQyP5TA8lsWTBwZoVl+TcOZvs1hZUgbz7YUm7t6o4qU3+pHOcuB5AlmmmHlax7WzBHNTdcw8NdaauXu9imOvDyCT5TAwnMWcDUQJ+visrog4/fkM6mqEwtx0Aw/vrOLQ8T406xLOfTWH1RVlillrtomnD2qo9KeVqV4cgUwodh+qQBA4zE838P2Xs2g1FB/MTTXx/d9m8dE/jKFvMIPx7UXcub4CrbI16hIufjev+6DVknHxu3kMjWZRKAkYGs0p9+yDIuJs9wgU8GBsewFUBq59v4hnjxR/t1syLnw7j4mdReSLAobHcq4gSm1VxI0LS2i3Zdy6vKxssQ1gbrqJuWcNFMslDGzJOmZ2LM42ceZvs/qUvunHdSzONTE6WUBPf1ppRwQOO/eXQIhSd6+dW9LXUrp7o4q+wQwOn+jzLC+tTmzbXcTweA7pDI9GTcK2PcrzJonKttETO4qYftJAoSig0peGLCnlIVNgeCyHnv4MWg2lPdGmFq60WrhyZhHv/XILegcy6OlLY9kEYk09quOHyyv6NJ/7t1YxPJbDvmMVjEzkkMkq6yexXkpL8y3cuLCE2pqEh7fX9Odk+kkd87NNDI9lUVYj0wDjNXDn6gp+uLqirxN06/IKBrdksWN/CePb87h0iresd/L0QQ23rqxAbCsfXu5er2JgJIO9RysY25aHkOYg1SU9eqtVl7C6IkJsy2i3gGvnl8EJBLJIwXGMimaijvuqAaJPosl15+7IZuJ6YrlijhoGDADFbBuFGp5vXuNEA1CIFUCxRp2onUYtGsUkl2jKbP2ppCNQ4pfZoc0BZSY11qrV62iLwcHvDaOEB5vhxHfFyHd9iShTp/u2DAZKHhxEsSyGZDrepPUlz4FnxFFptxZlCNvYKDlDAGUc6qCJxmO+61LXCVEX03WI9bQyztm+TiAl6cJU5ceiJk5ZDDEdyI37EQsqotSTQjrNQZaBJ/frFhBPkuCI1ihVUvraCI26hPEdBUMHgb5QY0+fMgh49qgGsd2LTJbD25+M4O61KmafNbCy2MK3f5p1z5jaqS6UBHAcwdqKiMf31ixJWi0ZbZH9rEkiVQa8+vNFIbYoqEzB8UQN8fenZsO6sGS7JePejSoGt2SRyXJIpawv/OqydbHcnr60Mkihytd5anInpcq6MPtfUtabyBcELM+3XG0RBA4jKqDVblEMjuQsBZtK88pCkgUeuYKAVkPCwkwDw+M5HHu9H5W+NB7eWUV1sY1bl5Zx8+KyLru2JmJhpoFKXwr7jvWiUErh/s0qlhdbuHNtBbevGmlZfRxB4FBUpyDcu1m1LvIK4Mm9NayutFHuTSObt3YBGnURNdMitZRCHYArW17zKQKpSXHvVhX3b1VR7k1jfHsBlf40Cuqim7y6JXYqzYXrg5nSSqLsWPi1qgE7LVkHODRaW23reQeUdU20we/9W1W0m9aFbmee1rEw28TgliwKRcGiXmzJxjpCKs1ONbCy1MbQqIBiWVDTmgympjNi/e0dyCCV5iBJFLJMMbnLiNhKpTm0mzLSGQ6VPm0aiPM5XF5Q1vjI5nj0DWZQKqdQ7k1DSBGVDxB4p7MbdTUvJgxYA6bSacVXhFPWzwGAh7dXLYtRU5mi7rlAq0FP7q5BemsA+ZKAvOrT/uGsumbSKnYdKmNoLIdMRlkUuFhJoVmXlIg4KFMZeZ6g3pKRy/PYutPwU6mSgiTKysLDZcECojTqkiXqg8oKGLTnSAWZHI9CSUCzbjzLmocJgKnHdUw/riNXFDC4JYtSTwqlSgpCiqBQVKejcdZy1vxq9pMsAY/u1LB9r7L+EMdbh4atpgxqWqOXUuDOtVXsOVIBnyLI5pSFo5/cW1PA76EM3v/VCO5er2JpvoWVxTa++v2MkQET2XsASVEk2Y4ozpjkWriD5d5c7hZOFegg5htmsMR0zwqgmIAY2048MMmFDrKYTYwTQOnmTnx4SiInlAKSJKHdbm+MpxJ8MOMVbYcc1zGkI2kKkw0aPHG4SBT9a6yzGppVBq6k4UagG0TOBipSXuMk5ohROzJuhiqHTjMSyClG1zNwWKCPbcSWd6tckx8sMijjSJFAQfWv+ZQS2+KyRnpHlIoPma1k5t3+zAaMIDGAFOdV1mkwG1lytS8tcci13TF3MiLKjEuum3zrTXOnOtqDw3JfriCAFziIbVkZ+Np28rFXkUJZAM8TEEJw7I1+V13aQHlxro0rp5ew76UK+gbT6Ht3AJKorJXw+F4Nty6tYK3q/qVGWxtAkmSIIrvmWU7sBpt6rcrz5arKlewim2p0QTrLI5sXrINlGxXKKRCOQJKo/iXfLHF1uY12S0Y6I+iRIG7EccoOIoQo64gMj48x06UzHLI5DmsrbZz7ag4nPxhCz2AGB15WFghdW2lj5mkD184vYvaZstArlYHLpxdQKKcwMJzBroNl7DpQxtqqiNmnddy8tIxnD2vql3fnyz5XFMCrA79FBhDUqEtot6i+2xCru+DWhdCKNZXmcPgerWrlAAEAAElEQVREH3YdrKBYVuoXVYFozsN1xqAiIFkeNepxz3orlxd0QGVpvmXgdyopO+MoYEKpJ6V83XdXDSpTHZCr9GWsA2t7Yhtpz40gcHjz4xFmGkopsgWtO8awhSjrhRx7vR/9Q1kQzuRvYktIbe2/27tFva7tfgQovvIm90FrvSZhcbaJgZEsxrfnMfusgXJvCiuLbVw+s4CtuwoYGM4gXxQwOJoFr66706hLIAT6Tj3FSgrv/2qUqV2WqcfUIsOedptClihSKQ7ZnAAQI1/mp4bjlHWe9h/rQaU/rbsvWD0mFlcszSvrIRGOIJXifF85raasAMkEKPeksLzQwqM7Ndy5toqtuwrYsjWHLVtzaDVlLM21cO/mKu7eWLWA6cT2G5lcok86kqtFX3g89NGAGfuB97PLum5Zs8R0wdhxBwaAwmnHBMois7ZOkIqyaNm0ZJf5guwgnoPJaH0eQ8n2TRxBZiC17hKTGLITApSKRZRQ9E+cJK0rHkE8zn6kFNAJ1H92uU6xT+fpajwkZkosr34F7ak4JIASOnHnspKaV8mSa7+iASqmsanhMQro2xdTJ499tE4iZMOXpWPXdO5bfy9GU+POEg3oCMzSgUu8H7V46zGVqdIJdzz/arffhlJQmapgBMWzh3V9uoL5GwKghPQTKAOQy2cW8fh+DaNbcxjfUUC5N4XewQz6hpRpP5//9pk6VcRJRlRH97yODVyf+s57brck55bNJrIvoutFFICs6qwutTE/3YDhdcP7raaMZl3ZxnnqcR2f/tfHGN1WwMTOAgaGs8gXBezYX8Lotjy++XQa92+vAhSYm2niT//nY4yM5zG5u6hETJRS2La3hLHtBZz66wx+uLLCbPPElqz7ggmQmOLNw62bbIw89h7pwdHX+kEpxYMfVvHg9iraTRlCiuDkh8PIZMOvWe+KubmmcBcktmVjFxcXNqIPnAIOatRErG3DvWzTOmSSRPH47iokJj8w+9R9d5/ewQze+Mkw8kUBi7Mt/HBlGWtVEbJMse9YD8a3m6LQAuZDI0t+WIXgDSnr1GrKmHpcx8CWLPqHsvqiqk/ur6G2KmLqUR3b9hYxvqOAkYk8KKV4dEeJfNF2nwIUkO/ZgxpTB6UU1WX/kHxtMOxY08xGY9sKePXdQQgCwexUA3euVdGoKaDOgVd6LIvvGv6wuUK9pgCvyglrq22WjZqRWvpmQ8J3f57Bnes5jG7NYXQyh0JZ2dVncDSLgeEMvvvrnF6H2DBql5A+1zluuTB9IGErsN8xnxvRI9q5KaXexGkACdHPrQvJmsqPwArKWOSu54hIyWWoOuGbOJka5tgdKWEi4V50G0cbaGZwKPIFJq0/GSLr0UCUH910nnVuDH9Mrg1CHbqfUDX6Q0dDVNIOqRZ9wnhyKIWNy5kkvEX+XBHy7MrScfV1Dg4ToQhq/FnWuyMTnOyWrVVFiKKyTa8+xcXD/KUFZbqKIBBcO7uEpw9NgzDdKcYwO53hwHEE1aUWrs42ce38kroTSRmHXu3FwEgG2/aWcNW0iKKZlhdaoJRCSBFkMpxjukWkTMPt5R0AsCHQF61s1mXU1yRlComL8MW5lvJ1Os0hl+exZLOl3JtGOsODynAd6GpEZWB1WUSlL4356Sa++N2Uo3lRU4JSbVcPZarWnesruHt9Rd+x5GV116G9R3vw5EENkkSRzijrpzy8vYqHd1bB8wRbJvI4/s4AetU1Ku7dXNV3HTJnuFGXILYpMjllx5Cpx9YBabEsIJPl1d2f2r5utlMmw2PH/hIIp6wl8+XvpyC2FaAom+MtU6j0QUWk/phRQGHZW01J/2I/MJzF/ZtVy/1cQUBOnXKyutK2Dnr1kZJBQppDOs2BUqpEtgQYJGs0P9MAqAJWnPli1jEVSScXkYQAY5N55IsCVldE/Pk3TxQgQX3GJ0zT+IwMWM+oyz0NcJJECmSUXZdmntRt3EyrnOZTZS2R/S/3YGAkqy/Y+uxhDaJI8exRDZO7i5jcXUQ2x6PdlLEw09R552eb2Ekpaqsivv7jtB7txtJjnrqk1zFTk5FVo2vqa5K+VhHL8q07CxBSBPNTTXz2b8+UtFSJGtq+r2Tl8kH5+gaVLZklUYlacnjIdiFf5MERQJSAlcU2CFGmNhJOAdSmH9Vx4Vugpz+NAy/3YMf+IrbuKuDO9aqyvlQnZJ+ez0rSmQZfKes5RCO2YwMaMP6lOkiiASPW3Xasu/BQWKNSbAAKAOsXN2LT22EmHDfi6iyGULtJm7RJnW9x/GOmxBoXP8Ge95UeayjbIndyo8kiiLDtWiDVrF6OEaGiASmWyBIbUQ1QMd9Xjw3c0GAMOzw33OOS/5BlQWBn6VwuO6mz8x22CJ22MoRFqBbE9Mtkt62kH1a2q92WidHR6rNZdnWpjVZDAuGgLxir6cnmOFO4v0KNmoSmCmTsOVIGz6vRKWpES7EsYGJnQd829q2fDuEf/qetOP7uAAhRFnxdXRFx48Iyamr0ibIlL/vpbNQkiCJFriBg666CxSHFkmCJPvBrosz3jWGy2cvaU2IMRorllMXPmQyPHftKIISgURNdIgSs9mvrQew9UtHX7gAAnle2RBZSBKsrbawstkw2ODMliVQZHAMYGsui0pfW/U4pVbaN3ldCTp1Ktf+lHvzT/2M7fvF/2Yp8QYBMlXVk7l5f0deXKZQFpNIEw2M5/NP/czt+9X/dinJvClRW1rd5dG8Nt6+tKHnP8SCMJUcIFIBncU4ZnG7fV1a3rVbfC4Rg664iCiUBraZzbZEgDwnHEz1fa1VRX3OFACj1pJFKa8+y++CM9eeV1k+G/R6lRN9uenJ3UV+jQ0uxZWsePX3KIsn2KSyZDK9PLdFoy3heLWNj/RW2Vc5ra1UR7bYMQSDYe6SiR11QWXmnDI5ksWUi79mEFEqCsitMU9afVRBl6+OiZqsHv1e7K8vQF3HdtqeElL5GEYHAEwwMZ3wlabdmnjbQasgoVgTkijxWl0XMq0DJ0/s1tJoSBkaUtUfWVkXMTRsLD68utyHLShs0vkPZhl1rz0CB8e0F9KrbvJu/FBbKgrIekmoazxNM7lHaz0ZNxNqKyKwrHEd00HVlua0v9gwA6Synb0+uk6l5KfWklJ3SVIGpFMHETqUM11ZEC5AIKOXHm+ZdcTzBroNlgCgRPK2WjEJJwE//eRS//r9v1RfklWVgYbaFW5eVRWn5FId8UfB9bjzJus2M83ZUuRYB3u/EaHab/nx6Eq7tib2bYXrdcCZmy3onMKIXiS7DumsPMckiFhutxkT2qy+j2r6H0eGbOLl+upvc+LU9J9TxQxen6g00ZqOogyxv7s4Tmgjs33Vi/84dRGAAxYnY1vVkKx9qrHOi3dPWTqFQFocF1X6tklxwFudut5GdnFQJJV3yncv3lpCE/apMs+gIapL0bKsp496NVRw52Yvte4uor4p48qCGVJrHjn1F9A6kLYZIIsWNC8s4/u4AxrYX8Oq7/coOEE0ZPYMZHHmtF+WeFM58MYcfLq9gdUXERIbD9r1FLM228Pi+sp3nxM4CcgVlnQFtQGnOo/ZumZ9pYvZJA1smczj6ej8ogMXZFgolAUde61UH6wj9MnLvqCkQimbL3qMVNGoSnj6oQUgRHHi5B+W+NCSJ4tblFV897baM6+cX8ep7Q5jcXcRaVVR2ZaHA9n0l7NxfBgA8vL2GtRXGlCZTG0Ipxd3rVew6WEG+KOCtn43gwjdzWFpoo1RJYeeBEnbsK+HJ/Ro+++1TzE83wacIypkUjr8ziCvfL6K+JqJvMIOR8TwAbU0WimZdAqXKGhHH3xnElTMLWFlSFoKd3KV8Ha+vSa7zdiWJ4tq5JQyP5zAwksXrHw7j6rlFtBoSRicLOHqyH4QAU49qmJtifNH26ViLbRnLiy0UygImdxUxN9XA6nIblb40Dp/o0wemRlTQegZua0Rx/cISxncUUOlN482PR3D51AJqqyKGxnJ4+a0BEA6Ye9pwTB1JZTic/HAI576aQ3W5jXJPCi+/OQBe4LA018Szh+ypJgCYA6a1FRF3rlWx71gF+471QmxT3L+lRMYMjeVw7PUB8ALB5799quyUxGhgFmYVQKjcm8Kx1/vw+F4NqTSHXQfL2DKh1B+e55Ta6QOm2EkUKW5dXsbgqBI9cuLdQdy5VgXHA1t3FTG5u8TgYgtst2RMP6lj254iCCFYnGkq02MArK2KWJhtYXQyD0qB2acNy6LHU49qmH1ax/B4DsffGUAqxWHqcR2ZLIex7QUcfKUHa1URf/nNM9TXlOeTEIKRiTxeeXsAd68rPp3cXcTYdsUn92+uOhZW1kiWqR5NN769gD2Hy5ifaSGX57HvWAU9antrXiNDK5qtuwuorynRYLJE1Sl5CvBz72YVjYY1+mVoLIdX3u7H7etViC0Zk3uUqBIAuHdDWfhYbMvKIsMDHI681otWU8b8dBPpDIdte5SImVZT1nelikRJT2sIID4ygOJyOWh0hyXrKhpi53MM7y1gCvQpOsTCb/QKrPJoPGNRHxlJ9iLXm35845VNet4pdhBFe/BCPQyRmNab1rFJCaoqbiAlznIIICvSNsWBbFNzTa1BmwZOYg5HMV5/FNoaE+pFO7BCAJjDuLXb5jd5yBBJ6sVkrgch5Fpf5y5zJ0K43JqcBEkUiJw5N49ATHcjyGWbpH0ZSggAimHB2dtXq+pCpVkcOtGLvccq4HhlZxRJ297SpOLOtSqGRrPYuruI3YfL2LqrCFmiyOQ4cOrCjXNTTVAK3Li4jOGJHPoG0zj+3gAOrfWAQpnawHHKVqMPfljVv7jpetRci21lTZWegTTyRR4nPxxEu6lMj+HUhS61r3Sh/GZmYVRX7VYqzeH4OwNo1CVwHHTQ5t6NKqYeMdaTsOUDVPHv0GgOk3tKOHi8F7sOlkEpkM3zIETZuebq2UVT8bE+IyoHS/MtXPhmHq+8M4CBkSze++Uomg0J6QyPVJqg3ZLVNR+UL/S3Li5j37Ee7DxQwti2PNptGdkcj1RamRp14+ISxLaMpYUWrp1dVLZb3l3EyEQerYay/Wk6y0FsU1w5s2CJALGb+vThGq6fX8KBl3uxY7+iT5IosjllmsPCbBPnvp5Xv5g7v0N5vYTabYpbl5YxNJpDqSeFt382okwrSyuDeFlSdl0qlCJ0L0J9RvV+xuamGrh8ZgFHT/ZjYkcBw2M5tFuKz4UUh+WFlrL1cUuGubJIEkWhnMK7f7cF7ZayIwwvELSaEi6dWUCjJgcyVLNOkigun55H72Aaw6MKALn3aA9AtMWJld1k9IgY4pTz9EEN89PKoq1HTvZj/0u9SruQUupZmueRyhDwAnGdBuNl6MPbqypgUsSeIxVs26tseZxKcxBFCk5DZnyyLUsU04/r6lbiBlik3Xt4exVbtuZAKfDorm2Hr6aMc1/N462fDaPUk8LJDwfRqEvgBQ6ZDAeZKtOFNAAFUCJHJVHGvqMV7FCn36TVrdynH9dx54Z1Gpedbl9ZwdZdBeSLAk68N4h2SwYvEHC80t6l0krkRyql+FXLPkcI9r/cg50HyqCUKpFhBJh71sQPV6rOdowo0YKTe5X2WWtvFqab+OHKitKtkIBLpxfx1sdDynP1yTAaNQk8T5DNK7t9Pbq9hnnbtuGBKAB4ErmHa0cd4pRtYe5ctgYymsESI5jU2NbYEmBqmt5j+VUFEjNYor//rABKPL51vxmq2QyQKInRThCpGwHcbChtcIad6n90JdBxljcjUZ53ihtIeY7JPmCmjjARbVCuft3Wt+Gx/dm5NKREGyWy1kkxv0RDOzveQgwNnIWU6w4ihFEchMXUGYlYgdmsEVCvQHLNCYx6EmYNqbWqiK8/ncHR1/vQP5xBOsOhsSJi+lEdkkQxsjWnTMFQxbVbFN/+eRazT5vYtq+IbE4Z8FWX2ph91sS1c0v64Ky61Mbnv53CwZcrGBrPqdv9UizNtfDsYQ03Ly6jpk53EUWKuammsV6CmumpR3V88e9TOHKyF8VyCjxPUF1uY+pRHTsPKNt7autFtFuyEq5Poe+Go/mt1ZQxN9WELFM0m6avth4g361Ly8jmeFT600hnOCzMNPHsYR2XTi2gpcqgMsXCbBOthoTVZecX23ZLxjd/msHcVBPb9hSRLfDgOILF2SYe3VnD9QtLyroIuh1UB6JWFtqWgqcUuHV5GdXlFg6+ovgjneXQqImYfdbG9XNLeHx/TdleUZRx9qs5LC+2sGN/GfkiD0EgqFVFLC20cPXsImaeNPQ8XD6zgOpyG3uOVFAoKbsF1WsSZp8pO/k8uVfTa/DCbBOEM7YABpRpAOe/mcfibBN7j/UgXxAgpAhWFtuYelzD1bNL+hQOQIls0ba7tk9FqNdEzD6rY2m+pawdQpVtgykF9r/cg2IpBYBica6JO9dX0D+cRf9QBq2mDEKIWiYt8AKH1ZW2RyETNGoSZp/VjbVazHasKXbUqqIDeFfuNVBbFXWcm1Lg6veLWJ5v4eDxXuQLAlIZDtXlNmafNXD1+0UszBoD0mZdwtyzBqrLbTy8vYr9L/UgXxTQbitTaK6eXcTD26t6erElY266gUyGR7sl6X6fm2ogm+dRXzXqdXVFxGf/9gz7X+rB2La8Ap6o9e7xPQXwWlsVLe2KuW+3VhXx5e+ncOQ1pV1IpTk0qhKmHtWxMNPEvmMVtBoycnkB1eU2VlfaSpnNOXfbWZ5vYfZZXZ/yBSjtyDd/nMbaShtbtuaRzfNoNmTMTzewMNPE9n0lz517zLZOPa5j6pGyRfuCTf/0kzqePaxDlp3TqACC6ScN/OU3z3Do1V70DaaRyfFot2RUF1u4c72KO9eqEEWq7+wDENy7UUWpR1l8NZvjUVOnCV38dsGY+uRi9cJsC1/8+zQOn+hFpU9rzyQ8/GENHA+MbS/oAKEoGuV590YVkkiV7dVzPJbnW1iYbeL8NwsWkEejZw/rqC62MTiWRTbHYWWxhcXZFi58s4AVUzv17GEdn/92GgdeqaCnP61vjT0/1VR257leDbRo7bqRzwAk0viE+RB0NtKxRJPAwJQsu/GY75tOlPTaouPaJwUrkAKo66RATWMGUyIbHZ21E4pTrXPHzHVSvEmelADU+XySW5ZDPLaE+m1poNLn/7rgosydPVLzYWKq9ArYvjfbFSsra26ioghxbRUgBEKhCMLzxg4RMeq6eWkNa6shF25kGkC9b4eWF5F8ZYXcs4eRmNpOdIlaxIh2TZ2+Y177RFvFnzKO9ek+NrmefZnwHwP9mSKUR6DS70iuy5VYZDLuRKyT/mw0suxA8iNEpqQzHLJ5Xl9w1o8IgFxR+crerEkKOOHClspwytocsrKQozZw9tMi8ATpLIf6moRcQdl9Y21FxMBIFj/5T6MgBPjy99NKREsIctObTnP4h/9pErkCj+/+PIsbl5aRMfulTX0kuBMhQL6obCtdW23rsgJJYiRKZ5UFa8W24lNnkSsXOJ6goOqt10R9XRumjRxRvoSnFXCmUXeWqQamuJlGAOTyPNJZHvU1UdlalWWalxAX4jigoIIoq1Ux1NaA60pEWWw0V1B80GzIvo+kVj8Ip4AYlnWyOuiScESJ0uF4oLYquU43YRsFZHPK+kPm9Wg8GULIBpRFkIslAbU1SY3S6UhqMKWMywJPkC8JoJSitipZFntmcfECQaGUQr0mem51ztJNCJAr8EilFKBPYrBzBHj/VyOY2FnExW8XcOHbBQjqGiWNmmjaNt2gD369BePb87h7rYpv/jwLjlPKvlGX9O3Z3SzL5nllAd62jPqqFB48STL6xMIc8/dsn8iW0LKJsvgjhRFZogMlPlEoxnUFJLGkM8k3wBSzkXFvZWy9GUr2BkWghJKo+nHXgSJ6+lO+yZ9r6roIFPerLzS5ZFmWgb4tafZNGyUaidLxR/kNKlMdMKEApTI4TpnbLbeamP/6K8yf+g5EEDDw5lvoO3ESROATsCJC5n0cvqERKf6f7vUEUez0xTP0sZZp/RPTF0vHgrKm9CwowndMHEvl76IvTlEpluiUzn0RSELsES+dUaspOyI4vIgCqFUlAJJv6nZTxnLT+WXZSw8hwOETvdi+r4jTn81h5mkDzYaMjLqGgJAiqK2KmJ8OH24eqOarN5oNmTEACV8ClIK5nXPUutJqyPo2015MshRsm1ZAiUpZW/FOa39T2E2jAGo1CTXTLiUO8/2EuFyTZXjnJcqDkQQPVbbOtewo5cNjqR/mz9gdmESgvGtWfcrU3ShlsdSGZVkWN00hjVNJFCmWFp32xd8dcwdQAECUqPtORgySRKouCB1EL7X4gFIF0AJhA5pueRfbckCdWnqKZS2izd0yUCgLYTdqEXZAA3wBlEhlyeybJ9FJd6+cUbTpKzMx2jgNKNFQFR04URfttmxnzDSImO6pSDQx+rGhaQPHsXGqDhWBskmb1G0Uoup2DqLoYRgxPjDa07yBz6Asy3j48BGmpqaxd+9u9Pb2ovbgAZ79+2/RnJ0FCEF7cRH5ia3IT0zoZsdnMo3mBtfecRc0aL4gTwgP2lt8l6++liAGW0ADtRzY7xEdUQkMnLjZGIDPSOrxKjPfCukmz9oUoYo4WWxXImKA5mMmkBLBB3b5nt0zZZQTTrBNPlOHvRcWQUegrJs7t3qicLpYRUehfKHuH8mg1JPCu78YwdJ8C9WlNvqGMqj0piDLwM2LK1hbFRGlNXR8yAtqnGagq+XhyVONXyJPtUGY4gENo6TxzV+UnvaLxhOCPbkxEQv1io8lHruZo+7QiuKzxXxKmJfj12sTFkBftMG3P1cs+SHekiLrcDA6JUV6vImNUYtC0a5rIIl+SKy77eggixqFAiO9sW6buZ5TaD3Z8Mb6JwgtNxDDxq2Boib8cVFXAmU/tkKIj9Zti+PnBZXVolBmZ+fwh0//iC+/+horK1WAUjTn59CurmgJ0V5eQmvBOs0pPpM7kNTNz0OAF0WoDGjRI7YRpvmV5vgsq/2qvNruPdYoFKpGoRiDUc0ySkPa2CGgEJfM5418u1FJDYBimD6YdPEE7BuFSe0rSmxTnP5sDvdurAIUGBjJYPu+Iiq9KTTqEi59t4Dr55dMUzpCPicuZJ5y52lguBs+9zrksHXSwzGF0hQr2YGsQMBWQHlJUlK22YswUrHGZpWL5gRYOie7x4Ir6rTO+SrqALjRolaDqTX6Dm4ssdSl9QJQkqr1HZRHKCYdQCH6bW2BWcIoCP06TIAAMSfRPk0pOz6aAZmObY2WJJLCH0FXsnuoK53dlUYlRzFnN77pPC6LJz6PxVOvN3Dq9BksLCwhn88hm8sChCA7MorM4DDqjx4CHIfsllFkh0cc/GZcOhLZRv4dyzNJsWEN/iyBE4c2xSdJsHBAfTtHc1JCHfIN7ITCOpuHMtO57RNpUaO/Qp1yHBSwEInjzDN0J0LgDnHLcaTydrIwhHRQj5xZtAmL8HDYO+lM9g52B7LrcZevJYgnWoKtx3QQMTLFTNWlNr750wyKZQG9Axlk8zwW51pYXWmjVlUX9XRkPHoFEEWKrz+dhpDiMD/d8PEp45prhEp08pIWKgAlVAMcWmNkcow9PO5FkWcmVpyC/ZrfeVK2dZI2nER7jkJoWh+WkJKjJ4nPtviAE40oBa6cWcKdq1UsM6Y76VJMgi6dWsTtq1WsrrR1cDk2vycxZYcpJAE9DianlM6AJRMmon4PM542Ck5DSEzgiXVHHuh5Ny9Cq4snav9U7SdofZ/QNvsyENO/cck0EsbdBoRdA+VHRRucX7b6H1shqBRjtuNdEyXELhTdSJRSSJKEa9ev49Gjxzh06AAeP36CQr4AAMiNj2Pif/gfsXzhPIggoPeV48gMDjrl2M5Dj/McMYjxAimAtdvmK7fjDHma4pEk2rxK/cu15aLpCxI1X4MOqmj/UMoARywDUMUu6wsjUIYi+C0EkBJAvrMoXXwc0lZnUhejIoIe7vJhdPQ6ACPYnOodi4/D6/HNMktmInq0BGrnMaK/JFGZ17+80PbXB7tR4SoAlSmePqj5pnMHw0Kp65hY6jxt08j+uAS22xNW8uHb+Hc1qy/jB448P90+Lx93Ck2FY4vHZ261uzPF8dvmDaCwHrGgNsw+a/jYYKW56SZgWyOKMlPGTx3rcfGbR5LgZDGO3dft1H7tOwglcE7FgQU/MaAKHVAx78ZDrBEp2ponpvs27KwTq2H1stbfDCE/QOLnpw19joldlBtmivNKHE/ZJsW/sOxzCqQoC4tSTE/P4OzZczh4YD/SmTRmZ+eQzWYAAJwgoHLwEEp79ynnKfMK0kZn1v6SDu2NuPzH7MMpF0N1oTvOUGfkZivrw7oDELCfmgEUcxdKO1cXktWBFIts6NftLzaiX4vXOUbePUosRLm4FyVDfohK4uyYxj9Isw4XXXLSgVo2qwakaO1a9Dx5mqbJ1347aAO89dhvdl5OgYbxTL2+XL7i7GI9mjwPgIKVYJ1s87vZUUNtzkdodGaTApGXr1lpAnZagxRlCJZ4ySMfPtUsfttsirQpNCFdHV2vKSc+j1YIk3xUe/exO9JjKRhrhsyAU0fyKWCEdXjnI7Rc9ZhAe5+aQRL1WPtHu6Ge2y8BYOzGQ00nJIKhsPnYTlYvkzAASqCCSaJfpnkmYAcUXiZ0/HR0D8XywCRNXWlUMpRQ1yf+NVGeQwBFo7W1Gr755juUy2UcPXoEtVod5XIJHMcZ2ywTAi6V0gEUYoka8RyShiBi+2WdBRTRWRJr4riLNpCNYayk+njahJUY85i1e9oY1fSrhaMYA3SN2/HjMD/ucnHKj7cwnXbH05A6pbh4KII69rvXJr+DbHiXpVr5IxV4EPnazc7LIZgeu77oegN37iyJ461vbr+BEgfjTta2oEyRmCML3KTAFMbXIdryIEUZgqUzCpCPgFlN1Dbnlw0/johkGxW5LFRrl99xfllzS1jJ4tLj8UaMRLrbzCPMGOTbxBHTBX0NFEL0nXj0qTsqi3WhWQJlIVmGRZbdeCLa6511UyISTnZg0DDedj/UZKZAeX/BaBNA6R5KIMuJbnH8vBClFO22iMtXrmBufg5/98nPkc/nsbK8AlEUce/+fRCi4E3ZTAZDQ0NIpYK7Th2CRSQrd2ey4pUSCwUyxZmIOg6swIl2QCzX7ZEiRL1uFaLP+nGxy6tNDDQFKYL7I7qpc7mxybRdjb0KxifQ2371twN1wcqSdAxIh6sznfuPJcFxjXkBtovJ2BI+UfK22TXYapnTFHPDY2eK3RqvtFHkdxuFsc1cMhFY/NRE6NytXxfYBBB4VQ2Xy+sybtqIauaToc6BGrtAd8AhFh8TxwH7dkIUqQgZTET/x3zNaNuI6cxAUGxgiv6eV0EX7dhHT+dkZCiw6BCO+xEOm33JdaFo0iHg1JWvvq406rmmZKbzAMwBgF8XbSNIm8bz9OlTXLx4CS+/9BJGR0chiiJkKmNqahr/8R+fol6vQxRFvPrqKxgcHHCR5gQ84qEOR2xgsZtfKi5JAsvqkAJkjwlOUNsJQ4Zz1x3bOXVjZYA21DA3tK3ORBHACe37igdjR6CHSwFHKHc2CwNIiShXI2ZkCrHdiVBf3YEUsx52nQsqXyPno0msv0BkQMVTjyMRcT5THegzX2MCAhZV9ovxgBUONbEkit82wji2D448zfJqlAI37EGERXmruSE/rPMgaYLyBLE1TH5CAiis34Cs6wI8OLQGuB3QoKBVMzg5RsW+SeLTbZMW0FWx6FsPoMYHDYglPwEBmki6tAeGaECIIYVoeSNmgMS4pwEn+oKyMF8z+V9dYMW8s08k8mTUZEeQ7ltPkmlJQsv17zxvCC0vr+DmrVtot9oghGB8YgxbJyY6t2eDUSvvp+1HQglndzMSBcDKygq++fYURoZHcPjwQfA8B0IEvP/eu2g2W1hZWcbnX3yJUqmIV4+/gpRlLRQ7xYP0Ocs9KQSxo1H3OpuhJGIBHtQ41H+NJSyUZWC1nXkAmHbooTpAYl6Kwrp2SpTvr2YgxSVzSbk+abkh5DuTJlOPk9CTlK+j6SGRgRSWHlednsZEz6wvp33sSzvTF8QOTx9oZE9gsc0tUXzEGoy6mhREiJnCN2oxZDUIYOOXJgqPC0ucPoihsxbLoDiwpoBQTQTsqDMKXzAsjljBm6S6Xw51pnY+SbDG8j5JsLYR/3oWL0jjYoL+mYhYpvI4d+ghNuyKmJ5J4yrV5cZFHYIz3UrJNDMdESvy5MmTp/j887+ht7cXKysr2Lu4G6NbtkCwzThICozapOeXAq+JEmfVsQHCG0bKNJ42zp2/iDt37qAttvDdqTM4d/4CRFFEf38fenoqePDgETKZND54/z309PRYkG42sSGQzsloaEPLC4SAh5QXdyF6yDPGLcR0QTmgAAg1vQmpYZwCnBA14ggGWKLJYEaiUOPHPooJ1aEk/o1uBD+SIEyR5NqZGQIilLlTku0KgafKoLJdn7qIsu3yXe+aO2IRKRC7+XNZDHpc3aLfICadnT/s9mJmSnQYF4grkh12mwIZzWRi2RifvWFN8n4mPAQFyUYURfG7oHPyyk8UH7jkMYr4eClIRsIblYz9Lk52LALq5GLZ1LEt9nbdRXdses0RiB5TdzrXY9KXhB4Hs1NSMvIJHFEo+noo5mRGuVqL2PSvmo4Ylx2PSiSbXW7GL9MsO/6WJVDf1kicVOMWmjQAZa1WQ7Op7JolSRIWFhYwPj6Gf/6nf8Srx19Gtbqq3KeAKIqoVlchy/onV2/qgvy6P3E/MlqHLEeKRCFYH1B+PahWq2FtbQ3bJifRbLZw6dJlVCpl7Nu7BwBw4cIF3L9/Hx9+9AFGRoYDACgaOb0Uj986kOLJqtzc8LLV3MsygvGBRgNQqIqE6AEkZnDEFEpiiTYxq6HWY00RdQAs4SkJn7Jldq4pqVrboREdsNquRJStsbmzq3c6dJe/nmTIV5/XcxmzXsc1/wsu1zq3xTdNILUb06ra+v46xV6//BRp9+xfJP3Og6SJwtMBBa0j60sRSpNVHvFriUYhbOvM1x45CiA41nIO0K+MRV/S+Vp3+cT9lgZOEONMOaT6PTMgY/9eYGnWiPM4kK2B3g3JUZzSA01TNysO3VisT8tZbzTw5z9/htXVVRw+dBBLy8u4fOkK9u7bjUKxgKHhYVy+cg1/+vNfsWfPbty5cxcLCwv4+Kc/wciW4cB6tKUiarUaavU60qkUCoUCBEFgjyMptTV7hr8JCNrtNpaXl1Eul5FOp3+UmEgoWif/hAJRQtnksTaKWd4GtzEoFkv48IP3ASiI5Bd/+xL1Wh0cx+PGjVu4eOkK3nj9NezYvi0EgKJRskPSSOOaAAaEkrsOPStq0WGgGhRQd7FTXormLYqV+1QFWAxWmI8tO/Jo911eE/YBAUumB/muZxKhMA2ZnokiyLWzMAo5kg+sRBlXPIwITOynzqQjomz/4jf3tKhbos71uLVDMUz3Yepz0818sDrTa77mACvsKRxq4wFSYmOyoBVBJJu7UMk1qm6Yhx+Zm0Dt3CyHWRydnCfFA3dMJ4hPNrbv6qbdw6r1YQlILoURQlG8/ifMw8T1BuxLxgucuEvrWA9xPelchyej0cjq65+A4V4zOGICS4xIFPO0HWvajmz25I8QIxKQoSvWQNlgW+2kRaHcvXMPDx48wNjYKP725VcQRRGvvfYqDh08CEEQsGP7NqR//lOcOnUGf/j0jxgbHUW90cD5Cxfx0cD7SKVS7jabLsuyjOvXb+Db705jZaWKdDqFvXt3443XT6JQKDjGkxTA0tIyHj1+jG2TW1EsFvH40WPU6g3s3LkdU1NT+I/ff4r33nsXe3bvYo5Hg1zZpHhp/dZEcZnTvw5jcE/ieQ65XBYA0Gy20Gw2kS/k8fTpU3x36jQOHTqIAwf2W7c5DkWBhqSxUGC5cRuQYCFS/R/1wASgKKqNKBRtcUoj2oQYa59Qk0AKfXqPJp/a5OpytBOvXmWc4LyWKKBc+2Ag+aEXw7jYFcczGGZLMN1JdAec9dJjTtS5nnD6tETJ1DxfqcwqmfwbJTAG54+6uTBox0HzsT5v0Sh4BhDesii58eIJCgh0R3czQk5YLAEAgZAsEYkFVwXnMF+LjbR2MoRp61U3wnsrgECGtNj1OBU69IQS4WuctRUm5msaCkLMvUQj8oSwpunY/iyDZGL5CWZ/PIk6ZtkkK9VqdZw7fwEjI8P4+KcfQRQlNFtNDPT3o9lsYnZmFtlsBtsmJzE4OIh6vY5yuYyLFy/h229P4dChA5iYGGcLt5XP4tIS/vrZ50il0nj77TcwPT2DM2fOoq+3Dy+/fAyiKKLZbIJSikwmA47jcO/effz1r5/j449/gsnJrTjz/TnMzc2hv78PlZ4KXn75JQwODqAttiG2RRBC0G6LSKUEZLNZgBC0Wm00mw1wHA9CCASBRzqdRrstotFsABTIZDJIp5W1PaONazdJo+RBlIBhihsBpJgrj7Y+yurqKniOw1dff4PR0S04/srLCvLYcUWz5rKzPLNeIHFQ4OEBmzVuYEYjK5Li/ABODbvNY0gDQKGWc6s0M1HLjcDZCQWkBNxhJwQ5uy0M+YEHcn6SfBD4EHXAaRJjEBnBbn+TzB0kU+FFrL/eQIpNTwfPSCAXx7Cjj12fp057J92SsPMGgVXbXCMezLa4qo4PcgxkWxAmO7MFEApjzUZ+jnCnKO+n9eLZWAoK7wRIkgxLRHLRFMLG+G2z2UC8bYpNv2WhWG+pseXdBThxTZaQno7yw2Ri9XTUf+275hAVDyHEtB4KAdGAFe0+NIiFITnKA+OZhjCOAlJAYCaJZzrU2ieh5EZg6pAIAQb6+3Dt+g2cOXMOr79+Aj09FczMzuIPf/gTnj17hnw+j/fffwcH9u9HIZ/HjZu3cPbsefT09rhvKsLIhizJaDZbGOjvx57du7F37x709/WhUqmg0Wjg9JmzuHjxIlqtFvbt24ddO3fgs8+/wMLCAj79458wMT6OGzdvod1u4/e//xQnXzuBs+fOo1gs4s6dVZw6dQbpdBpLS0sY6O/HL37xc2RzWfz1r1/ghx9uI5fNAQQ4eGA/XnvtBP72ty9x9dp1yDLFzp3b8dGH76NcLifr8I2gde4IdM3uPN3QBWy321hcXMLU1DS2bp3AW2++gVwuGyNSFyeQEhPFaUTMGXLAJrYxqFvUiHULY1OUijZ9h1IDzDCFqSgftIkOvITCBUIBKRtc7mYDItidhP1smbariTnOBNjEDqSETxUbxRyZAoS1Xu2pxmSD2RbWl2rql0i/4ZsoMrm9KQK3Iebjjj7hxpl2k6KRvaEF49yDhXUvHpaIFLNxwSTEQMFBnHjVEuuvV9KO9IBRrRLIbAg9iYFgJlL2XCS2a2pKLdLIwmp8qmGtV65P8THzhKk6jkRMh4UnH9ZQa5UkRfEhZYlSLpfDBx+8h97eXnzz7XfYtXsHtoyM4NtvT4HnOfzjP/4a9+7dx1dffYMtI1tQKBZw+vQZDA0P4qMPP0ClUgmcjUqljKNHj+D06TP4//3P/ysOHtyP/fv2YWBgANevX8epU6dx+JAyhej7s+fQ39eHV4+/gq++/hZvvvE6Jie3ot1uY2FhEW+//SZEUcTKygraLWXGxOLiIk6ceBV79uzCV199gxs3byGdSuH69Rs4ceI4Mpks/va3L1Gv1/Hw0SNcuHgJr7z8MoqlIq5cuYKnT6deTBBlnSnw7jx2Mrc/wZkSRsY7pHa7DUmU0N/fh3ffeRs9PZUEQp1YmHcnsqwlEbhMzAmZjb8RAhmujMMkdifP8Y8NSbFvR6z9GtsYM/7URZ9gev0QLaJF/wocMvchkpMg8p3FG9gEX/me5R8kqYv8SA2D0wzCvBpNPqO/5K69Q/t92c073sSkJ7C+GMhXL+tmgjvsBGjGfBwWv21B7PXS4mmam5BQTISR1s7va92PiLz8FNTHdr4ALAEqTASWiBRAU1AXxG4rw78+7axfSUY3xaTXw9r49Nn0ekiMpI9ZlmxJHeWHyWy96DRFu25aXY2odwjRtysGoEekWK6ZZGgXiEmXTWQIu80M7vYHIp/Ehr3xRqEQ038BEicjN2bSxnKZTAaTk1shCAIEnockSZibm8OuXTuxY8d2HD50EI1mE6trq+A4DpQCY2OjqJTLanNirTMsopQilUrjrTffwH/6T/+AoaFBnD17Dv/1v/0LHj16hAcPH2FtrYalpWXMLyxCkmQsLy+jUikjJQgYGOjH4OAAiqUiMtk0BgcGwHOcZexTLBZx6OABHDp4ALlcDtWVKp5NTaGvrxevvPwyDh7Yj56eHoAAxUIBpVIJ12/cxMLCAk68ehwTW12mJT3PtP7VqvNIlPAfy4jrl8mN/i5WLpfx61//CqVSEQMD/QnNFfP93t6BzIiSfELffb/62qnzDJlMoKxDAw3RT41QFD3CxJxOA1vMUShmodScXP+eAQAwI/1xov6Gm+J0mEJWaT7yO1btIl9zYQj5bBaG/NCV0snqZLFdialY3MWodxLXoyUwtb0btn5KKK5kbPFN7CUlPrvd3i6hor0cvX2TED8+R3kEtS4MRfFXN/C45J+QzoJ9fAdFwYpu/Ymy8x4hP/Hbb7MtoE2J+JFSTwAFceomjgP3JFHJYqzmOWcOYgGCLBecesxnVqzFQEXsgIcBWhjcCpBC9Zs6/kQtDIY8L3ItTGs/M7B/zA+MLxNJrB6zonw8Ers3l7B/8/SQm3DDpm9vvFbDjZu3IEkSRFECLwjYsmULrl27jnQ6jYcPH6FYLKJcLkOSJHA8wd2797Bzxw4MDg4YYJuPvXNzc7h2/Qb27t2NX//9L3Hr1m389t9/hxs3b6HZaAAAcvkcioUCensq2Lp1ApIkqcYqP0Q9Zr0TCAE4joCo63VqYwlJkiDLEgjRYiQIKpUy3n/vXTx79gy3friN69dvIJvLYe+e3R35dMMp1POSDEWOREmSNsgXyGYz2LFjGwYHBzYX2zGR/cWVNNjFlE+thzpGoh9o03C0P/PCsUSfnmOJQmE0TgaosVG0We808vTEc+CmSCYmnS97u7bZzgWkF9RPXVlJw1AUW9bZ/gjqusnDUWjd7N9sv370ZO6f6tHTRL+gXNUjUQDokSs2IMi8roobOB2Cku4nPw81P5QP1uEr+traGj79459w4cJFvPnm6xgaHgLPc3jj9ZMYGOjH3778CisrK/jwg/dQqZSRyaTxzttvoVFv4F/+5d/w5MnTwLpEScL58xfwl798hls/3Mbs7CwkSUZKEDA2NoZMJo10KoWJiXFIkoR8Po9sNgtJlvDs2RQajSYymSzq9TqePZuCJMke2gh4nsfI8DCWlpZx+fJV3Lr1A5aWlkApxYOHD/G3L79EpVLGKy+/hGazhaXFpY79ueG00ZEXiCESJdJ3OY+dehBFXgy0fqAJO5edfd902h7Kl66JjRuh7YuQIUtyW/1wiKJGEgUQIRZ0xYg00b5DqGlYn2tZESw2irS1W4D8Wz3swxRBrpHco0AYLokm30VAhLrgXqNNOiI+svb+kfNJNOnpsFEyd/Dco1G0H5dPDhH0wVUfTF/uTL8xLkLrqp/1xdEPMU3KFq/E2g3XDHTWWvsR82urjQJF/kRR5BsGE8S6KMZ0wtOJTQF5og6qQqixJ13fQZKPtghGJZcPFyDYQ5H9Vmw2rfcUdeI4SEYvq61m3Iisx6vdtSXw0qEHIBG12SJOUEV/t5rftSZQRQdcDKYO7A9uuyubL1NE+YHNiNAmxik3KSIAz/NotdoYHRvF3r17MD+/gGajgbHxMXzy85+h2WohJQjgOA4zs3OordUwNDSIAwf24+zZc+B5XpflR0ODA/jwg/fwzben8B+/+wMoKHbt2oEjRw+jkC9gaWkJV65cw9Vr1zEyPIxMJoOengpGR7fg3PnzGB3bgl07d+DWDz/gm6+/xWuvvYpSqYRUKoVMOoNSqQSe58FxHEqlIvL5PPbv34snT5/i1OkzIISg3miAEIKxsTGMbtmCL774CrIsY+fO7di79zmPQukSIpQG6z1/8a8LnvcjdSl9pvVUegVs35vd+IcvEfLIuwzcvLyGtVWpY7nxIMHUchRqCBHCAGo5MOmkxnXzLe26rIIoenSJ5c90TZOhHli2PQYgB7Q38HQec5hZILkBmSI8bJRxFCBxvPI7khtAUAfjWndWWwhUh+Nnf1a1osY03Sbc858MMBBIqjkRWR9bAhelL5OflORAF9PQIJAl664oStY3kscOmnbQ9dDEJ6wmIpmtCgighJQenbwK0w6gJG2Ll+DuBFA61u0KoMSkxwdACVEzwRHjdQmYo00AwsESgWL909ZMoaYFZYlRpBr2wjIgIMgRCUAJkTipeh3nOij2qfBBZO7aX0BPv8suOB2QNuX/h9t38B//8Qf09vZiYWEBbbGNA/v349VXX8Hg4ABqtTouXbqM78+eQ7PRQH9/P6qrqzh08CDeeedNCIIQ6KO7FvHeaDbRbDTBEYJsLqdvLSyKEur1OmRZQi6bQzqdBgA0Gg00mk2UigUQjkO9VgelFLlcDu12G6lUGpRSiJKITDoDQoBGowlB4FGv13Ht+g309fZiemYGn3/+Jd595y289dYbkCQJ9XoDsiwjl8shk1H0PdezLsI0FiGISkDvaDpQ2th254nUTfSJSHmxQzXt3SiD4vkO6xsfEMIk44YZLO9MpgvZ01FrQ6xfpso/FAREA0ao1nARiyx9jRNTOrtdNtzGJ0vEJNczYSgyvxo9JUcYzDhL0IMxwsNssHgY14HdVjb21U5Gk+6sxHZIY9PDZidGImIqq4iNQihT7e1tzDv7WET7JWKuPdG5PQ41jDT+tjESME0zNzTJAClB8hOE/OtGB4qiGLXRPAFxBTu25JYuopqYyEWL9oyFMCKhPquLpmiKErErYF80Vt3E9SR+fQF0dayTyUiYZ0F0OAKQbK9OFRsxyVJAE+OGFUDp/GGN8Lk3MEMXACdWU+KTvU7DPAICSii2bp3A/v37UKvV8OabJ7G4uIhTp74HIQQ/+egD3Lt3H6dOncGePbtx8OB+3Lt3HzMzMzhy5FBgAAWADtTlslnks1m1qTXqWUoQkCqVzAYCUHYQyuVy+uVisagfp1LGkD2tD98J8vkcKKWYm1/A1avXsbCwAFEUsXXrBA4c2A+O48BxnGWL5ucaPDFTAtkI01MLAaL4dwLjBFIAJPY1cpM6JaWkQ5V3gMTGs6CAIwZIoTQ/GpJM9TTKLdmUSgNQlMgTNTEl1qpETFEoBEaUSghbk6ZQIFVHtroI6AhIMV9BbPK9Ndv0dCDfm9V2d73qSgx67AO/WNvqCLaEGrjTwFwdk5cW13vMG8R2L4j9G9P4BAGTolj2ovBsLAjiR6ycBBy4RBg7JZ7nCEhNYjaFGGjEYgOzjU0AQFkvH3s+ZGwAJSxRFQTRVFlAE9MRMaVztYY4j4NScs9FlwAoodqKLth22YUymTTefectcDyHlJCCJElottq4d/celldWMDMzg5Etw3j3nbdQKBYwMT6OZruFbCYTSZ9lrR3LDTeGUJctNDI8hH/6p3/A8tIyCCHo7e1FsViw2LFJ/hTGUyEjUTwGRaYUsTw6Wqv3wpPVp/HlmC03noiUWExykikqxLzbjoJ0GA2zEnli3mHHmMoDmKJNbOCIPo3HptMSmGLuKfqCPlbYxyexI59+ZES8+DCFKFx7ByNQxEuIB5rN4iIokk+8WBgARwjZ4fSY7sSkx12EuWdHvRKG0unrflb7GzOQYif//raNizoOYiGvls4TSPEVSAKiRxvfAWVlJ8ob4EXj2VgK0PPuIFPr6w8Pmz0MSR7ECaYhdjv0htlbcmx6ietJPLpcUbd4wBOzePPyXpZFZc1/MI7NaRw7rYRq+CICHIFxi2Rre9xbGJuTd0sEilWlojSbzerXeJ5HX18vvvzya/wv/+v/hlqthsOHDyGTVZaS4AUeeSHnJnJdKMjTqUW+VMplVMply/UXjrooSxGn83h38mLpAm58H3KT1pMsY0Ptq4IZFSGmXXWIHoWihp8oYIgJPIHplv2afm4azwT/uhwDRZIbCNWJIXokQOIQpgSW36HtxnH8hcbWkwz5+029E7Mh4epBfEAKyw6EssV0sI6RixHwPyuzX6hLKB93B+iySXGQvbUB4zwASwQtyZBH3QyQnYAs0ci+5btXUg+bOrMhCaFBFXvXgFgAlITIshgs7BEoLNyGOIqY2EtVA2J8hVlvxJtVc08mOScmJbuLxrbBiQBbJ8bx67//JURJBAEwODgIQeC7IkNhTXghQZMuptjWROmItEJ/Dqfv2NfljV6BncOH0AOKAHJDyfRMrL1ArDcjDZg1gMN8Xf/VABNqxkJMoIk6NUdlNqbxKG9ZDYxxfLAmYE/jsZsXsPcUKiolhFyTWQg0gSpCpSF+pRioQ+FuitV+Hz0RgBQnu723xBCaiB4XwRF1uQ/UiTMB0HH7ySpa98gQRuoY2+9QtuhMLJtCSYhEbo+EJxjm9RzpFYBY2itdqK8Vz9979MdBQUERe7kHaHQ9krjdSr6rbWvJIrw7EiP7DmVeSW2/net2HPgnjUWf/cQpPTnghHicdarDtq2xdpVAv85mo5amli3fHWwKnYfADMnGnyS3+05Api4c4xcKBezbt2ejzXBQAvDm801dmHVuow2ImyjUFZEbDczNz2NxcQntdtsBdoSSSSlq9ToWF5cgy869ukVRxN1797GyUu1Iz0bQhtRJlotsYwAFOLENQTSwRAc/DGCFwljnRANSjMgVhlJqKPUZ2kcGEXwpkqwX/AuCrSMUhX1j9TDuxODcQCIS+AIRquq7Tf9JwJZ4mJKt9eZ+edDqxuzD+xWCK5OX5ih575pWYgMpDBLgVgYetcFeaSJaFKbOxUs2zRtniDut9zonTIH+w6P4AZTYkoZgdhZ+HPkipq6hZUceXaXtgmqGMd3HVDHNsljmx2F1iGe5KwCU0HKfXyKs/7TdmzbUrk16HqiDSBStiN2Dzt3vuolkjaRDEgWWlpfx5ZdfY25uHhzHYdu2SZx87YS+pVNokZTi7t17ePDgAT54/z3LfDoAqNfr+NMf/4K33noDBw/utwAp4R9EG3CAiL5kyjWkhLLK0wBrmTmtt5ELgKLjHLZipyCATC04iBqAYl37xHRMoCwkS0xgi/Jj2BcpBD9wUmLW6q0tROES05ElX96JI0a8+DB3IN9g8RDSQaXfOD2sO+rdGB7iQC63t6Ed6rTr9bVhA9ZRcbXFwWTjpvZryQPgQYGUYPkJI5g4hTJ3QAog54WNdAnayHuks9+KuSfsJm5jwJLoytfN3o0ETHT9PpFHtrsd2+GOBPgnTUhXLACNHeggxhmlVtzEgkUSJ4xDtF4OIfqvM2LVWiKR8hAYPEnuiQgtOxLwFoAp6Mtvo6kLbEjgKXq+qYuzvm7TeUJ1vai9tQxOkizj1q0fcOPGTbz//ruo1+u4eu06Jie3IiUIkGUZtVoN5XIZQ0ODIIRgaWkJc3MLKBTzGB4aAsdxmJufx8L8AkqlEoaGBlEqFjA4MACO41BdXcX01DQopdiyZQtkmaLZakKSJbTbIubn57G8vILevh6dJzR1caVxL0zlhuttlwpgHl85o+8NAEUDT/REtiATbStj020D0NJ27YFpC2Ssj5uTWKmc7WMXz3c07gnAHEE+GyqMf3DmrSc+nd6S4s9bMIlqKlbiGEwKJSLBdVRC22Jm0kgHVPykrA+IEEZL4LRu4EtoRSxB9oEia+AYe458eNxsMX3CjlNNDMQacgcbgq8DWdYQCciCRN1lEmq2LZiG4PBGBzb5SI9Fr2dGYhyORXzPd6THCzUnmosJiGm7Ys3vluk9prTODyluGaO6gCQBlCQp6YVpAxjwfGHuXeCuTXq+KAYQxbuTFK3xiV6VCJTVlimlaDab2LFjB0a3bEEhn8cf//hnLC0vo1gsoFar4yc/+RDZTAaf/vHPIISg1WrizTffQCGfx1/++hk4joMoSnj99ddQr9Vx5+5dbN++HadOncbs3Bza7TYGBgbx9luvAwAkScb1GzfwzTenUCoV0Wo18fHHP8XY6JbwGbF0Vn2/p4f0kFWRvbMWiDUAkOIlU2N3gibGsXktEx1AAdRpOrBN39EAFg10cRm0UXv+zS9J3/gOM4vTZo9kvkCKs1h8ybyWie+7KkTlcT59ZtvjA2qcJjEADq/xWgg97pEi8epxZyWmH9vdiA9zsCrjoTcmIMVOriJd1yyJD8jyI9daTBwHHkzrB6RESdsRmBQ5LaNddQyEGNdcsRbii4EE52G3+Uyzg1DE7klQUMTD2gSJeJ4a14Nb4w8hxEQh1jfRWWy/ndvgOPBPGos+7TxhvZ4OIx5nMekx8AzTI+3sZZqLgQV/KNN5iCVqRXv/2zdJjjQMCcGT3NSaCHJD2R2Qad0agJioKwGU58V5CdBzkvUY10RJsFMZwpkcx2Hvnj145ZWXcfXadfzuP/6AZ1NTEAQejWYT27dvw0cffoBUKoVr167j2vUbWFpaws6d20EpcPnSFVy+chU8L+DnP/sY+/ftRaPRRKPZRK1WhyzLKJXLmJiYQLlcxr1791BvNAAAsixjZmYGzWYDk5MT2Lp1AlxUQMiDLx5PaxBGBzU1cIcalkhJC4Biuk5NB0YEiQaOqDI1kAQEADFwEqq9PAi0dVPs71gzaMMGNOwLrPp4J/QgO9KbKlCywCUZ4bOg5m+tk+GaD9blwPINBseq+RFkBmHx7AzECC6wQCmvU9drIXT6pyDOSzGRd949EuvXknt7hn5eXJliQR4SIcL4i8Oi0Dws5fZrUdJElctgCUthS51VBgFMS54cz5jtBR1VLNYpf9riFiGBk0Rsc2kT4nrumORAgB2fpOLT69nmJQCgeNyzbkes9kzsISfmH2LjhZVXT2zpjDqXwA9EoZicfc24KPDGBqxjTxazBxNoXDeSugZA8WiXf2z0nGS9O3bniZFkSrG8vIydO7fj4MH9uHHjFk6dPoNKuQwCoFwqob+/D729PajVaqjX62g2W5iZmUW5XEK5XEZ1tYpSsYjh4SGUyyVIooRLV64CAFqtNp48fgJJliDJMqj6BwACz2Pvnj1YWani1q3b4DgO+/fti5iT56QG+RCBMwLY+BKnvPzNUSagpqgEHUxRIyEoIGsLy5pQGO2VZ/UYdUwTsr42g7WaL0YpMMi/3+VKoVgCvs/Xw8/rpacj6qBcwilwO98kJkVyU+KFuUkdUJhS2XxKNgnAj7widEvG2QNNYprGQ0zJjH6nsQ4KQEwLzMKYFqSm2+hBdeLULUW5STbaLJjnjWIEUexD5CgpfMQHYJS1NVFu3sLbb7+JbDYDAgJRFCFTimfPpnDr1g+Ynp7Brl07kU6l8OzZFLZv3w5JElHIFzAzO4ubN2/h2rUbuP/gAQYHB0CpApQsLS/h2dQUXnrpKOq1BmZnZiFJyj1REnH33j3kcjkMDQ3h1KnTeDY1hbGx0WgZ1vNs9VxHfjTLd7kSSq5ruag39PeRBnSYgplVwMQx64bqrMqpOl+Hmq9TRRbVgBZtzRNVoDmqRf8JNKC3esEceu1gd/uw4SM/8PooAQvE/VsQg9H+BSL0RwtiqoU+8l1M8NNh1eMiJOJDwPqATR13GJ2oCA+bt6ttCohJSQcddVbfzynK/tWOoTChSBx2U8Gw2nwt5rVU/D7CuWqzuY3JzWwkNr5jFNdX8QhNXpd4wEpmm4L6wVH8zwWx2hntOFwUR6jorTgpQmRaInYGef6TssMhiPUmi1mvq5CYdYXQQ/T3pBUp0ZY3slYVA0WxT+MxSdH7p0bxhsxR4OTmnnAylJTthHHUqczE+LtVV2gTusC4jaTnJPvPVyRKgN4Yz3M4fPgQVqpVfPvtKVBKceDAfkxMTOD7s+fxbGoKi0tL6OvtxbGjR8DxHBYWF3Hu3HkUCnmcePU4Dh06gMXFRXzz7Xcol0s4duwo5ufmMDDQj6HBQezbtwe3b99FJpNGf38fZFnG0OAgSsUiSqUivvvuDGZmZrBz5w5s2zaZeJ43nNxs1LcoDgig2IASbe0TFoCipTevfUKpVYuuys1/IXyr5cJzgJUEkNIRBTAqQv2yAg/xyw+lx1zFOtbjfiUZPR4pzMBGDICGXYRvnoMxxWKLP5PXQxw/eQEFvvazwD2L/X7oXwwVbZ2I5Sf7NfO4M6wH4rLFDSx5Tvpo/uRVv/ycHUS87Tdx6tpFYjfoefQBUNbPMqdnk6kT3nosU3p0UEW5bsJVrAvL2mQRc0KV9PYqVuTLWiuT8Fek/mQIQ0LZ/Dw0ql30amXX9C4xbiPpeahHKhFKg/VOv/jXxZCi/cX6pSj3Cti+J2PdJtiHSYlOoGg1W2ioa5VkczlIooj/8r/9H9i+bRuOHTuCTCaDXC4HAGg2m2g0mhAEAfl8DoQQNBoNNJtNpNNp5HI5tEURkigik8mg3W6j0WhAEBQMKpPJoNVqIZ1Og+M41Gp1SJKETCaNbDYbeptjKlPcvFJDbVVyybfVCfE9cjHIpYxjAljXMgEzYkSLKNHAFT0CBQCVNQBFBUxkYoAs+mUjvS6W+gxJfDNJgyULJdOcNKSXIyUPgRSFpNA1pmMdAYREfCDc2TwExvDweYuIB0iJppuRYsPsYDFtXGcjFs1mlMFV6GaHapOsHyMct2LSsCEUcf2jdbE3xIg6VnuYwtgaYh3vB7zRsc6QupRpOMo9zoKmEIAoU3QIR/RpPISDJfKEEOW+zqKCKwTEArQQs9LIebAmSrqeJrHOnjV5cvLdZOzaX0BPXyoGYe46uoESfqKfT+qS7FMJ6B1NB0r7fEWiBCClYSTIZDPIZDP69SalGB8fw/DwMHp6e5QGVi2xbDaLbDar8BNlcJ7L5XSQhRCCTDoNpBWnchyHTCaj3wOAVEp56CmlKBYLhj1xLZIYAKDsKgzT3OejgHmpLkfEiAqYUNOUHG0NFArTWIlqx6bPEIRCnWmlq7XqMR3HUBQxfNjr3IDwn/KjMEWgZCqpkyWZ/LhLtX9R8onYiE2v6a7vYDsJ3VoKTWly9SiSFq1tpRTdFK3CSstM4xYaYXFCkGdqffO+SQmSa1kS5mFkNZ2L6JwSXEA6MkUwKV4AhfW8JzDccgZJ+GqIpC+QHncW5ZwNHhrbGwN6o6kDX4xniJj5QlLEfCRJSQIooZm68FHuZtp0F4OeU6cEBlGS6D77yfQE5H3HaqZBOyjS6TTeeutNCIJgAVAAJ9DhB3x43Y8NNGEKh6ljDe3E4qfOysk6NAg9brO++ZRLdkZqu64DKMZ1CgCyKR01RabAdA6qp7OHoFC7zcSl6vjWJzMeH9Cz9irgwWZ/EQZeWT20KdoaI57GWCmgKVaWAA9oBCTKWRc9amcHgAPr6fV9ymJA1rxdb8tQzICKe54ZqQhDecygDssmTxVeW5xSx0HsFKTFD1VkDicE0KAtCmChZIGvTQpCHmXndiuGPkRX9Ec1QKgbo020xyLEM5aIPZ6d3IRscGtkGdJj1Rfgpqtppot6q0apaatiYvpV65wKmuivLp0Pjo2dPKuBp1Gs5Mk/fclGoGwcSpSY57qiQVQooafs+aYuckHYHlOkLY7XK79xdv0IR5DP55BOJxgmFiO5+jhIfzoBC3xlMsASFoCiBKGYwRBqRJfowIppxx4dDaHaLYXHAppYVlux2GMfvAT7xuNGymuYFdQSop8QUJMPUySZMQmKQWv8El30xKDeDp/EJjigTs87pk5inCZ59SUdV2ydVV9BCZBne0nAHsht0JdwL60dFaW9ohKzNPuIwqvQgih4EShKI+pWyR3Od47S2A1Jx8TQvPHkBWy6scBRS5OhiLZtNCUPaCSgL4CGoGVu75Fq/2nDHm3wQ0BAqMcrKcxz2A0Fb6PkI1ACyErCLyQhuL+LynATQGFQF7kgiimhpvOEH3ACYYLFQ+kLJl5N2kWlFJC8v7xqCdydEBZN81Gkn7G0Eeq8xvooqgEoGiZiB1DswImxmKy2C4/pOogBtgAg2lQgGFEtZuvdjnU77WiLBxGGdwN9XY67rtqThpAfqG6E8ImThfjXnAj2s1iN6BcXgzvQwxJhFKUd0HARHPFBdHc/CxBQU0UosyD6zdc8bdHs8GaKxRZWmkARK/ZrGzAVJiiQYgdsA0exeCoitnuMRHZUWj8nzjT+TDGniYuHdR6Exa30PGR5JGGxuKn24ll3ep4iZhy2st4Zblfi0B9cS6z6XZ9/dg1LFqiJR5c+fcccbaIeKNgwI/rJjqiw7lPbeRibEq7Jye0YZE4esHFKguyvpJjlbjR1iRmblABFikQJR+4vK1aqjtW8IOSbHa/OcVAZES3Rr+ggh5W8IlAMAAVQdu8hpvtqGkpMwSpWAEXRbwAogDF2Vditb0tzfziwPwIljODdpOtoBPwllE9CMtn7LYEpQgcgUle4g/IIxRpDuQcTwQI04id/sXbIKTlbvDQHZyJwxHd7pV1HCjIGj2JRoPeLvRhZxlj+GEzMwauPYJacOHkcdtv+PNSEoU7KpUPVyZD5OQmxaw7rWuz581TE1hTXs+RKXdhF8KphHel2LdRkc8QGlYnlUJtiz3grWQVFNLXrAJRAMtnHG0JJGbDBGdtwv27SulDkhWXNg9PgqROgH3NNJbBFpFguMs46VmRcYYAnYOgyzbixASj26xpYQmBfVNZIT4wIFoZCK3hjB1KM2IHAURiBIlJsRvixhXhw7Ov6BCJzVfC136qHhmEKQUaWfYxzr8ah9BjSXfR1qCeYPg+djNth9bmLYAEptlQxBF742+IHpFDLT5zkVUVZ0WhW5oBAygYu5BonkBJ7LtYN5YmJJ2ZiQUbPFSUQXZK4D7TFWElwbcT2G58t9nN/DbHY4CskOJAUn16nlyPrI9bi1bb15bTeCwsANR1obR1rKo/FpoAGdt26JwpDxOQ+jElm9QUFUDRK6Kl7/qnLXNCJOdEiUbrMARbqZtuSII8XB/ssPkXMIaMd1NCjVZRt6iw75oBYARQQyzbHVsDFPNCHbQRAYNqgx9V+M3bDsp/BEuyaSnb5cVKkl3akgl+vByjIYDVR6bHoCSbC5W7Met3FMYCVBCIqwj0urB6sdiu5Omjua3ekpYujV8KQvf54WdrNWEhSPKyxmdffc0OW9VqC1WW/urEhPnCs+xOAJTFbwmtaHwCFzRKaLcJLNdLzwUjIci0Hoq+n7bhP4dwwQvtjTeXxNYkwj+OmyP28ZAszGXrBARQ2dbVx60Mb7IK41QePRDFrZnxgDR+R4vsNNTyZ36cb96EwNgqcDWYhWLnjcYmqiLJjFvToFHOUigNAMcAQqm7Fo03fUXgVS7X1Ugg11tag2nQfm3IdQPHJpHktk8CAh73Ksj9f25IGiOlgIlB+ppg1hIhMCR3EQvzlsx7W0CzmdVNcmCP4icVKXQWpDoqQHy99Tp0+DWgEfSwR7uJYPVNG5eiwkXADUthifYCUdYj2iKHYgwMpXboNsd36TSAlHtkbR7YOgVv9jLCw6ob4YaPACZZQ82sjgOZALFFt8b7gzxJFH1OIM88d6XFzmN0GQtS+pXJRAUigISWgYH8lZm4Y5WG0deef5CiSnkhJAzzNzxPA0UWNM9uULjJwo6kLXBF3exwuEiW2T+3eQjpW05191dDUldlwi8LXARJiuUbV7wSWCBRKTQCKqbxt2xq7AihOc0KT28CTdd6RIjd5HVBgAGU9qQtN8qZw8O8mbdImbdLzQWaQtgt6rbFSsPwk0qqHBFASs4NJ3r3mZGsB9TiLKMoL3db7oNQahmL7HmIR4dLhI66JnGo3KQbydWaEmppkCHhIYpvRJcZ1A3WRK+IypSun87xor/11I5+vE3H51bobihpFQowoFCOdFXHR1jcx77Kj85jSaLItAAoDOpDN6gLDi2Y83onN27LgZIvYxm9onY6gnP01JP5csEsgST3maz56YjKDFYHjmzAG3cFEEM/TuCiSWMvuC+tHBO5qO/vKGjBiJWjaTdokgF1XiMv1MGKxIY+f1W5iPnBvSRO30RT9wL7p3cpvVBRKLOW3XhWAVZjUeV9/b9sBFEsa07G1u+pBrJ7f+mQ+6ena7H5W53I3nLra1q427kdLcZdKuIVlA0R/BUN3/FN31lkNZUzXkgqsh2eCmdEqJZJMjSwzILQXmQkoMU/z0YERoifTtzRmASim7Y4pNTLhBqBYIuPtKIVv+TtfKYF8Yvvi4ZfQlAtHX8DBbq/wHvLtL9xAkSkRnomkt0O2szqnvzAExaDHes1nSlFM+pzuZ1lDnUwdtmEuWrxTEUaqGNpSvzadrYJYflxTJtTWBwVSAquPCqR06VSgTUqYggIhIQGTruneE8eBeupvocv4OT6yCyT+mhwsSdjhoyk5neybsYI0LtkizhMVE/F5SepoijKlPNgr1dp/S4rWY5270DlJKtNB5UbR3yWNGduMLjFuo6nL3BCnOeuwxfEmdULxFHY8Lz1KoC1ZYrthXNOAEWoCVGRKrQCKKR2odl/l138NAAWmH3Ma1/5XxPzZP1S4ySFeN5np7aCKt3z/m956fBKF1uPsrPowmR0Z4f0duDsYUY+b3lDOSIQYtS8BfcHcxnioEo6OILDa5p3Sfmlj39IE7vbHM6gh1mP7+SZ1H4WJKmIt7trBNsJeade1tnjlgQR/4nWW0Bw+wgLfi9QqhadAQtz7c8na4PT8utUlff2ugBO6XQyjPvdfJAAlNFMSmd58NW3SC14HQkSi2EbP9hGh92UPmcFTh6aExa8XBUPPGUyA7a3h/A4eVK5j2ox6TEEAYoAgRmSJCrpQmA6s4IkWnWK5DtOUHxOAQuxpmLliZJllt4W0l6YzWofCKt/xGg/hRNY3EF+2gAVvXzk+0qKwAUyx6gpgnH2kHiJgxpwjz0iRiHpYIqhNs2vjFqheueuxE3VNoQ3Ckom88M+OG1gRf5SKQw3jWjDbvLnW610QBEgJ36bbga2IQIqOQhOXhn2TQpPmf/uqlVGmZz0vC756kaUZi2bduuSJqWSdABM3gQFtig088WT21utGbbGJ1doiWu06ZFlyyiDOAGJ3/dToPxFjS2P9l2i/1sVliXaN2NLrJ6b8xFSg3mLs7TeCOsFXagxiNkYYwyVtLoNCiY/DAF/yL6/YnOFLPM+jkM+jv78PhULBuYvU80ZdaH4SJoWbzqNTpGH9JnVA8XjcKcVPrqUJYUSD6KElpvv6YFQHS6jBQ6HuxqMjJZZtjA3wRBNmGhmbVLHADc/cRnQgdTmORhGArAh2BwJSYqH1aQesAEdy+oI9HbZrMZgUQAubCbZECdnim2qdXgdeatzvedi6wTvmuL3Q7eBtEDmhcuG25oSfL6L464XhIcaPGYRiyeyAgpRlF/ZNDYrBuMTzp5e7W8vLtol6poiL1klToEaDeJyxSZZFzMw/wO2H32OpOo222ABlgCjhSZt4a3oObcYRt3Niv2ZOyfK1uW4EgHmICTtdvzH3i0v2srTdS0xpiMJLoqg5jkcul8XI8DDeeectHD50AOl0OkYN60hd+AwkZVJIEIXVaVB/XT7aBuuihEsdmhIWnxxFGHSzRFiY2ENFL7nUdtMOoFDjEFrUCdXTmYESBTxR7+pprFEsbADFuGodUntl19FN8syovcNA9aS+gA3rnexChGFE4AFzAPl2PaHWSwkl3zgyWHwzH1qPnZUGERKDHvMVpwjGwNxOHev1q+kUzFsxASku2txTEXaquNtcrxehN5DickoYlWWD3xPE9huUp2Ozw6zXErfcF52HJSbk9Q0l5qghmqXrmj9XJ/s/ZaymNTF7LDdZb6EEdDOFhgdONGq3G/jhwRncfXgWzXYtvABPotZfbV653jEwKbLXVUfDyGopqc1W6pHWxkmtvyyWpLdHfqGIung9lpech1LLrz+5j6SikSyLqFZXUa2u4snTp7h38jV8/JMPUCwWn6+olC4zNZw54UfZ67YmynPwuu1SSsIHxHHMHqyp5+b65AagUO2SCUChFFQm0LbuodoWxbKxiKzRdhlNkjJQJhb1ymKzwToZ9venK1dA14ZCnEMWlwkySkR+aIoypojCHHuv0EVgDHrYWnwEBzAtrG7/O6RjfV7a/MUyUqzzy58gqK1u3D5CurgzY69yfoDTJoWnsMCW+dj+t6EUJSMkfKMWpk52RB7NYRiWgKzBKJAQa42IkI2YbYmmV6YynkzfwA8PThsASrfROoPjm8BJjPQjc2WtVsfXX32DU6fPQpbljTYnOP3IygmIPJ0HcCA2LgBOZygQjbdMwoNMG0sWlD2miBSNTMg9K5JAj8NwAVDMqLtzUVj7dWNRWWjgiZqOAiBUnX5iR6CpxuLWtXDiwI7oE5b59p6dR2SKHWJiJXVcD1RA9k4TO/LFgzWADueLPHRkSgAdVhazx+KPTGHBZ75PBqv6dBApYmjxcRSbKTS5m+/xXMSQ53C2eKRgraPiLSQW8rLV3SLieapcY3B3yTvFbm6cA0U7mGz2pfm8mymI/X5+iQqkdA0R26/zJABz8DuJ+yBCfpgscZEv1sTWGrtNroLM7Vd04MRMjUYV959egSg116/SE8fBhpO9v7UJpHRAXea68C1fZ9RstXDq9Bm8dOwI+vv7EtERK3VZeQFhTIpufJfvzpNwqXRhoevksC0ZY6mLHkIJiDlaUo8yMSEdOiBifEmx7sBDjOk6drBFjVTRARSGLbKmwrV37uytmIEUPY9u7CwxLgk0k1kdHd9IlZBFFznyJen6HFq+tqlgSNkh9Ri1L2mm7iE3+MT9LhKrK8EG6tZ2wlNIguVitqAzNbb8eGWvi6NXwhALoLEXG+vPLX1QPWFt87LLzhPFvq6jSKhO+AfOrc3ZEL85FAfPz/rZ6t1K+1+NoMa3QLR+EjEdd16Ga/UlrKzOdiAheUq+e/Rcth7dSV3myo0yZ2FhEY8eP94g7SGoy8oLWD+TOohE0UgfZjNPPVIGkJkQ2V863f4JTXec1dhQQIGbTJYkFbkwz9zRNFsiUKBdINYtjC3TfKxbG2tCqZofHUAxAzME7PmlzArkrCvmQVJgv/hUTvPuOiz5HsEsgeSbOzQ+Cb31+Ca1Jg4dmRLQqVYW8woz8ephs6/vOi0GO6sg4o+K8RLlrKU2RW5jjQ7bQD8gxTdaRb9MnUkSbJ+DPDrxRa/YJbJPXzRigRdheZLS89wTExEMmnP/dBvqUx8gIMj1RO31FM4sGH+2qDYEsiUESxjdFBDFFkSp1anE55I2wZMYqctc6W7O+hgqSRLW1lbXRVdkem7KrPPULFq/SJQuc7SFutk2BzmNDRqGbOdx9t1VBMPc4ddBD2oKFVG/W2gRJypQYl8kluqhJwYAo0ehmKb5WTZIICYQBtbrzGOfPEZg8yDr95pkxz7rUykjdQDWh6UjFxDGUZL62KTBGT6Cg3+wDETBXvwBBv4xUvCvnYxUSY26A5LZonjUeOSPEFXhRtbbTdow8ip3+6NBWE9VsMrgB3oGe1ZjJl0xCQ2g2D0Qu/2BhFk1x9ysRxTGBlA61mcTRCGD0vVeuyFkKbsVyIZU9k1yUFeXQbwjiaBEKYUoxrG7VUK0wWUWTX28RscQiaKR7Uub3U7qTNlVH+AIuswgBhHTgQl5YD3eXlmhrieKXGq7R7VoE8s1wLkTjynaRL1Ptbogm3hhREDYd5i0AChe81qY5cXqMNBw9c1Wjb0SEVMi/6/VYeRrSa2JQ9sfQIddT6CIEbuegM+NMwomAHOE/DhZWTvsuIYcRdJlZzVfcUaGeITpRdTtbwvLDvtgnqE0gTbR3TaPVCSAMevUhgd5BXcWvaKeMAfUNshcX1jKpKnb32M/VrK/iBzF61XuDDn+Fz3vbEj/11epP1y5bvmxCwzh93hB1yCC3N4+Mev1RIY2ruEJVFQs8upjeurr6hH/80Nd6Ea2SRErSgxkHyP5p6eQJAm1Wh3ZTAapdCre3X26qMy0UgkeSBB7y5xEJAojVLmjtrWLSqxbqAN/ugMopkumMrMMvPRoE6pvVWxJL2tpjPvKtsbWQawWoWJXr48HtAt+Re9bNQINX2Ihc/84fvnrl48fDwXw3qaDN33Q7aR/Rd1ETp4r+rE+VzFU082aHoxi8VM3O5tlm8dz1c1Z+dHSZqEEIm1MJcsyZFk2xliMPwCYm5vHv/zmX3Hj1i2FP05Hd1mZhTMnfuNjjETxoecl0qPbbdQpvLGeAAp1Pmb2XXd0vWroiWXtE1WoeUqPPnXHpI+ahGkfvs2RLGac0O0dycx1AHfYv8H7yg/kYmsiP/s9WEOTHYWNgyLJ68iI9XnoWNFIylotIaMbIpjrZAlZWWNyjx2xD1x/ErDFTYW3TV6GqFxd0oYHaWvc+LzTun1zNXkuSKgPIeE/cXWJb2OjKAUTxm/E5SljRR11QKxsdA1GE7qB6RJiRgkF+0TSUW4iFWa3+G/jGghmycT4RcvcV9iMQnlxKXz8W7IkyzJEsQ1RlHD//gPcu3cfhAB79+3B6JYtuHP3HubnF/DKy8fQarVx4eIl9Pf14d79+7h79z4opeipVDAxMd55Frrw/R8uCiUZCgyiBPefbbjikTPWwIZ1f12pCyuKg8yhGnooiDOJJfoDXiemSBHq5FNUqDCJJUIFenSKco8YN1SQhcAEnFDTW02fIkSZfVJz15M1bLAAHa7kPuhyK2JHlzfQAJKY/nUOyz3H4X4PgUO+llyDrdz1MJgCkXV6T2CmCHqMo2ClA2d5RxgHWs8DLELrWQGj6XXmOaD+Dtsm++Be+6WOu3byaM9jbC+J7dddDSsFMf0EMGod2/kw77Joxe3lOZfLgUJ8bRa4be/MMjoUUreOxHoIgjDpLo5Smp31Zvy4u2JY5wY8EObNYCKSokCK3ADLkGLCUgTQJDY7QgnS+iW2L2VdQDHiJ3p/aBM8iZG60JXr9HSHIirLaLXauHnzJj7945/RU6mg0Wzi6rXr+Ptf/RK3bv2Au3fv4fChA6hWV3H69BkcOngQjUYDsiyj1W6j3W7HZAy6wSUOCm5SMsZHms7TZa/D+Ol5Mp3xVUsHPlSyIHX2/i81gxwMcEQXRvRjKmt8BFpHiaohKFSXY9iiKTLwFQO4oc49li3ZsmMMmjnhi4jdRBLGMYVTvyORh54w3WbiOAjGbH6hB8JhghrkqSeggAiDFGtZhDA0hjGK05OhmGLQa74SYTAcA/mL9aj8xON2jPaGU2OvhAyu52DrYa88m9OsjwWsuklsflTP7YCDXQyreMw8bmmC8Lj+MWz1FBzE++4UpWnys25DKVQlZL1Zo4uPlVxfusxErim7pVxisyNA38ZeK/29FA8Z2ti9HabmWN7R3VLKLxB1oUu9+w8bS5Ik4erV6yiVSvj1r3+Fv/vkZ2i327hx4wbEdtsU3a+Mw0qlIl46dhSFQh4HD+zHtm2TnWUnhj72i0yhpvOE9yEBM4zV/nGLfXljyWZ6V5PWMXQJSyD2eyzSABTKPte3KoYa1khh/FJirHOiRZsYISyO6Bbt678RgWKuWe6G2j9qOorIXkGZYRnsb+6+ES+BbhgJiIses1maGF1cyAfMvu2yXxETAA7MKkAdtwMpSW2LbGYLFQ3DauQjR4oQE3tAvWbqOEJFueqsPYx2tEPdQWxxivRJ5TbaiLktDaaG9UTbLwUwzrXBWV8KNYb1oHiy4+dbewMQQITlGgmmhsXjS/EPic19GFbOowIpG0ZuRliel2g9wnWjQMrcEwWpepEosKCEIApzxyOkDbHaEZBc9YXuLwVN1xVP4ItJXebaja/d/tRstrC6toZKpYJCoYBsNoN8PofllSpSKcYQngAcz4MQAo7jwHFc53W6y9wS3JzkDV+/LY67rRSC0PNmMgGo9rWNFYpivmRahMgMcpiDT4gWeUKhjL4pMR2b7ynKKfO6eZhPdF1Wk+zoD7tpM3dIWd24YMXl5LBfCTS48FXmricCjhFID2Hkx1dPhDq+Xtsib5Q+byE+gmNqMyK93AncHp+O7PAXG2B4v05taRgXWIEzj5xaGp/n7aXgJHtbGt5f4XS9qDws3z03tcOtafOsDPZaE0xNAs0SW1GMiTfq9ZF4DQqF6jlBHBab++eiaOSMfjX3yti9pSB9qCBpNgGUmKkLG8cuMSMwpdMpFAp5zM7OolqtYn5+AY1GE4OD/chkMpAkEdXqKlaqq/p2yEQdB7bborIQ7XMTERAnrU9JR15YVjPPv2gYGXFhDi5zHWkjjApZ9p6maYEhxlwaqwJ9qo6RUA8goVQPXVB22yHGde2aCphoLx8tDUBteqFhKIa92nvRDvroN71zp+XE9fVKbImZN9yT2iNfXJl8E7ABIDt0FNx+Lz2KpEBAUGg9ZhaDKcl1U+z63MG3uPVZj5wRDh4CY0LJWLXUKcpFeLxInatYQ7QfkEK9kyTQvgYFBtiqPbhJyIrVVS80d9oEUpLj2VByM5gESRRN9LqQXTnTGLaFWqxoYvYHBitYrXzMVgUW5+yvhOEK0+cgIMhmM0il0nr3j0DpL7ZaLTSbTX+tPgXY19uLwcEB3Ll7D6mUAEqpi9yNf6ILhTwmt27F3Xv30GgYNo6Pj4HjODx8+GgDrYtIoQC79SXvEUB3kSAIOHTwIP7w6R/x3/7P36DdbiNfyGPf3r2Yn5/HpUuX8S+/+TdIkoharQZCCIqFPHp6Kjh//gL6+npx8MD+8FnsMpd0mTk6BQdRzC1kqBHaC0brkfcIAz4Li22lVvvuOtSMaMC5Vom+7Y4OoCjDcqpfN2tWZVBdHAgo+BRx5EXHZKiL3WabdQ1GZ8eRllJjswRGgmBF5SFfu04pWLsy+Nlv/44TSE8MDxoFCajHbnFUcg7utQ6R8yKL355f73wbKdzzaRETyI1h9PrUSz81gYwN6gsPH5i53Vzsqya6bU5L3Mn5bPurabflWNriMJCI05QAPjC3HX7AaxTXbtKPm7zql+tjZ3/PBFATmiMi+TVovkze1iU2totBYGw2BQJvQsPHnsrCNFeCIOD9997Bvv37wBECIZWC2G5DkiRcuXINf/7LZ6FsZqXcNjmJ106+iumZWbx24jgIIfjLX/4KUZKsiU3doUSBNQ8aGhrCxz/9CP/Lf/nf0WjMAAA4jsPhgweQzmTw+PETyLK8AZZFpG4d8T5vRJR6sG/fHuQLeTx+9BjpdBrbtk1icHAQ/QP9+AWA+fkFVCoVSJKE8YkxVCoV/PSjD/Ho8WNUyuWNzkXH1M3VKVwkCiMnfn1Cz9QuvdeudNh6GhVAF7OfzdjmhtoOlAGV0VOXqTbgVa7pa5+YQBEFIKHGNU0VNeQZAzWKVJbDkRNFcLbJYrGOCbpugNEp8LGO1HW+2wjyeFa6kbrauPWnRkPC918uQhLjdUyQZp4NpPgx2dIQOKQ4xLHGhZv14MWnUGiFmsCynXIQPmuioNhL4t2gwAgHK4H9s8U6UCQ7NxrAsTo5DlsIwvV8JEnCme/P4dYPdzDQ34ePPnwff/nbV1hcWMRKtQqe5yGpYIf1WIkokWUZHM+B53mAUkiSZFpgU7WJI+B5DlSWcfPmLVAAMqUKjypXlmULqCLwPHiOgyTLuk4z8Tyv82k6NXmcOoVCFEXdFj29JFn08CY9siyDEOUaAVGPBTUPHHieQ0oQIFNqkc0RAl4QdH/KsgyOEHA8BwIOFEp6s05AGZRT1We8unaGxg8AhBDwgnJdFEVQWc2LwIPnrHknHIGgyhBtMgSbbRabKYWsLimg5J8wbYmLnHW8K0eZDiKEQyqVAs/z2L5tEtsmt6rXFfsz6TQOHToECqrUP0DP2rZtk5ic3KpO7QmjNMYMxEDhzFl/4yNP54mdNr+8hSKLu9zAExXoMKPs2pG2Kw6h5oVi7eCIDYQxq6GqFfr0H6sNQoqA57vsaQxE1OPMi4jLcYK0+bxYiDKO3KlL6uZmGUYiWbI5bp3fH2FjcPy/+bqECtmrKUsYI0quA6M2KS6K4mPiUu6uCrzOvTlZgMmGtorEfBDOcYlX5whhOMby8glTBAAlkr+YbQ98wjfYTDKlmJubx9zcPOq1GlqtNh49fIzpmRns3bsHP/v4J/iv/+1fUC6V8ctffoI//ukvmJmZxS9/8XPcvn0Xt+/ewUcfvo+dO3ZAkkScPnMWp898bwENNOI4Dvv37VVAEUrx85/9FLIso6+vByvVVfz233+PJ0+eYNv2bfjphx+gUiljanoG//H7P2B+fkGX09fbi7/75GcY3bIFzVYTX3/zLa5eu4Ff/fIT5PN59Pb0gAD45rvTOH3me2ydmMBPfvIBKuUyVldX8ekf/4K79+5hdMsIPv7pTzDQ34/qahV//NNfoSxAqNh68MBBvPnmSXz19TfgCMGuHTvx//l//78gCAIuXrqML/72FXiOwwfvv4f9+/cCAK5cvYYvvvgSBw8ewOsnTyCVSuHGzVv4j99/qtv+z//8j6CyjJ6eHqzVarhz5y727N6FXDaLO3fv4Xe//wNEUcLJkydw/OWXwPEcLl26gs//9iV6e3rwd598jKHBIdQbdXzxt69w7dp1HD16BO+8/SYEQcCjx0/w6ad/wtpaDe++8xYOHz4EjhDcuHULf/7zXyHJMj58/10cOnQQoiii0Wji+o0b+Pqb73DgwD6889abyGYz+OH2Hfzpz59hbW0tVPX0qoF+V7qVOI7TwSXAAE/MpFxiRziw0j9PtGEASghR0ReWJaY/52k4ZvNlj9RdQ+EymwjZI0wc92x9cnNUiXZR+c+4rwMojkgUY+0TZXFZY3cdiy6Q4P2/riVr4XZBUbsTQZcbuL5kuML4r+vJXoabZRmMiFLOFn+ts//cio5VlP6m2VN7aCC2PwDBtvj1MGqz3vkTyz++PvYqF5eyDFWITtPCFv+6UODsBPWBf3WO1WbAR7BVO2HYGIttoYQ5bYpc/n5OZiIyBpP1Pzar9ttsNDA4OIDxsTHs2bMbO7Zvw4H9ezE40I+xsVE0Gg2cfO0ExsbG8G+//R1OnTqDN984iR3bt+uDTs4cBs0RlMtllMolZDMZDA70Y3p6Bv/yr/8Onhdw9MghVCoV/OynP8HM7Cz+9d9+h3KphLfefMMSvXHgwH4MDg7g//zXf8OtWz/gpZeOoVQsor+vD5l0Gr/99//Ag4ePcOL/z95/R8mRpPmB4M9chI7UGkigoKuAKhREAaW7RFdNd49gT8+Qw5sZDmeo3t0t1bt9d1ze43F3KZZL3uyQd3y3b3lHcsnmDEe0ltPdVV1aF4BCFQpaIxOJ1CIyQ4e72/3hItw9zGV4REYm8leViAh3s88++8zcxM8/MztxHN3d3Th8+GHMzc7hG9/8DorFEp55+kl0d3Xh5Ze/iFK5jG9953tYWcnh5ZdeRCKeAEcI9u/fh5dfegG3bt3GjRu3jFH6K6++hnff+wDHjh7B7l27sH37doyOjeDPf/IzvP/Bhzhy+BGMb9+ObDaDvr4+nD7zCT786GPDBIIoYHCgH3PzC/ju938IAuCx40fxwUcf44233sH+/fuwc+cO7N2zG0+cPIG3330P7777AY4fP4oHDxzA4UceRiaTwbe/+z3cmZjA8eNH0dvXi6eefBxXrlzDj378E/T0dGPXrgcwNjaCHTu245VXf4633nkHhw4+hN27d+HA/n149NHDePvd9/Dz199ENptBtiuL0ZERfPGF53Hu3Hn87JXXsGf3bjx88KGmCADnx2Ork2OiA8cA/lVZX8VDeqIQWNeHON5tSnSkcluBdVLG4Ef0ZTbme3ad7ESH4V1CVC8SY5NY8z39t06yEC2qzqQQQ2hdB2Lc66gyagrWGqcPizp2p+uOe0DWH76PZO40bJWlD5gNZDOY+SdhBGdEaRfcVNPvhVPNT6ZZYW2X7TBEuvf7QZLpjDh6n2WTAzSa0RwnVOb9DfKCStcR0Emi9bCQIsFy5BYj0vwFSogV2FkbV+eMoPAU5K1b07p4ZYh5T9+xKxjmFxaQy61ifHw7RkaGsby8gtGRUaysrKJWq2F5ZQVPPf0ELl++gmvXruPu3SQOHTqIo0cO4+ixR9GVzWJpcdHwIiHmcS2AcqWCM2fPYm52HvPz8+ju7sLo6AgGBwdQq1Zx5MgjSKWSGN++DYIgGEtXcrkcEokEjh89gms3buDi5SsoFIuQZQXXb9zA9es3EY/HsHPnDiiyjNOnz+Dhhw/h6aeewODgAMqVCrJdWfR0d+P7P/wxbt26jfmFBQz090EQBSRTKbzw/Bdw+/YdvP3Oe6hWq6AUuHnzFi5fuYp4PI6HDx3E0NAAznzyKc6dO4+DBx9Eb08v4vE44ok4KChWlpdx9tNzWFtbs9i1Wq3i6tXruHnzFq7duIFdO3fi7NnPkM1m8OwzT6Gvrw/dXV1IpVLYt3cPeJ5HIp7A2NgIFhYXkclkcPTIo7hx8ybOnj2HYqGIfKGAvXt2o1Qq4q233sHk3SnUajWc/ewc9u/fi96eHsTjcSSTSfT39WFhcRHnz19ArSbh2NFHwREOu3c9gJ6ebozv2I7R0REkEgnsfGAnTn9ylrmkygvONa5jWsf1R/CuqeUIp9L6Kx+QRNGz6e1K3TSRslHQ6oG4g22ZS3io829quW4+gUe/qR1fDNOeKPpSH1CNSFGVMXvBmAkZo+A21eTPPq3ZAJnbmoAzUSdUNpCBmptVb24Yb6pYZIpLp9SBtnRSyWl65J4NVgfqFMtNmnatgWzQr7spZ4uj/w6SIR+qNcbxk46uG7XFMUUyvgZRzi0sG17l7pYNVpy2wpdyfrRn56htj6uvBFhlzBYTib7OyTjqpvdvkS0j8pshYv9B0czLi0q5iunpGRx59DAIIXj156/j+eefxSOPHMLc3DyqlSrisTgkWQYFoCgKFFlGuVzBhYuXIMZElEslDA8PGWNUgnpzRClAFdXDQ1EUCIKAdDoFUIrllRUU8nl8tvI5crlVY3kQpRS370zgx3/+E+za9QBefP45zMzM4s9/+jNAk0NBUdOOmBVjIp555mlkMml89uk5gKhLakRBAEc4Q26pVMLC4hKGhgYBSlEqldDf14ehwUHcnZoCoO7jAj2figJBFLF71wN47gvP4OzZzzA7M4fenh6jIBTTy1Ez1BZP07MmGfuxUKrtFcNxSGfSKJVLWFlZAaUUc/PzuHXrDuYX5qFIMnbv2YWXvvgi7kxM4Ec//gleffV17NwxjgcfOoDjx4/hx3/+U0iShBee+wI+//wCZqZn0dPTo9YMjmgeQsSwKUCQSCRQrdawmltFpVLFqVNnMD0zAxpgXxT3x6UDO/z1RocRKGZ0oEquCECiOFTEpnPMep+iQqpRrC7L1hawBei0x0vd9MlhIKh7jjReMl2wf1cHidQc2MYHGBvKAkYDrB6USxo2kdV/mMkUEGIcg9wye1J2WRHjn1aBmD4DHh/cbmy0FqgNsL4Ns5ZlR4MwPjtc5fUBy1AA02ugQ2zqRHO4fbrFr2eDdcdvCi4pEZZt7VGo7Z6JhLH8dk7GGof6M0JDWPNv/SJLN7sMW0LE/sWP3fzY1DmWXwlupdxS+OGHGq750ZZY7vi3YkiESqAxsFPOmtI3lE76JJLYrkakQwCBdR3CaSHJEq5fv4Gnn3oSExMTuHNnAstLK9i7dzc+/Ohj5IsFzM3NYdcDO/F5Xx/6+nrR09uLjz4+jes3bhhy+vv6DL0NPtSSF20yD4rZ2TmV0FhYwNlPz2FsbBQ8zxkbnAqCgCefOIlsNovX33gTK8s5PP74CSTiCWYeREHE8NAgzl+4hFt3JnDgwf3gOA75fAHlShmHHnoQuZUcjhw5jN27d+HUqTMolor4wQ//HCdPPIaXX3oR3/rO90AAjI2OYHBgAN3dXejv78MnZz/F2NgoJEnCxcuXMTQ4CDEmOu+NEcDuU1P38MCOcVy6fBWrq6vYu3cPypUynn3maXCE4PXX30J+rYBHHjmEsdFRPPvMU3jv/Y9w489/iq999Vewc+cO4xjpS5cvI9vVhVgsBgL1BJkjjx7G2OgIiqUSerq7sbKSw/T0NKRaDbdvT+DOxAT27N6F1dVVJhHkBHcCpf7Z0zWA0eEHMDl1DflizlUmIQQCL0KSaxCFGA7sOYaF5WlMz972rdcWgiFY7e2MyU7zy3maDuWMYkHGnesy3IiWQHCYhPuOzLhCYH2AoxmPUyiKszDqspGgcdlQitQbIwqYT9KhengTgWINQzXKwCRck2tJnei3HAaiIY1SJ2koqALIEqDIMPQHYCwl5wWAE+ppt24/JTVDW/PZjQlzuW3IpT6sirdVGV1M4GYcl0m9R5ROgdNE3EvFMNnwjhPVdD/MVNQrneY6BHM/79durDi+OIdORSiGwDtw2/MfQn+nZjdyRKRb+3RoPiqlFLVazTJpXlpaxuzsLK5cvYbc6iouX7mK/v4+zM8voFqp4oMPP8av/PJX8Df/5u8BlOLy5au4fuOmZTCuKIohV5IkyLIEShXUqjUoVAG06yDA4uIi3v/gIzz7zFN4/PGTkCUJb739jmFbWZJx8+Yt/Mqv/BL+j3/rb4DjOFy4eAn5Qh61mmR4liiygmq1hkqlgpu3buOZp57A4ycfgyzLqFarKFfKeOfd9/GlL72MRx89DFmW8cZb76BcLqNSqWIll8Nrr7+JX/+1X8WTT5wEAHR3deN3/+pvQxRF3Lx1C9dv3ERudRWPHDqEv/57f1Vd9qMoSCaTUBQZtVqtYX5AFarmW1EACsiShFpN0gsAtVoVtZqE69du4IGdO/Dbv/mXIUkSlldWMDV1Dzdu3MQv/eKXcfChB8HxPD45+xmmp2ewvJLDr//aV6EoCsrlMi5fvgJJlnH4kUfwu7/z26jWqqCUIp6I47Nzn+PAgX34y3/p1yErClKpJG7evoMbN2/hwsXL+OVf+jIkWUapVMKPf/xT+O1xnENYayPPCTi0/yQePfQ0zpx7Ex+dfdVV9vDgOI4cehZnP38bxdIadu84CIEXMDN7Z+ONG3XYJ6wbFp2TAUJ90n3v/NDO2jnN8ANddgAjtL9L4WRHIhe+vGV8yXYJRM3/UHNwUvc2ATQiRGdKdMKkzoBQ8zVLGF123aOE1m8ws0jrqoBQIJ4kOPZMFrxgZ1v8wUhXoZBrQK0KSDWASs4m5niVSBHigBgDCKfapPWbU1PGtw5Fxyu4fqAuvzYMNqjaYVAuyfjg9SXPI46b7ndaEGWzoRWETavhx6Fi0yMSd4kWiW8WgRN3f48dOZrULzK9Qgmye+JQTM1ewQdnvx1KBY7jkEmnkS8ULEfkptMp1Go1VCpViKKIRDyOQrGohiFAKpVCVzaLWq2GtbU1lTwwqReLiYjH4ygWi0gk4gCAWq2GZDKJoraXSTKVBCFAqVgCz/PIZrJIpZLIFwrI5/OWo3ZVndJqmlINuZy6R0s6lUJNklCpVCAIApLJJPL5PERRVJfZEIJisQgCYC2fByEE2UwG6UwahXwBa/k8OEKQTKVQKBRAKUUqlQIBIGvLjeKxGARBwPLKCiqVCggh6MpmkclmUNDsVqlUAQCiKBpyzDZOZ9IolUqQahLi8TgEUUAhXwDhCDLpNCrVKqpVdalUV1cXeJ7D6tqaqjshyGQy6MpmUKlUkVtV8x4TRXR1dSGRiCO3uoZ8Pg8AatiuLIqFokog1WoAKPbs3o18voBMOoUvf/kX8PGp03j3vQ8gCAK6u7oQi4lYXVtDoVD05YkS5KnNpnvw1S/9TfR0D2BmbgI/fu3rKJXVE4C6s6qHCiHA3PwkSpUiHnv0BRzcdwLnr3yEi1dPYXhwB1Zy85ieu41EPIWx4V1IJtJYWV3E9OxtCIKI8bG9qElVJBNpEBBMzdzEWmHFMx9OEEURX/var+D5LzwbWoaBDu3kOtH7RFEoekdjvsK27YjjcAMpb54xapnh5UYEXwRK/dPw/jAIFN3zhGpkiR6QWL1QGuSYZZvDuZMEJucUk8sko6L7NKruASPVgGoZkCoANfox5wdIkdVjT2tVoCoAsQQgJlTNWkukdOIUwQEbSNX1xQY1VEQOe5sJbiZpLGU/5W4Lw3IzuM88hZyaV/MLLzcz2cuIVWZRx3HTe8MhqHtMyEhqDH9x1sW7xM3dhxHYzRMxEv1Dua94R4pMt8BRWrNUW1EUrNo2QaWUIp+vH3Fbq9XqJAkAUKBYKKJYKFryQrR7IEC1WkOtWgMIUCyWjDCSVE+rVCwaESVZxnJuBSu5Faaeqk55gyjQkTcdxStJkrGha7VaxezcHFNObnUVudXVug0Ay0aw9uN9rdZhy9ChL6cxQ1EUrK2uWcLo4ahCsbaWt9ybn5+3eC1QSrG2tta4WW2thoXFxYb0WGGHBgfwzDNPIRGPIxaLoVQq4dr1G4YnEktOdCDYNroHiXgSl69/gge2H8DwwDhu372M/t5R/MJzfxmJeBKgQLlaxtnP38a24V0QRRFjww9gYXEaRw89g1sTF7GyuoBnT/4yto/tRaVaQjyWwJlzb2Jy6jq+8MRfgCjEUCytIZvpwc07l/Dzd/4MshJ8g9yIs7+FFqEJEsVheOo0kESQbtthEs6Q65Kch/wWECnm2boDi+o4qPdLnhjfTR0a1cgUirr3CeqeJ5aji6ETH1YPFOannUAx6WDZM5CRN2aGPYxKNZ1rZaBSBBTJUaoDVBvINYqypHqvJNIUHN8eImVDzGHtduhYRduLxuphHjBuQCOx6vsGzEaUYJnEvdx9SjJG7oES8iZfNji8SAs/ZmpVnE0D187XT2Q7BeUVgwSM0QI4Je6qlJ2IIJbPyBGqXKyRItUstDD2jmIbCuteYTcgmmpX2JhfWMS3vvVdDA4OgCMcZubmsLy0FFo1tyt2xMQ4dm4/gNzaMi5c+RhDA9uw54FHMHnvOvY98AhSyQx+9uafgiMcjh9+DiDAJ+ffwbOP/zLOXngXi0vT4DgCnuMxPDCOndv34+NPX8edu1fw/JNfxUP7HsPyyjwI4XBz4iI+OfcmHj/2Mvp7h5FKZpvyRmkaHVr3O9EDJQwi8kQJRo+0YqxoHg4EI2qi9nTRI5M60+Cwh4mhM3VOh0WgWH4aRIlOGZviaB4l5oMIzBvI6sQK1bQxH3dMbAQKMXmsNLXHr4NRKVRvkmpJ/aNKMw+NShzVyhSKrBIpQqy9Hin2F2MdOz/qaOXWF3XTmL9twH1UdGyYSrm+cDON870QsZxm+8E6sq2y3EzwU5YN/VgzFSB4p9jy4WyLPDh8i2oWoQmtFjzKTWU24AusDkBovoQSgHRKLtYZLTICpRSLS0tYDEGc6AhDoABAV6YPO8b2oljKY//uI4jHkhgbeQA93QNIJTMolQpYzs2hUFzD7PwEFKpgx7b92n46Ncsys4G+UciKjKmZm1hdW8Tkvet49ODTSCe7AFCs5VewsraI5dwC+vtGwXNtW/DRiK0K3XJEWLq25t/ljXewF2+29/sur/vD1Rd3bZp6Sehj1k5cBFvICmr5MJElxHSDWrxNjMCGF4p+XyV1LN9N7EydQNE8LKIiUHTYypACoApFpagSKFGOIuQaUMoDySwgiL6KpAnY33ZtkJnNhnChWR8Q5je9ZDegsZxeK27ArBhoAYng1kw4O5UEjWWNXQ+qZajZOcxGLtPNAjtx6TdO4EAdSIYEQajseEdqY3cfKqIfz6rW6mIV0NwYun0QREE7xTL4MgnjNHMAHfYUrB862AzNUqEc4bBrx0OIiQmUSgWMDT8AWZaQSXVh28hu1KQaYrE4YmICXJrD/t1HMDM/oTv8g+d4o75QCpTKeQi8iIG+UayuLSKT7kalUkSh1LDoav3MuuHKs7mQ64mIKTKX0WwkA10GUdPmgWJzSZpiewixEygGw26ObhAp1BLHeiQxLB4m6nUK88az1CbQOHvGlK6Zk7HoabofpsqrxAxVPVDKeiJRPTyqHEWiqBQouCzasLTHSY8NMqPZQKquJzadmfy+Ae+0TBPT5zrq5sZHeavmNJVq0hXFjVgJQ6CFsXG7yqVdurk5PDTYNgQZ5unRFCyGPwktRPDshIoUhqsKhFD1OJRLTXCEEGn1qGyGQGkdeJ7H3j27sbq6humZGfA8D0VRQAjByRPHIUkyTp0+Y1l27vTulngNUAkg8DwoVUApsH37NsRjMdy4eSvQUbsbBi1/YKJBFKolE2ns2LYXswt38dM3/xiVShGZdDe+9PxvYveOg/j88kfYv+dRPPfkV0EpRV/PEGbfvot8fgUcCA4dOIGLV08BAChVMDV7C6v5ZRx/5DmMj+3F+Ng+XL1xFsVi4/40WwiCDVIpbWiBn5GL74aDs0qwJsqbSAkv1zkW6wVuOPnE252D4YEC2EgS6GQI6kSIfo/awxLjFB6qea4Yy3/MaVBzcvWOleodLm3MObF9hoFUAyolqLtrteThIZCqFJUCkMxaXkO0GFbvBXuN6diuebN4KLQYrPX0G3apD7CR+i0ADHX96N+G4gn7dtk8fPD2bHFLwT4QYXS6QZULE9ZPHCdSx092mnfGiDYOYf0I84rBOayvpDsFoQYH3pHaZoNQ9YvYfrWoZEKJte9v0oRubRgjxGIxHDz4ICbvTiG3uoqXXnwep8+cxezcLIYGB41jhc1wJE2YWa1fTMTjePGF53B3agoXL17G7l27kM1mcPvOBDOdDY0oBu0tRPAn30Me4TE7P4l7s3dQKObUTXnXlnDu4gfIZnowM3cHr7/3HezecRCUUnx++QPcm70FnhNw6tPX0d87jGqtiis3P8PC0jRWVxfx2jvfxIP7jiMeS+LMuTdx5cYn4AiPS9dOY3Z+EpQqmJmfgKzIKFdL3kpGhQ1XpuFDdgrav1grkjdTkbAx7UGDTvqbKTUPKqlh9U6htriUca9+6o5GchjkidUrxep5ok/yCAD9BB6NXDF0Msczp2kaDDrs8RIUlAJUodoeKKb0W/L2kqBWpRBrgBALzqPY30YQQphvKIirYGvGmNmkKtu9ls+D53gkU0msra1B4AWk0ylYyqgd7Y2dHO7EZ6yDYD3BgJqubRLDdVJb2zBp9aFUB9dnpzF/cAchv7O/9XLdsN1uuObQv7vFaYVugePYJ9DByTCW9I4ZVvoxV1PKml/cRCiWlQxFCxJqLP9IEaFuoUVE1F4SQjA2OgoKiunpGXR1daGvrxd3794Fx/HYvm0blpeXcenSFZRKJRzYvw8PPnQAhWIJpXIZIEAymcRDDx4Az/OYnp5pON0lkUhgx/h2pJJJrK6tYWLyLmRZPd53fPs2pNNprK6pXi579uzGoYcPoqenG/NzC7h95w5ioghFlsHzPMa3b0NXVxcKxSImJiYhyzJGR0YQj8cQj8fB8zzu3ZvG0vJyNAZqFTqmMWmEXr3YlHN4xfPFFbx76icwV15FkXHx2inj962Ji7gzeVm9px0HqigyPr34HjiOg6LIuHP3shF+fukeFj6eBgEHhdaXlH1w5mfG99uTl3F7sh6nZeiwcYwdHVzlIkELSRS76Zy9R8KR2oyaE5lcf7E8QzIvqrHq82+tyaC2aZaNQDHP1y2n7uiyaENU03XzxrPEJMNZ17pIYr1vsNikke2BLYwL9ORrVUCqapHss4iIGwaqqKf+8AIF4YM/2jMzM7h85SqOHzuKrq4uAOrRcRcuXkS1UsGjjz4KURQ9pFhrDasOlcpl/OQnP0Nvby+efvpJ/PCHP8bIyDCefuopnP30U2SzWTzy8MOB9Q+NFpfLZgNhftvgp/3YwXp82p4t+6TLZ9vt+YbSQcQ61X0/LZWfMI3ZCbNrU5gh0eaI44cUCeW8EEGclqGpDNkZyxYlEwT2t/BN5qcleoYS2iLd/BRMiIQ4jsPBhw5gx44d+MP/+ic4fuwITp58DP/563+EVDKFv/Arv4hXf/4aHn/8JGZn55DJpJHNZLBv3x7cun0bhHA4dOghDAwOIJ1KYXllBX/2Z99CvlAAgerF8uUvvYy9e3ajUCigqzuL1157E+c+v4DnvvAMDj/ysHq9qwunzpxBT3c3ujJZ0NFRbB/fhh3btyOVTuHu3SkcO34UT5w8gbW1NXR1deHipct4++138YVnn8a+fXsxv7CATDqNhYVF/PGffoN5xPC6oqMaFDbYj2OUinv3dDp5Yo+nOBxPTCkFRYccXdyBZexPpQ5UPCC4ULEC5duBW2TICP5SgDEadvAEaGVR+SdQtFvGPWK60Pg0qCRIfaBLQevXDM8T/Y/WT97RSRfNm4SavVWge6M4qGojbCz9st22xCOjHqAKUKvUiR1npfRL6n8z04t4763PMDU5F3C9KoFcU5cPBXWkoRS4Nz2Nn//858jlcsZ1WVbw6Wfn8NHHp1CrBXX7NJW16aqiKJibn8Py8jIUWcHs7CyWl1cgyzKWlpawurrOay83fru3LtDoy3XWooWIaIAdJkn2myv7n1NsF+H26Bt4VuyVHScrme+HSXMjxzHbhIJdm9xqWMfCq6CZGQqSQ30i72yZSO3mV0jI5pdYnpjOIlBaplsLK7Qsy7gzeRdd3V0YGx3FAw/sRDwWx769ezA42I9yuYyZmTnwAo9ypYxXXn0Nc/PzeP31N3HnzgRAKW7evI0//MM/xiuvvobBgQEMDPSbUqBYWFzEK6++hj//yc+wtLiMvXt2Y2hoAA8fOohXXn0N/+nrf4hPzn6Kgf5+vPPu+5iZm8Nn5z7HZ599Do7jwHMcMpkMThw/jg8+/Aj/6et/iJ+/9gYePnQQ27aNgeMIbt26ja//lz/Cz175OYYGB9Df39c6o4XBBmiUWC+dVGzisVJU6FAT+a92HZqBAAjniRIo38Ff3+kxgsWits/1AYH7BL3xnm2DL2q9Zmz+aj7CmNqcQPTf1HaNmkQaXium9+F2XSjDeiRECfoMrCgUiqQlwgIj4Wq1hg/f/RxvvXYGJ548hL/4m19ELObl/WFSjQKyBIhx31FMcSlqkgTFxjLJsqytm1WJrHyhgDt37qBSLmN0dAzDw0PgOA6SJGNubg4zszMQBQHjO3agp7sbAFCrSbg3fQ8L8wuIxWOoVWumFNR/BVHEgQMHkEolIcsypqamwPE8yuUyVlZWMDQ0hG3bxsBz6gZsC4sLmJy8i3g8jh07xpHNZj2WG21hCy1C8G5gC1toCcJUxa3q2+FoU+Fs1QMHhBhWLC4uolqp4KGHDqCrK4vzFy5gz57dkCQJE5OTqNVqhrEVRQGlVBt7qeOspaUlFIsl5AsFSLIEnucN2bKiQKrV8IVnn4Yoiuju7sLNW7cwMjwMwnGYm59HpVLBa6+/CY5wSKYS9XG2Pr4jBNmuLASBx/UbN1GrSZidnYMkyejr6wWlQG41h2KxhEK+AAr48ETegjPMb2y3njJPbJmpI+CfRGmqwPxNku1vd/wlZ35P5HzJ5bIP2e6x/DhkUFYYg7TQ3lFTqnllUBvxoYaxn7qjfm881ljlTlQihlAC+xHG5jdqhiiG/vY3cMwsWpb1aKFZhmaYUq4BDp5yja9KtTjLy2u4eP4mKtUarl+ZxPzcCsa2DyDIJmlSFaDJcEt61HPjJVSrVQAq+aGYjtlbWcnhez/4Pu7cvoNEMoFKpYpf/epfwMGHHsKp06fxs5+9gmRS3edkcGgIf+W3fgvd3V346OOP8ZOf/hSpVAq1WhWzc/PYtm2byQQElXIZb7z5FkZHR/DiC8/jBz/6EWZmZhBPJFCtVEApxV/57d/G/n37cP3GDXz7u98BKFCt1TA0OIi//Bt/CX29fdG8ndh6aRAK7M1oG79tWLg5fPhrTiNN2h6iMVlWLA/lgrz1Nue9Q4vXnp37wRsljGNREDt1FJwUDZUBf5HsY7m2oanEiMuv5pzRXAWHFBKpjdehMq+urmFxcQlHjz6KyYm7uHjxMn7pF7+MWEzE6dOfQFH8tNZm1+n63YH+fjz15BN4/4OPcOHCRUNuuVwGAYEoiNq+LCPo7e3F5N27hhzzC8pyuQwA6MpmMTc3r+1/wqFQKEZpimixARomZxUje8o2B7za7g4zUzB1Okz5kAjniRLlgNBFVrBk9NDB6Jfg2XCPxbrDIiiYS2a0HzpJYt0c1nqNahcsYcz8hb5hrMVVpZ4DM6HC2h7FidBiWjmgIfW8KHIQpy/1LcTt6/eQWyng6PEDuH5lEtcuT2BkrB8851cWAVUos0z8IJ/P4/s/+CGymQwA9Y3HtWvXsGN8HJIk4+ynn+LK5Sv4rd/8TfT19eE73/0u3nnnXWzfth3T0zM4cvQIHj9xEhMTE/jmt7+N23duY8f4ON56+23s3bMHX/7yl7CwsIA//pM/bbQBpSgVi6hohEmxWEQimcRv/sZvQJIl/OEf/VdcunQJo6OjeOXVV5FJZ/C1X/1VLCws4E/+7M9w/vwFPPPMM+C2vFE6CvXHx/xtE21Gy4Jbm9FCwsEXMRyVcqxZmFfU4N3YFu53sOqKZxMf3kPYK8y6IFDCak5Yx/yGEueeTOO1SARHIIKddZco0fZJsiTh+o2beOSRQ7g9MYGJiUmUSiXIioy5+XnLm75arQZFoTh06CBWcjkHneu6KYoCjuOwY8c4uru6sG/vHszMzWJ2bh65XA4vvvg8bty4icOHH8bU3SncuTOBQqGAnTt3YPv2bYa8fD6PmZlZfPGLL2BoaBB79+7B4uISpqbu4eFDBx3TbytClOV6wptA2YIrtszUUQhGokRKd3t7jnjc8pDvHLk5jxdGLIvHBTExHQwxTt4otlN17OSIhXMxhzURLMSIZz45hjYQNuYxupsHitM1ps0IK6Q1XXMIhSXDA5VSFZcv3kZ3TxpPfeFRLC+qXiknnjyIdDrpW456KlDAxDXwPI/hoUH09fYCUPdEmZmeBqB29Ddu3ECxVMLlK1cgCDzW8nlUKhXIsoSnnnwCly5fxjvvvYvFxUWUSkUUCgUsr6ygWCjgyJFHMToygkw6g5GREZcMqB8cx2Hfnj3YsWMHqtUqRkfHsJbPI7eSw52JSfT19uDUqVMoV8qoVqq4OzUFShUAvLPssNjyTGkKhPmN5TmxiQzr1+WBleUm+yLvFznWO1Zewy3xCLxYnDx3toiVzY+w9TowieAvUkd437SAeND9OFp+BHFob5/6q6zINIygMNn2oqF0VCjFzVu38eHHp3Dt2nWUymW8/+FH6Mpmsby8gng8juvXb2Bubh7lcgWnTp/Bgf37kMmkMTk5BVmW1eXT+QIuXrqMtXzekL20tIzXXn8Thx95GOKggM8vXESlXEE+n8ePf/IzPPH4CezZswu3bt3C++9/hHyhgA8/Po3Hjh/F0OAgJifvQozFUCwW8ZOfvoKnnnoCe/fuwcryCj4+fQara2u4fecOymV1E9m1fB4XL15GIV8IYYkm0KEeCSywVdwAincCOthMwVXr4MyEQPuPODbAGBGu0yCxaY8UUicyLASKRqg4ERZ1nsNKdNjJEUM2dEJFI2qo9mbA/EkpQHSSxUZPm34by4BCHFdsHs+HLzIK9WQw/w/U/Nwybl6fwgO7RjE43IvtO4Zw4fMbuDs5h/0P7gg0IGJ4ivpCMpnEk088ifHx7QDU5Tyz8/PIr61BURQUCgWkUilIkgRFkbHrgZ3o6uoCpRRvvf02bty4iaNHjiCbyeLGjZsApZAldTlQIp4AABCOgOP87fnM8TwIR0AIgcDzoJSiWq1CqtUQj8dRrVZBQHDyxGPYvWd3+/dE2Zr4NYVG892HBg3iwdFCFfwlY/d10eMEVc6WktNg2e426DeZ+7AaRYIgdvNyaILpflPNcvCE/MRYN4R6s+4/Ry3LXyQOIjpxHrGW616obCwtLeFHP/qJMVY9e/YzoyjL5TLeeOMtY/x7+vQZfPrpZ5AkGbdu31EFUGBufh4/+ckr9ZeLUDeuPfvpZ/j8/AV1LxVFe2tGKe7du4fvff+H4HkesiSDQr13+fIV3Lh+AzJVQJX6W7bFpSX86Mc/gcDzkDTiBgDe/+AjI8zc/Dx+/JOfBTzooEl0aJma4d5cboAMbMEVWyXYDIkSZuDGFOLiJuLPWcVBrvmnnb3wpYnvdHQCwxBuJkdY6Tl4n+jXmb81QdQ4olgnP/RTd0yulrp8834lGmFS53hI6IG0fTxvF+PrwQqQLgWFpCi4fPEOlhZXocgK/uTrP8Py4ipyK3lcvnAbu/dugyi0nhMkhIAXeIiiaJyIpBMegsBjcHAQa/k1vPD8c+jt7UUul0O5UkG1VsP5Cxdx8rHH8Pzzz2FychJvvslBoRTZbAY8z2Py7iT27duLUrGIfD6PocFBN01M36wWT6dT6Onuxvbt2/GLX/4yCMdhYX4emWwWHAl3IFdg2F2XdGxN3AKj8XmqX7GacxMb16lR8XSRa58q9lBmfsP/ccLWWIE9W4KMarwcaljP7WZ5llkTda/fcPjtlU4z932zLc6CnPwZ1tWrxF6/nMIFEkoarrQMTSfgrGvTfFqTaJl3jgMaiAf7C0XTd+YJiFSTwSCYJT286R6ButxHJVa0p4OoEWqSZAloVFdqu+cnH63ABpq1snn/DZSB9UYHmyq4ah2cmSYRzayzqcGrS+RWD4oZL/uCJOdEkNgJDXvYOl9ONM8SM/FCGskXwwuF2DxUTESKSYahkr1vMt0nOu8TgY3tnim+QAg4v6tKKJBfLeLKhdvo7c3i4OE9EEUBw6P9uHyB4tKFW3jm+SPo7+/2mTbg09EjEEQxhmPHjuLipUv40298E2Njo5iamsLOHTvw7DPPor+vDx9+/DHmFxZwb/oeFpeWsLa2hv7+fhw8+BBee+NNTE/PILe6iomJCezetYupu+mDebu3txfHjh/Du+++i2KhCEHgcW96Gl/58pfR39frErsN2HoDHimsc8FNvo+KHaxqHJWnQARgTY68HWqIpT31x1qEyYhHHD8zO7/NiBM54ZZ2M9kJyztEOpu1K+U3hhPZ5k6S2ON0zJCVVS7276EFRyjOT3IResdEqm+odmyTdMQO2XAdi1rK0dradjQ65qF2BpuqDfzg3L/YIFXRG/dPuUf36t7vACloZNutcC/CXIQwiBQv2Y0kBbF8r99XhddJj3q8ukdJPb4RzvS9HgbWMJbPOi3DVN7M0ei/LTawVXIPRt3+aDS+N/V+aII8VpRS3Jucx9TdOTz2+EH88q8/C57nINVkpNMJvPP6J7h14x76+rvqy1Xc5gcECOqQQQgwPDyMLzz7DLqyWeM6x3E4dPAgKuUyYjERe/fswV/9nb+CTz/9DKViCQcfOojjx46ir68PX/var+Kjjz5GsVjE4ydP4tjRoxgdGUUikcCXfuFL6O3tw/T0NB7YsQMPHtiPoaEhxGIxPPbYY+jt6UE8nsDxo8fQ1d0FURS1670ghEAURTz66GEIgoBYPIYXn38eA319uH7jJjiOx4svPI/9+/YFtHyLwFJhU3Qc6wNrc9Zo3M1KrDjW5CBVvM2DFj+qsd/gWa80Tpr9errY5dmnGy1gOMKQE2GaqchJkKAJhg1jDRlF1tsKr8QDKef8OqZtefRLuvkQ0hKvjmYITVukaHjCdax9gd7cuYihpGEYHKH48OiA4ZofsNVspkW7j9Gh5mpPT7bxQKhPH7R3fpTzJ7GpAalLZIdbwZLzL98pJNP7BDrvoDW51DRxsRAdZuIEjL1PqOW3/t3wHDFdVyzCrbqZh7nUft8Ex+Gwjyph5u/tj0o8weHY02lwLkcIUwDVElBa80wKsqLgwrkbuHjuJh574hD27NummlmhuDs5h3ff+Az7D+7AsccOWPcSYWcOfAxId5NA3ij60h19+Q4h9c179fW2etqUUsiyDEVRIAgC4zqFIKhuOIQQg/iRZRmyLIPnee0aAccRKIpihHP6ztJDURTI2vHLvCDUT+Xp1LbNzM5tznn/usFOpGx0r5VyScZHbyxDknTaNqL8tMJLoo3wq5p7Nvy4dESTUufFcc9zELKK9S5uQ7+bi9gbgx22De8wzQOXSBNqk3dMBIJD0SdOjwsFpmYv4/1PvtW8YmF0cckKcfhBGF8IS1a7h0wb9AX+OlKemws2s4miiK/96q/g+eeeXR99ELRKbo5yVxSK3tGYr7DRbyLhx5XDMzJDgIPcYEMnD/mmjtUu16hE1BbT8ts2kLe4fxB3jxKzNwmFJSyAhhN6CBpP3dF1piY59izql12rupmSdyBUouAaeRHgeECR3cNxhODgI7vx0MFd4ASu7m1CgO3jQ/hLv/VFY3PVBiUZnb4QQwhPlEb5+m+eb1yXJJj2ZzHHc7pOKQXP84Ys8z2zfKfv1t9qpjmOq5NKG6FtI4zvHTxh3UhgDZo3/uk/xFZlIsiPX+cCp9nxOiPIY+4clj2TsPYbxNEEjb/Desn4D0mNb2wpzjQQcQjj/Lq/GRt3VDMcZsIWKAPeowSnO5HbyakgmkyobZ4moUVFwriwv7tdawWcytBzQOsm0KNlCi07BCKqk+0CW80NonwnoYNNFqxKdnBGWoh1PJ3HDcFeSdvbUn8DNkYLbGJILPwESyAjnIV8MZEf+mfDdeMabQiry1Pv244sBmEyPEYIG4/jNZBzoZYQ5vQePyBQ9yXhBW8SRT95xn4yr05scDEXRsRWIQhR02wlnE7AcTsZJ9pTc9RMW7iwCKVvYfOANal0ri3BKOvWwnkIZ/e5qcPhNWoUyW8UszWBIP2I/Xerh1de8v3M/TbsEDBM/Qo1YQuSUJ1wcvL1iRRez1/T4s0vyIKTaQESChFlY3sVNiAMueeH7DCFYQV3E9FyLmUDND5himULHuhgQwZTrYMz0mK0bjrJaqFCRbbPgp1lmscFwbxT6qEb4tm8UiweJPo17Rhj9bvpnokoYXuhUIvXiU6Y1E/d0Zpuk8D6ZrJmZfU3fY1dqVNHYQ/naq+Ae6b4BeEAMQ5I1ZbwNKaE9C8UvAgI4v3wyBPGrw3od8AqqI5XemOCML7psHoVdHYB+H3v7eS9YA8RQcLBktkkpMsWWoi2M0DOrEsYAisStMwGbJIkMq+TFniaNK1bpwyIwpB7IXWnoCCUWOJT2jjcbRk6xeY+4F4sGygjnYAONtcWcRIcbTrvFE3a2yGyw6uuMK7DFqLDBru3Sd3jg9aX4VCbt4liumYmUMzXjHvaUh/jZB5iImOoMWkxn8ajsiHEFEIjWGy2aMyplVV3ahyZInTFI+plCFRCQxAjEeedHgfEkgDhvO20OcEaAG9AI/h5rbyFSEFgntsT05+fmJ0JwvhrDGG/EiY/HnFYSrRhErGFFiPqqhLksWsqIXZY+3ArMlXYyXkjNNHIIh6sOWqZiVtAoISMbEXTpC0Jn7coKpM2nraL9BXRK+/ml6HhtGvEBmqz3V6ubKiMdAI63FzB6vfWmx6gY5fzhEDI8jRID0vtpqZ/HZKxuKKo0wtqPo0HOiECm/cJTI0yMXmk6IQIsbi9GOSOMYPRCQAT4WIE1iL6GLPrn9THZz0igX+XEX+tBeGAWAqQJQpFaWULQyHG1P1QwkugoApFrVYDCCDwAjieW1ciQifxJEky9kDxtzRIL932NYSKoiCXWwUB0N3THXoJk05eSpIMURRU+zsSoBTlchlra3n09vZCFDZHk0cpRbVaxfLyCgYG+i177TQrl1KKlZUVLC0tY3BwEMlkEoLAo1wuo1AooqenG6urqxDFGLLZjMej3pr61b4nrqEVDIE2PWNRqLqF6BGmXCIqS45jnzpST8QDFFBogG5/C5seTP6F6P90RkWpe056h2sIw7y4hS2sD6Jd6r+FqNHeGUVTbaxekajnZWaVMy6aAlJNJcIQY9yjTNmU2AKbP6n5GmDea8WYuhKAUN01XiNQtHjULsomTg9LLTm1vQlo2AGXDTfPFGZ0Y1NXUleEJRT+TjIgRN1gNpYkKBe89Q0HdRlPPAVtHxWbrj7sREFRKpVx7tznuHXzNkCA8fHtePTwI8hkM20lUihViZxcLofu7m7IsoKPPz6N0dFh7Nu31yN2Y+YJ1GKUZRkrKytIpdNIJhMBFAKq1SpyuRx6ensgiqJxXVYU5HIriMViiMfjOH36DHiOxxeee8Zz4k8pRbVSRW41pxIgYt1laW5uHp9+eg5PPfU4urJd5uw0YGrqHk6f+gS/8KWX0Nfb6z9fHY6FhUW8+spr+NWv/QX09HQ33NeJpuXlJXR39yAe98cgzszM4Sc/+SlEUcTRo0cwMzODgwcfQi6Xw4ULl/D881/Ae+99gNHREZw4cRycbZfmTl/u4wb2U0xsv/xslGoexoe0RxhvFFYc+6QgAtW2YIN9AMHqUIPKCtilcISAFwl6+kT0DsaQTPOIJzjwLqfkeYFSoFJRUCnJWF2WsDRXRaWsQJFbVHFC5t2/YP0Xyxsl8mQiy0fkG8SyfjNu+y1ljnDgCAeFemxw5zPtwHCQR+1BGAQJ1caq5jiERaQ0S65soLmws6obKBOdhJBmI4RAFFs/TQ+u3lY90OG7dCIbb7Vq4GZnAwDwREGMVxDnZYi8AoFTwBMKjmv+DbzjmxkLR6MvvaGW24rCQZIIagpBTSIoVXmUqxwqMmcs8zFEMcgT/bKjx4gOn7Z2G3e7yg8g1U0GR9RlNooMVMuBE/IABccDiTTACQ4PvkcGdQ+UC+cv4uOPT+PRw48gHo/j4sVLKBaKeP6F5yAIfJ0xpia7Gcu9qOWEH6frOuzHF+th9Xjz8wt4++138YUvPIPBgQEMDQ4im80acZ1kK4pawfRr5ntra3m8/vpbOHz4ERw4sM+Spl1383cKitnZObz33vt48cUXMDg0YAxKKuUy3n33Q4yNjeDwIw+jVCqD53nIsgJCZMuR1OpqMesxzTOzs3j77Xfxla98Cf39fUa6iUQCo6PDEEVRLR+qlpFZT12HWk1CoViAoijQ9yFSqAICUl/a5VYmpvDq//VP81HmiqIAhNSPkrbJ5GxnatuPpGbZ1lp2iuW3JEnIFwrG0di6zubjt1dzObzyymt4/vkvYNu2Mccy1eNQSjE1NQVJkvDyyy+hu7sLoBTJZBLz8wsoFIpQFBnFYhGVSsW0GTZt0LmhnmgNWktOjGozIeDUZrJCWEkXT1oZzbS6jiKdfrPIFTc57fCo2ChxWJVgHcaWBATpLI89hzLYtiuJZJoD4SgoVbC2toZyOXynyvM8Rrq6IYhJUEog14D56Qqun89jYbqq9SeRZaTJyE66ENO/LUQkPEe9T4mU4AlImLCrtqobtelGAMTEFOKxNErlVXfBPnRpOXwQJI5EShB4tRUdig2kamcjgi48JorIZDKRqGNGuKq59daFhUAUl/1lS2g0Jchl1EdU4iQpSEjHJCRFCXFBAk/Uk0osY8d1aiksJ+dQnVQhKFU55Ms81koCVks8qhJvOJPoVdccV5uauLwVJaYPf14pjNiWT1fPFD1DDnJcZUA9qSeeVgPVSlE9qhqBkgGEmD5ZdAjqMZlQqIKFxUVkMmkcOXIYqVQKPb09uHNnAivLKzh95iyefOIksl1ZXLp4Gfl8Hg8dfBAffXgKsixhcXEJmUwGjz9+Aj09Pfj41Gnk83nkVnKIxeI4ceIYduwYR7FYwtmzn2JiYhKJRAJHjx7Bzp3juH17AufPX0C5XEY8HkepVMK1azdAKcXTTz+J2bk58AIPSinOnPkEPC9gfn4eAwP9ePrpp5DNZnDz5m2cOfMJFEVBV1cXent7cOLEcYiiiLW1PN59931cvXoNa2trSCTiGBjoxyeffIqJybvIpFM4efIEAODs2c9w9NijSKdS+OCDj5FMJnBnYhK3b90Gxwt46YvPo6+vD+VKBR99dAoXL1zA5OSkSnhQBTMz8/j+936ASrWCQwcP4vCjj6BSqeLs2c9w+/ZtcByPI0cOo7u7G2+++Q5u376NN954Ey+99EX09vYAAEqlEu7dm8GuXbtQra7hww8/xvT0DLLZDE6efAzbt29jVrhKpYrPPz+P69dvgOM4HD78MPbu3YOpqXs4d+48CAiWlpexfdsYnnzqCYiigCuXr+Gzc+cg8AKy2QwGBgZw4sRxo85IkowrV67iwvmLUCjF4UcOYf/+fTh37nPMzMyqy2CKJRw6+BAeffQwFEXBxYuXcPnKFVCF4tChh/DggwcwOzuPy5ev4Omnn4AgCDh16gx6e3uwZ88eXL58BefPX4AgCMhmsxgZGUZfXy/K5TLeffc9rKysor+/D88++xS6ulTPnLW1PF5/4y3cvHkLikLx8ssvIpVK4cyZs7h3bxqZTBrHjx/D9u1jhn3u3p3CmU/OYmlxCefOfY5HDz+C6ZlZ9PX3Oz9lGvly48YtTExM4rnnnkW1WsWpU2cwNjYKgOL8+QuglCCfz2PPnl04fvwo4okE+2HzCWL8Y75gVy60+MBw61KIS6jGOYbeptsbJa+JYpOZ9dMnhuk3t+JELlwPxQsEux9KY9/hDMS4jLNnT+OTTz7BmTOfYHJiEmv5PBTZp3cAKx1CEIvHMTQ0hEcefhgnTjyGEydP4Okv9+PerTIufrKKtRXJWclmJ6LeGpqSafGgrkXi7XqHykeTE3Z7y6EXm1/dUsku9HVvx1TlUn0caB9ErgP8J00B+yazYBApjcFcRW4URsJZzQ2SgU5DBHWfEIIdO7djaHAgEpUa5IcKvVUf7Ai1sWznmFGnEgCOUGRjFWzrymO8O4+BdAmZWA0xnoLnVG8HYvpbN41NOnAcwHOAKFBkkxJGe6vYM1LEgbEihnsqiAmK2jdSJ8+X+hsW8x9gL6PmM2zun83pWJPxTsctBK95jMTTqm2ahRADkl2AGPcgUOxghOM4Djt2jCOfL+DVn7+Oa9dvYHh4CM899ywogNu3bqNcKYMqCubn5zE1dQ/lchnXrl1HLreKgwcfQj5fwFtvvYO1tTxu3ryFxYVFPPjgAVCq4M0338bKSg6nT3+CGzdu4sEHDyCZTOKNN97C/PwClpaWcOXKVXR3d+PBBw9g586dyGYzeOCBnUgkErh7dworKyvI5/O4cOESZFnGvn17cfv2BC5duoylpWW8/fa7SCaT2LdvL6anpzExMWl4Q8TjMezcuQNdXVmMj29HJpOp63JgH0oldbIuCAIqlTLee+d9nDlzFpOTd7Fjx3bs2rUTmWwGu3btRDKVUu3P8xgf347e3l6MjY1iaGgQoEAut4rt27ejp6cXp06dweLiEiYnJ3Hzxk0cOLAf2WwG77//IRRFxgMP7EQ6ncbu3bstS4zy+QLu3LmDSqWC8+cvYGJiEgcPPggAOH36E9RqjQN7WZZx/vwFfPrpZ9i9exeGhgbx9tvvYXLiLpaXV3Dx4iUkEnHsemAnLly8hMmJScxMz+Ltt99Bf38/du7cges3bmLq3r26UArcvn0HH3zwIcbGRtHX24t33nkf0zMzmJmZxZUr1zA6Oorenh58/PFpLC4u4urVazh16jR2jI9j+/ZteP/9j3D9+k2sra3i1u3bqFZrkGUZk5NTmJ9fxL179/Duu+9jeHgI4+Pbce3aDczMzIJSikqlCoBoZX0Hly9fNbxC4vEYdu/epdnvAcRiMXzwwYe4d+8eDh18EIQQvPHGW8jl6m8Pu7u7MDIyjJ6eHuzduwcUFBMTkygWvdfarazkMDl5V1tGJOHu3btYXl7G8vIyrl69joHBfuzcOY4zZ87i6tVrAKXMQbnfSYQvysCtweqQjsy7/YbtjjU0cYnlnuoWgiPIezsvWs3OAPqLoYcR4xwOP9GFR57I4vLVT/F3/87fw9/4638L/+pf/j5+/upruHLlKu5N3cPMzGzov+npGdy5fQenPj6F//1//0/4u3/37+N3/srv4tvf/gYGtil48uV+9A0zlgk2Neb2b7e2De3bRKCEFFL/DCjOPbh/YXExifHRh5BN9YfSo1Wgps96f0HsF4LRz8HfSXYcvN49eN3ZggsiMltfXw8eP/mY8VJs/XAf1oMAJEHoxVZ6Ek01JhEIIQDSYhU9iTKy8RoEzuoCv1Gg6yzwQDYpIRWX0Z+pYj4Xx2JehCQHGbwxTEpsxg7pmaLD8b2oTyLF1SMlpZ7YUy0DtYoTgeQECk4AYgkCMU7A8SFJM1Mc/Ri8ffv2IBYTcfHiZbz55ttIp1Oql0cmA/M+EObvYkzEw48cwsGHHoQYi+GtN9/G6moOgiBg3969OHLkMDLZDH72s1cxMTGJyclJPPjgARw5chi5XA7f+c73ce/eNABgYHAAjz/+GLq7u3H37hTOn09j27YxpFIp6KMCSim6urrw2GPH0NPTjZmZWSwvr2B+fgGVShUnTz6GwcEBrK3lMTc3Z+gZi8WwbdsYMpkMRkdHEIvFcO3aDSSTCdRqMhKJBO7cmQAhBMePH8cPfvAj3JmYxAsvPofx8XEABJcuXsH49m1IJlSyQxAEjI6OoLu7G0NDg+jv7wPHcdizexeOHT+K+fl53J28i3K5jJGRYRx+9BEUi0VIkoTVtVUQQrB9+xjOn09ix45xxONxSznrZAEhBJVKBbVaDY88cgixWAw838jCSZKEmzdv4YEHHsCxY0dRLpcxOzuHm7duoa+vDz093Th58jGAENy4eRMrKzmsrq1BEEU8+eTjiMfiWFhYQLVWM8pZURTcvn0HpZLqMs8LPArFAmZnVdvu2vUAHnvsOO5NT+PevXtYXV3DrVu3MTw8jMceOwZJkjE/v4CbN29h585x24NBoSgypqbuIZVK4eTJxyAIImZm5oxw2WwGjz9+El1dWczMzGBpadlSpjt2jCOVSmJ8fDsURcG9qWk89tgxPPzIIYxtG8V3v/sDzM/Pq8t2AGSzWQwODmJtNY+dO3cgl8tZlpG5wxpOX8JDCDA4OIgTjx2Hosi4d28aU3fv4eFDh0B44ptIse+1Evi59kuk2N/ortOI2V/2iOlfdiyn7Pjb28VJirvkxt+dMu0Ior8fGe4SvCfJzrLcIMQIjjzVjbFdAr75zW/gf/n9f42FhQUfMZ2RTCaxZ89uPP3UUziw/wB6erpRqVQwPTOD99//AOc+/xzz8/O4dOkS/tE/+sd4/4MP8A//4T/A4y8O46PXlrA0X20qfRWNtAjbHi0Y47VEZMvYF8/bflbn1T+b0JOoL5n6e8awd+dJ3Jg4jbXigrE0d73RaAcnywRwM/EbtAOX83gT9VsIjAhNx3EchoYG8OQTJ7Fzxw7wPB+J3GAq3ud1IcCkc0MfVcFBRl+yhP5UBSKvTiI3IoFiByEEPEfRk5aRTRaRyQmYWkyiXHN/mMzEhv3TJTHfFcZNftB03MITonqRcAIgxAGpAkg1gCrOqnKcSp4IMUDU4urpNAsKClmWsbS4hIGBAXz5Sy9jaXkZb731Dt5773288PxzajjWciZCIAoCOI5DJpMGz3Oo1mogIBAEXrueQTwWQ6lUQqVSRSaTBsdxiMcTEAQBtVoNhBAIggBBFE37WLAnkjzPQxRF9VMQoSgyJEkCQBGLxcBxHHiBN6xj3kNDvyZJNVQqFSQScSwtLUEUBTz00AHE4zGIoohkMoFKpYzBgQFwnLlemkYWVP9NLO9ZVd04iKIIwnFQFAXT92Zw+vQZjI+PIyaKln1FdHmsZ5sQgoMPPQRCCKam7uH8+Qt48MED6nIeG2RZRqVSQSqlnjaj5iOpeXNQCDwPQRRAKYUoipAVGZKsnnokigI4noAXBEAjUQB1n5JSqQRQitXVNQAU+/ftRV9vL+bm5iCKopqWoJ7kJEkSyuUyunu6tY1yCdLpNPL5fANZoX+tVqsQRR6CVo8EU6fKcRxiMdHQUfcsspZpXU5NkpDOpEEIQSKRBMfxhteOPU64ptT2ik8Dz2t6CzzS6TSqtRoUqoAL4AzpNum37E/TLOz5NtfnTuIDfMIpO/bv7tkijKy7SbbH8U9eqHGCEDThiqWxPgV7AeCXk4saHE/w4KNZbNsdw3/49/8e//bf/n/UNigkeJ7HyRMn8Hu/+7v4wrPPIJ1ON4T567/3e7h+/Tr+7Jvfwje/9S2srKzg+9/7AWZnZvEH//r3ceyZYXzw6iIKefvSoSDTedavFsA8aGlpMhEnEEBc4xJB6zXiWZMd0mcJBkAIh3gsibGhPUjE05hfmsBqfg41uWrEadoabk1IUFH2zs1MiOjf7UMQ23XCjGxWzkjMfbwbQO+oQdr1MPgFAeIJAsFp/8IWpNcxIKr38NjoKHY9sAPj4+NIpzORkChbBEpABDBB0ySK/0FYNEL0x10gMvpTBfQlq+A5fcC/eQpfb+R5jmKkR0JcKGFiPoFCVXAkEuzNIbFdt1y1j6R9FB6LOGFFr3dG9o6qkUixwyyH44CYRoooirrxrKIdhUypGp9w6r4nHK95nXAMufbJT4hqIkkyzp79DAql+MIXnkY2m0Vvbw9u3rwFfWPTpcUlpNNprCznjMmoLMvI5VZRrlQwNzsHQjhk0mnIiozVtTWUyxXMz89DlhUMDAwgnU7h7t172L17N2Zn51AqldHd3Y21tTWbKTntmNuaMXF2BkEmk4EkyZi+N414PI7V1dWGN0X6yUXVag2CIKKrK4uBgQE89dTjqFSqyOVWIQgizp07h3K5gr6+PnzyyVkMDAyA08iQWq2mbvDK1YkejhB1iYoimzSq/yvLMm7cvKV6W5w4jomJSVy7fqO+GStVCQCz3Hq5qN4lPM/jhReex2effobLl6/i2LGj6vG7JoiiiK6uLkxPTyOfz6NQKGJhYQGHDz+iPm+2eqETXIVCAfNzC+ju6cbKygriibpHDMdz6O7qQiaTwfHjR5FIJjA3O4e+/j5mSQgCj56eHszNzSGXy0GSZMzOzmLXrgcQTyRQqVaQz+dRq8VRLBZACEFPTw8uXLiEpaVlpFIp5FZX0d/XKJ9FeujtSLVaQzabQTwew9279zA2Norp6WnIsoxsV5apa1CoxyBXsLKSQ7VaRT5fXwJUKpWxphFFy8vLGB8fDzU4sE+3iMMv/28fQyQetP3YIKSLn2yF6WEZ1KePEN4EjXc63mhXnMhAgG27Etj/aBo//NEP8L/+r/9bUwSKKIr4tV/9VfzDf/jfob+vj0lUAyrRsn//fvzf/7t/gGNHjuCf/PN/jpmZGXz44Uf4n//Fv8K//Ff/Ao883o2P31g2Nps17+2zbjZzSjgihVqSsxZxL97PlC8hzFuUEAhiHIIQRyrVje0j+6BQpSXzczda1UJs6FdYpIi22YmFFCFaf0nUZabGWJLUx0aEwCrPGE6bT32ktmF29HXE/QVHhOnZiaQ2pLdrXxJdvdF4XzSrS9uTJAQcx2n1jWvYyzOwvBaG3nSw8BD+bdF5nij2yW7DAJRCIAqGMwX0JKogZHN4nzhBzRtFX1aCKJRwcyaOfDnWYBa3vsqfp4hXgMbgLPmeJeHh+WLvIPUOi+ehkiQisR0vbeok3dDkRCYWE7HvwD68/da7+K//9c/A8zxKpRKOHTuC3t5ejI6O4OevvYF0Oo1cLocHHtgJAJBqNXz08SlcuXIVudVVHD78MLLZLBRZxmefnsPU1BRWV9ewd89ubN++DbVaDe+++z6++c1vo1KpYufOHRgf34ZLl66ojaumTzabQTKZxHvvfYAnn3xca3CJ0Qjr4Dj1BJrh4SE88MA4Xn/jLWROncbCwmKDt0YymUBvby9On/4E2WwGR48ewdtvv4vZ2VnIsoLx7dvAcRw+//wCTpw4jsHBAbzyymu4du0axse3QxQFvPPOe3j5F76IQW0zLFGMYXBwAOfPXzTWdqr6qQMYnuMg8AK2bxvDG9eu4xvf+DZkWUG1UkW1WkN3VxaJeBxvvfkOvvTll9GvkRMEBBzHG14377//IS5cuIhisYQ9e3ZZlv7oNhEEAUeOHMarr76Gb37zu6CUolfb++POnQnNo4YYOnIch23bxjAyMowf/ujPkUgksLCwgP0H9hkVjuM4PPjQAdyZmMAPfvBjxOIxxOMxvPjC8+A4rv5GnRDwmr4PP3wQP3tlCt/69vfAcxySySQeOvggCAjSqRS+9/0fIiaKWFnJYd++fdixYxz9/X2q/JiI+fkFbcIDrcPVk+DB2UimRCKBrq4uvP32O3j55Zfw6KOH8dFHp3DnjroE6cCBfRgeGrTaylKHzJ06McpOt48eBwAGBgYBUHzzm98BxxGsrq6B41Tvlvn5eXz/+z+CJEkgBMbpT61CI2fa6KkSqfdKMGXcX0tuUI+XLUQAj3KPJzgceDSLu1MT+P3f/wPk8/nwSRGCX/6lX8T/8N//Y2QyGc9xlHrcpoivfOXLEEQR/9d/8A+Qy+Xw05/+DCdPnsBv//bvYHhbHNOTZWPC3raRWZMvSbzFs9uPFiQUKoqDg0hzgsNEJTqhwIOA99AtBIkTAgb/YyY2TBcJ6uNs9SUNNQgVAgA6mcJZyRJCqEGwwCQDddHO6hPHO5HCsR5E/Lw4ijCP933O02KxGOLxzpuaNmDzTjvvPzTTvlB/i93x7o9ygQRHMv6j9p8UHBSMZAroS1W1xi+KhDYGKAVW8gQ3ZjMoV3m3lZ1MkoP1nR3b8SZTvv16PMHh6FNp8G4ueT6qXdvmEB51yOxVsrKSw9LSEmo1CdlsFkNDg4jFRORyq5iZmQEh6qQ4EY+DF3h8+1vfxcFDD2FgYADxeAyjIyOo1mr4/vd+hOGRIezcOQ6BFzAyOoJ0KgVJkrCwsIiVlRwSiTiGhgaRTCaxtpZHsVDA4NAgeJ6HoiiYn1/Aam4VwyNDKBZLSKVSEAQey8srGBoagsDzWFxaAgD09vZgauoe1tbyUBQFn376GVKpFL761V/WTs2hmpfAChYWFjA0NIR0Oo2FhQX1BKF4DIOD6mRblT8AQRAwP7+AWCyGnp5uzM0tYG1tDePj25BKJbUNkSnW1vKYmZlBT0+PMRnv7+9DrVbD3Pw8Bvr7QQjB9PQsisUCMtksKKUY6O9HPBHD3Nw88vkCxse3IZlMAhQoFotYXFrG8PAQQClm5+axtrqKWDyGkZFhpNNpY3lKoVBELpfD4OAAeJ7H0tISFheXIIoiBgYGkM1mkM8XsLa2hpGRYW3Sv4BUKolEIom7d++iVCqjWq3h1KnT2LlzB770pZeMgbWiKMjlVjE/vwBQir7+PvT19mJpeRkAMNDfj0q1gsWFJfT29SIej2FlOYeFhQVwPI+BgX50d3eBKhQLC4tYWFhELB5DTFS9gVKpFCYn76JSrqBSreLDDz/GwYMP4sSJx7C0tISRkWFwHIelpWUQAvRr9qRU1W1xcQlLS0vYvn0bYrGYUU7JZBLDw4NIJBKWo4hzuRxKpTKGhoYgSTXMzy+it7cHiiJjbS2P/v4+LC0tI5FIoKen20hL3d9l3rgniiJ6erpw5cpVnD17Di+88BwkSUJ/fx8GBvqbclMtl2R89OYKZCn6VqIlXixRwW1VSwepuQUfcHql7oJd+1M48kwG//yf/0/4+tf/0OdeRWwcPnwY/+H/++8wMjIS+EVUrVbD/+8//Af8wb/+N6jVatizZzf+6I/+C4jUjw9eXYTscGBPJGjTmG+99jPxK8L68ioiXVs2ofYpOMLJPevFHotIIfpbOALjzT/R/rEfRkE4LQYBdLLFQqSAQPdkqXukMAjFFtZhX/ZvJXFiDhE0HQLs3p9Ed18HkigbZK4ZXM0NkrFWgZF9RQF6R0R/0TuWRGlwtaAAoeiLr2G4qwre1HDdT6AUmMsJuDmbhCQ7T0K8iA7Wd2uohotMOax0fJEoQOcQKT6qkX3DTKCx/tmvLy8v41vf+h6effZpHDiwz+is11bz+P4PfoQDB/bhsceONcrSyAfLEhOTIcx7VxjhPFAoFPHGG2+iUCgCABYWFvHMM0/i0UcPWybQLJl+0zCH1YPrZvMjg1IKCqp61TCuc7p/rVE964MVCrP9ORBQgLEviFmmGtZdp5WVFbz22hug2pKiXC6HL33pZezevavh7aRfma7htbLX3+gBwNLyMn7+6uvgOA7lcgWFQgFf+covYMeOcTUOYwJt39/Eq0ztdSAI7PXRnqdTp07j0sUr+M3f+g0IgmB7cxcOrSRRzKC2b+G8V9aB4fBKLoxKW3GCxWGFbWLIwnEET73chxo3i6/+hV/DskbShoEgCPj9f/Uv8eu/9muhn8PFxUX8xm/+Fq5evQqO4/D/+Mf/CL/zV34Xr31nHvlc+GOVo7Zbo3hi9B0t9S6JgBBwq26E8a0pwQHFRK5bM2+D0ejAxxJHTP0qdCJEG5cZniTadwIKcLqnik6sqPHV73o/DSuRYtqzzthZ3cypNJlXp7y7i22eRAlUnQnx6ZremEhHkigdPNUM18xE0DhtVPjIehASJUBNtUxrAoX2F8M7UFesgqFMDUKzC8U2MAgBBrI1lCoUU0sZKPraLVuP5mQec2fj3AlaOxmgMSCxfYaCZfLoqglLhejgo7FnTTjdwlBKkUym8MQTJzE8NKh1yuqgLZ6I4fixo+jr71WJgQZBjDTsPwNMRFVdEnj85AncmZhEtVrFsWNHsHPnTl8ygwyyG+NaPw2dHOIyT2qxXzeqZ70Wkoa03e3j127ZbBZPPvkEpqamIEsyRkZHMT6+zUjCrJedDPECUwdb2VNQdHd14amnnsC9e/egKBRj28awbduYNX2WKJc624xd3OKxiMUdO3YYG6SZl5pFAj25FjUOrMmA20SLNS+htm9tgZ9iDFPUYeO4edDYf4chNpzS8Rs3THqtku+AZJpHd38MP/zzj7C6uuodwQUP7NyJp596uikis7e3F7/0la/g6tWrUBQFb7z+Bn7nd34HQ9sSyOe8j0QH4D5QaQHqy4ysnxEm4P47oKjG6hyBvhEM3tgiQs7Mm4RdF2L5pb9sUa9RbazXMB6hakjjeaBQT9/RIliaJ2M/FQJQWj+lRydMqP4CBxZ5CMkruOWZ/bt5wsQpPYdRQ5DAGwcbQP9wpt4sBRQCLch6QLqvRYNAV7HqTQ4VDKSKMB0qct+C44CxPhlrpQpWinEYrbNP+DfffeQfbs5qRPUrkYjj0KGDDQPVWCyGAw/ub+tSNI7jMDg0iIHBgfqGrQg/ab5fwPM8xsZGMTo6or5J4tpvL17gsX37NoxtGwWg7lliJ3A6GUNDgxjSiMT7AS3mdTYmWEXvNhNwYs+dSBi3dDYJ4gkO8STwySefQJab8PQA8Mgjj6hLIZsAIQRPPvkE/v1//I/I5/O4evUacrllZHtSbecM/WCjtJc6Gs0X4WzY5bYTEWy+F8k77JCcC0uXRlH1q/ZypwCIkQGCOk2ijqMpdDJED0NBaH0vPvWj/ipSp1gM0qWBSIHFqBSNJE5QREXGRIPO0uZ+wpblW4QAfVfI14LBi80xhg8ChVIFPYkykjHlvtoDxQnqsbkUQ91FcMQ0mApgGwqrR4pn9Fbb3bILly++e0OA4+pLWxSqGMsd1OveOaLaf4qi+DiFB8Y+GIqiWJZWmD0F1odAafqdVdthtxvRysx83Tmyw/egOuhvvIi+2e3GIlAA+LNXKMEO38PEjwgslaxvkQkjlDkEe+AfPPUOh18CRf/tbrZNA7dyF+McZEXC0uJS0+ns27e3aa8wQghGR0fR3d0NQF3uuLi4hESCq29w7VZGEZafm92MNjSahMLd8y2+UQiJorL7FOG0wsc7agD9QmTHaZxKAmhoBrV90RxR6kuE9eWpxnVTWOOzTiVRSoxwlBozFwDUz6r1JuHSeLaed4s8vY7AZslHAzZtxrzRoqwH9ERpTgszIUuoF9mjEyiASKroS9U21MSh1SCEoD8LzOVKWClm6sSDzzdATky+Nbq9QWYv7YkMdiKF0fs4vaCMHM2uF7ZNGmu1Gi5cvITenh6Mj283wlBKsbq6ikq1isGBAeZkU5YVXLl8BYlEAnv27HZNV1EU3LhxC7IsY8+eXVheXkE6nTI2Wl1fsIgUq6E77OUlgCbIJqexTYhMbtS2r5V1rkFyWN6hDZWONTVy+u1GpDSqan8n3KYMbcEnLKMe7ZP9Hr9eguyKnEhwkKQaCgWfS2VcMDQ46B3IB7KZDBLaSWiyLGFtbQ09wxw4Tl1XDqDl4/aWLc2xJsL+brrkvJTPXZz9SlP5aKKr8jPkIY53fCQQIF0/ni+Nz4tLIjaYHFEaAhnLcDRGhHLWoa/J0QT19UFQ6RdjGZDV48TwfjH9dlHPTxZsd0jjpSbgTwRpzbO9nkOdDTLMCqbmBslUq9Di7Ee8QN0bhNYbJI+Q2ukeCnriZcRFODko3LfgeWC0VwJH1K3w3fZHYIHV9dgJFWb4dhWERzoe45rwYNVP09sHpz83SJKEixcu4d69eyiXy/jss88xOzsHWZFx89ZtnDt3HrIia0nV/wMARZZx9ep13Lkz2XDfvjGeLMu4desWbty4gWKxhE/Pfoa7d6fq2WDo65QHv3lrDo0TiY1KGPjGJs/ehkOQ8ljnsiMNf6y37I2hGuUEz0j7vGPaE6fVNrBO7u29FbF88yNVkih4nkcikfCtgxOaORrZjEqlAklSxx8cxyOZTECWm3v77sfGxPRfS+G3cBjRIlny4jcx70uOYcyf7tkNYAyX5sdNggcdEhn08jHXU2okaqq/hBg3qOa+rX4Sk+eJ/sX0p9VNfa+VBlD2ZSddXe9EPBD2JmwiSmgLobBFoHQWmtgC2T719gE7/erQthgELwAOErIJafNPrEKAEILuNEVCrKFYFQDT5qVhigewdmKNbwNMb0uIaWf7Jr023BUyCfPwTHGoUpGAgmI1t4ZqpYKaJEGWZfT29kCSZORyOcTjcfT394EQguXlFWQyGSQScRQKRVQqFSQScSiKgmq1hqmpaXz88Wk8+OB+pNNHMTo6gp7ubvXY4uUFEEJQLBaRSMTR19cHCtXDRKEKKChq1RqWlpZRrVXR09ODbCZjIbYUhUJRKGIxEXv37kF3TzfKlQrWVtfAcRwKhQJSqRT6+vrAcQTVag1LS0uQJAm9vT1Ip9PaUberWF1dhSAIGBjoRywWaxGB5jTJ63wvldBgmXFTZXCDISyR0iFl5mfa2XglGhLBvi7b/JtqcYKbKQhZoRcDO46TbkA7iJRGHcKiWlYgijF0dXU1Levu1L0INFJPLysW1RPfRFFEb08vqmsKfKw8ZcC+VXgLYR7geARxima+Zw9XJ1DUkHXKrEk4iSDsIE76eiUSWNOAL+707yyPE/ZUPUQCjLT0RIzNYM2JWhLXfugfmudJ/VNv2aBtNKvvm0Is8xfd25gQqzyYkrHo4pkVB0aqyarlHp2Y7LNJ5mFtZTmbR5he6r5Hm0wQ0TlSTUxftajmBs74qlDEuDKSMbJpnt2oIfBAT6qGYjVhtM8NR/eFLB57J2ceGFtCtJK9sChEmESKJUiLVKGU4pNPPsXnn59HJpNGsVBEKp2CKIooFAqQZQVPP/0kxse345VXX8PJE8exZ88eXL58BRMTk3j++WcBqG/uLl68hLm5OQDA6OgIFhYWMT83j2QqiR/84MfGUXuSJOOJJ07ioYcOGHpUyhV8fOoMrl29hpokoasri5deepHhnk1RLlfwyaef4cD+vUgmk/jJT19BJp1GpVIBx/H48pdfxuDgID744EPcvHUbsiyjp7sbL7/8RVSrVfz856+jWCxBlmXs3bsHzz33DOKa63Z7YC3NdlWzdYO9Y9/UmY0W4Y4ejiRh59UarDCbEPaumTUJ8tt9swgZc3ynca9f+Rt5GFGtKJCqBLt272o4wjwozp07h2KxiFQqFVoGpRSXLl/GknbUcl9/H/r6+3F9qlbfj8vludSn6vr9tpVNlMyWazKtmeH6aU7cniPT9N8mOoSexL9OLN2ciYIAbhq2RoE1brXkn9T1gDWqRTmV/CANBIqZWFHjaiQxodoyHsIcqupkifnUYzfoy4IYWjJ/BkEgDqFNz0vbGoB25ScibBA171tEuJzHq2YSfYZvdaMzz/XNjg1U3YgzG5fB+Vv/c9+iOy2DQLK02nUXYlPPEgLmUmV7IGppEOKvZ2gWxJSWUxBYch4ZqtUKurJZ/Mov/yKeefZpzM7OY/v2bfiLf/HXMDo6guvXb0CWZJSKJdRqEgCKWq2GUqlkDCpTqRROnHgMo6MjOHbsCMbHx1GpVFEqq2RFpVLBoYMP4dd//WvYsWMHPvnkU5SKJSMz96ZncP7zCzh67AhefulF5PMFXLlyFQpV6pnXQClFqVhErVZTvWckCSdOPIavfvVXEIuJuHnzFiYn7+Ly5Ss4efIxvPjCc1hZyeHKlau4e3cKq6treOmlF/Dcc89AlmUtT+0GsfwRW83edB2MOVP2jG7aTIeH2aWf+PivRUo0Mgf2snIrS1b8+xQscoRl2vsRhTUZq0s1vPDC800v6bly9SrOff55U0RMpVLBj37858ZJQc8//xwEPob5exUAdRLB61mM/Nn0+5zZotjh5YVi7pEibWsY+trHYW5gEQfWpsipUfLQyUU3J6ce+zUn3a29u0/d7EFNadh1ImDbTr9veQzML3LNG8yCgELfRFaVpm45oAaglGhj5PoSaEppfb5D6/L0F8f6XMeqGDGF0ce6JmM32Qg6mK0xlMc4OzI0P00JnM5GQHB1twaI62EC3ySKvzGec9Ot797AbET1Bsb0W22IakgINb8q3pcghCCdoBB4Ge5dFHxXLD/Dqo54TNt5og9Vbd3b14u+/n4MDQ2ir68XY2Nj6OvtRV9vL2o1ydjXxFllgng8Bp4XEIuJEATecl8UBQyPDKGnpxsP7NyBSqVibCRIKcXCwjyWlpdw7tx5fPjhKRTyBeTzeciyt/90Op3B2LZR9PX1oaenB6VyGUtLS1heXsG5z87j44/PoFgsolAoYHh4CMlkEu+88x6mpqaxf/++SNbiRwPS8Ou+W+7nZ8S66RE8w3bSpaPgRLr4iRcmrS0ERxC7RVUuWj2QZYq5exXs2bMHR48eCSG8jlwuh//89f+CSqUSKj6lFG+/8w4++PBDAEB3dzdeeumLKK4pWF1eh+XXTQ6enUiAunjrkjRi+jcSeOjvNiYjtk/38CF0NiXgh2zyk2po6o5hJ7tsr7ScCCnL/ijUFEbb88T41O+bXFqs+6XANIfRE9HnQXqU+oRHvW0vRWKNE9HE0F3E+k/C7/fX5eEsfx8TJ/6IiZYi0HIeu75OTppmWFw5qS2MheWFpVGhFCBUQVxolLkFKxIxDhxqoDRu5RVgLiMzkcIqE9hDMq/b2X22Z4qLkKixDif6EKhkCK8dOau+KFCtobtZKxqZoijBU6xvakbVY3V5E9dJCXp6unH06KNIpVJQFAXd3V3geR98KNEmkQTa7vNqQt093Th+/AhEMQZFUdDT0w2e5/Hcc8+iXC7jwoWLePPNt/AX/+LXLOvx1/e0n8a0N/0+KnZ4ESmbOvPNISyRsm5LhqII4yeOV/acO/7ND1bH52X3iAmuuzdL2H1wAH/zb/0NfPbZuaZO6nn9jTfwx3/yJ/irv/M7EAT/Q0FKKW7evIk/+Nf/xkj/F770Mo4dPYYLpwqQpAgrSJu6mMYidepfmhbcFNwIAWsSIRPziObkneN0j/XpW7cQL/2I7VownSgUCnCkPpawzE30sbO2LodSdTkUJaR+Go+eJgGIog8LbWQIRX3cqkVSZTmPncNWIX/hHdixVsIhvcjV2EBTRxYZ6h36PkYwg7UMoZfzeDH3ahi9hQBMW19bPE9UdzZinK2uu7dRSsEBiAlblcUPqJLXXAet3QabW3ah8T1gH0M7d0rrhBaf6ENsHY7drrFYDKIg4Pr1m7h0+Qpu3LhhuDvr4HkegsBjZmYOa2t5mC1aLldw+fJlXL9+E+fPX0J3VxeymayWNYKR0WFwHI/lpWUAFJOTd7GaW20kNHxkjuM4DA0PAQAWF5dAQTE5OYm1tTxu3ryF99//QD1Ku78fpVIZlXIVk5N3cefOhG97tR+ONf3+g9uLpc1mmLZNtojlu9+TRDYMCOPPfA+Ma16/w+jQijhOuvrJj12+03PVYqzlZNy6VMSzzz6L3/rt3wxEfthRKpXwb/7f/xbf+Oa3UK1WfS3toZTi+o0b+Ef/+L/HpcuXAQAHDz6Ev/t3/jbWVhTcuVYMT7K5tVchRDnfYxOokRep6Xlp1fsGfZlJYLj0CUGk6fMAVtPQlG4Owxk/0lhzk8ZRMSsx9bvx3ovacqN5mugveSkABbCMu80eKRSAonuk6HFoY5j6y2MKr6NLI6Mn7W9bW4X1HHtssG63VaE3JTrIBKF7YPtkWoflGrU1fVTfZIxa7huNrbGOkIAqQLVaAM9vbSrrB8k4h3JRAcA7hrGWmW5Uyur5fIHVgXbES8oWnOhDCNDb04NKsgqAICbGMDIyjEQyCYCgp6cLsiwhnUrh6LFHcebMpzh96gxEUUB//wAEQcTg4CC6urqQSiVx4MB+XLlyFTMzs+ju7oYsKyCEgBCC+flFLC19jHg8hqeffhKJhHryTyaTwcjICJ5++kl8/vkFTN69i56eHvT29Zr0JOqpQbIEQRQwNDSETDaDeCyOkZFhCKIAjuPQ39+HWDyG7dvG8NSTT+DixUu4fXsC/f196O3rQU9PN2Zn5/Dxx6fAcRwef/wEstkMbt2+hWpVws6dO0IWTjvAIlLYHiodU2dbDafBzEbPvNeEvQX5a5x8hSNS1sWrJQz8DITdfncSkeIUzis/HQJKKW5cLGBwNIa/9/f+DiYnJ/Gzn74Sem+TlZUV/NN/9s9w/fp1/I2//tcwNjYGAA2kPKUU5XIZb739Dv6XP/gDXLl6FQAwPDyM//Gf/A8YGd6BU28so1rx0KOZMgoQ1TyRVr+zn9mmCU6f0cOUjrl5bkwmRIVtQR135lgDNgAeQXyN0Rw+3UOxfhJT/amPHowglGreJ1oJGVMXqjlDE0YdVL2UieHFot40whkeKVrqljGsVUenF9h+eiGrCdrUyLUjmQ5tr90QXOUNmMlWoMPMQKjP3ve9H60a393IEwK9ITCF0xlX2+Nv38ypvucShSxJINIMju6Kg+M6zGodBkoprt+TMLXUDZ73dwyt1ZvENpx3qRFml0WnOUs8QXD0qTR4vkPKzc8bNh9iarUaKICYKEBR1E1jBVEAz/GQpBoUhUIUBciKgnK5DEopRFEEIRxEUUCtVgPP8eAFHpIkoVyuIB5Xy0tRKFZWVvDd734fzz//BYyNjUEUBcTjcRBCUKvVQAiBIAiQZQWVSgWKLCMWj2lpqAQMVShqkroBrCDwqNUkbakPgSRJiMVEEKjyQAhEQYCsyKiUq1AUGbF4HDFRhHqUsqSd5EMQTyTA85y6uSyFKmfDsZvOzsgbZDrbGmzAzJdLMj5+KwdZ9qG8U5AOJZEoVNduvyRLmJOJ1u00o/sIrSoXAoJMN48nXuqDhBX8z//iX+H73/+B2qaHBMdx2LXrAXzxxRfx/HPPYXh4GPFYDJIso1Ao4LNz5/DTn/4MZz75xFjCs3fvXvzTf/Y/4sRjT+DcB6u4c7XU2NVG3EWYxx7WMUyj3QjjW9MJsxNoWmz9s54Pb+IkYEJNRLWP+7yXl5gm7G7tb0h9wNDJO4bpp0tZWugfe1RzOP2oHgJt/FUPQ3RB2nd9b1hjzGRcN8mw68EaXznp2RiSHbFdQzZ/BcOMtutAEt29Pt/v+6uMHYdwqm6gDLYKbTIBlYGeUdFX2MCeKNRcaU0gttbV8IijRlui7mptjm4Oa9nVSSUGYhGeHbTZERN0Y9Xfu7gNxcz37QfdqT9tBWm+Bec2svEtRAfAwzMFcCaEzBDF+kPFccRy3K8g1O8JPEEmnW54mxGP6eEpBEFAJiNo6qn7qPA8j0wmg2QyiWw2Y9wDgFgsZsjneQ6pVNKUPdNwkSOIxUQjA3FTPIGveylZ5fFIpU3ytP9icRGxuGgp6Jgoah1+h5WxLzi9v2l4AgB05Py6NfBTlJ3ouuO3CrqFc7u3TvkM85bcT1jzJDMoUbMF/wSH22+/6Xghn5Px8evLOPpMN/7pP/snOHjwIXz96/8FExOTobxSFEXBjRs3cePGTfyn//x19PT0IJFIQJIk5PN5rK2tGWG7urrw0stfxN/52/8Nto/twucfrmHielm1TIu6BfvEWb3WvK19Jer0OyLx9vx0wt4rdrGNuvpIqMUTXLtOvhJiR3ImihhOIUZdpNrYi1rv6c8B0b7UTUCNdle9UD+m3BBjSk89YrmurD4s149KNoNp5vV6yeVg4w2bTkTYIk5CosNN4JtEsRMfzPu2e6bTvKz3qPW+7qpSJ14oc3+PLbiAWptRP5Yz101reL9vQINdv3/gNcQg9bcOFPqLCPT0dOOXf+kXkUonXb08ovYAcRq0MTc62yrc+xsd1CQb5LzpcwvuIEb/sGWtoOg0m60uS/jotWU88ngXfu/3/hpeeumL+Na3v4Of//w1TN2dQrlcRq1Wg6J4n9xmRq1Ww/z8vPFbFEWk02n09PTg5OMn8Ou//mt44oknUMoDH72+gvl7Fd+WCfucdpbl62C1P37bpMaXUCFe3duVCRGF5dHhTxOPUE0WmtP4tEkrMcGygZUsaUycmCgRCmiby1oCAFQ7bACAsb2Bvgutno5GphDAOBvBMj7USRXtK3EyAIGxlMiYULV7vNZsept4fLkexbEpsA6GC9J0hd+VzJyQnTyB9qBTW1gLeVJnWMxeK+pnfaPZLQRHmIFKtJOQDi458wk+Dqf5GEHR4pzYng+e59Hd0+UYPDC2ZpY+wTYUaxB335rUPIjsCDSSxZETKk4zivVtXEPDvimu/llfPmAlWFi/27FsqJPimG1meYuMRjutB8pFBZ+8k8O922XsPTSKv/f3/j7+m//z/wnXrl3D3akpLMwvoFgqhZYv8Dz6+vowNDyEAwcOoKenF9UScPXTEu5cK6KYl72FaPB6Puv3ncslElv7aSh8JkNtn16kijlsZCDWr6w20SkaizRw/h6iIWPoFsb8bi+kfM+ybO+EWLo4STETKfp3dZ6jtgp1wfWWtX76qO71p6djIl4IGj3HTApSopMmuixNOrWFNWVIJ2za2ipF9Fj6FrRp2Qh7y7GF9UAQywckUeoFrD73tibIPCmscyQ28gQ2Gabrps8tEiUM6hazVwI/trQOYvSLjJiewjr84fdxLLJx2/S9lfWxocuLqh0NUxHuS7gbmjg8W/edOf3UxzYbJWwV9026+B/ReyfWgfBaFsEiX5qRv1HjtHz5SEjIEsXU7TJmpyro7hUxtC2OgcED2DbyEOIJDnwTJxxSBahWFFTKClbnJNz4dBULMzVUyoprv8mUZfput2R95KFfidi2Ts9wwGS82gynPDb3BMG3nm7p2/X2V3o+Gz8f+rHICidCwx8cCtFFgBu55ZWuE5ECUG2TWe2eOR3ji23TWY0c0YkUon2hmixKNLrEmAeRxmVFLIPpipGgtgyJiBLwFNMZTW0oNF2f71dsEDMEIFGI5mamvyWwPtHURqSYyRPrBWLsjQKdxbXFUZfzYMMYcTOh0eT1bqexY9gk8CBSjGDaZ1uz3urnYLOVZcthNdiW+RhgjVRbkYYxITG/4wuenC8iJQoQRjr2RH0zO4w4W9j4CFOWWv8g1SgW56pYnKtC4AkIT9TN3Yl7tbLfs5PEVKGQZZWsUcds7PelLLX9ewg12cm52a1JosTNPqy8E8u3gG9DnArII4jTfSeSwF2GC1HiUZRBqi9LN28rsY3hNoRj1f3ghI0KSgHOXOgOAsyr6wmIMdcxL9cxEynqd81jhQBEASinBrbukUIsaTCTN7E9Ub2LM4S0oJ/ZrNO8YPnarFYIgBDNZSfA/54oZqJDz6E2o9aX5xjPF22MVyda9O+AccQxRePnFokSAsTyYS4H+8DIjyTzVJFYrlNmGhsarH1GfGxC25bsO7/CCw5W/K1JmA+whs7mX1YD3vfmdDaXFZEYyjoE9/+IhCNd/GjjJLPhutPz6HTPK9GtZ7mz4adMfYTxKmZJpoBM4XVeT7PVxfqYsxVvmceOXaxLMk4TaFbeqcOnW/LOeQxAnviIYm8a7EMDCrb+LPFBW0s/ujnZ2K6vk26+EzPfJqaXe85BLJ/hphdqDIUChGiLcmg9fbPTdn37E23ErJEkFLB6pNj0UD1RoB2hrKZZl206etk8BatzJiZB1otNz03D9Ek+xDUfqHMQTt0NlslWIeL61U6EO/9Ga6kpoK3no3VHExMRYvnT7uu/6/Hr4Q3ZNllbCAAfnbHf+Q0x/elQG3GfndtGh48NXNue1VY9E5ulzNYNLGKFdWcLFhCHv7YlHqz/JrY40WkRoSCWHe3Xwtg6jKL3QxwvWzPCNFvmzXYD4bJupw1a1Mr5GJS4dc1emriRIk6PBfu5j6DB8hHdPv7yIiD8adOc3ixywmxXFgGl6+vd3nrrZjopmNm0ucsPknNVsu4BYsSjptfGxt4n9msEuueWOu8hgLHfI214aWzMkQDjcA2YrpmStrzfI4Z8m+qMi6HajSardyhxW4Om+wcbvKyD7YliPNPU8tBbbls8T8xxTN/txAkar3cif0IpRaVchkIpEomEdjZ8Z9WABm3sPTDjsr0D9CPfcKQnNsGbDSGOR265Nfy8GgsDh7qyBb9wIlLYRyird7bARNt4WmfyyzmG2mKah9X1TUbrcvw6hrSyDhiu4JaL9kDWr676bDSCo51xCMN+HTA8sNdFax9urcfeslwqT1jlgMZX5R4kSdBnxh7eySbWMBHktU3lzyYQWqOvWxGxyoYVvvGaQ8IOl528XPwQKN4gDT+p+RPWHt06B7COFzVHFOjLdHRyRfU20TQ2G43AOH2nfgAHu48ybGBOkpEDousRxCoR1tsgojqguQyEcPputFy2CJvEDL49UersKTU8SswEifHb7nlium8mRi3zUUOeOYDb1GP98M0//VP8h//t3yG3srLeqjTCy1weA5PWJbxJQAj8eKc0RGuBKkxEORuzv94B7ptijh7OhrOb2DvGFiyIZtQcMmHzFIA95fLluWeJY53+uE1A/CCoQ+cWqRcMYaudl52DVGuv+sWeXJqvtPDhcRNtr9Q+1XCzHYsUaXyWiOW5bJyiNmkThoiwdIw5P4RxTf0dogdh2b6RO2AiiDeMuxYBE2bIZREozcFdF0NjWi8H1stgu2d9fT5EYPViAaDv0ax5q+ink4Ihx9ErxXTffhYENa5TED+bQUdgyFAiCNlQ/Y93Hn08ZFvY8PC/nEcnT2B9sBvIExaRohBrI2D7biFcKFRXNpgT6hxcunARZ8+cQaVcWW9VLGAP4R06KBfSP+hjXg/vMHLYjG2GTqY4ECoE69hkUsZfs7CP4LYQAvZaYf3TJ+FbpvYPYv/ibuI2PJjscgXqJez1nx7Wni37wNmpjmzVmfbC3rwGIUecJoSsTz91xj1MG3olp2Ta9Pw1kgssW1qfsdBKBWxXWB4CfpKwx7Hmw83IHjrDPagfeHmBWEW7GMqtztgkmD+9iBx3OBSeixkt6RLbNcaDTy1fbNsrW5b21GXU5z5EI1yIcU1f3mOeM7ESrN8jrNuMiNEg8PjFPI62L5fqQIRrKVrY3m5UbDKT+PdEAYw1fXXGFJbv+sOtXiegCoyTePQ1gQZhYiFcqKWJMTZs6kDU1yp2moJmfQIMrV362yBwfC7CjB42EjpsOVdbcB9muT1oHC5vmdoZTbfAdnP7MXbbCsQ6ZLNOhevKUuNufRLpT3q4aYfb76BxveRFEcdNFz9xm8tzY2hW+dS9Ilj7jHTQiNPteWmhin6S0b1LnCU0aUcfk2s/8CZ5rGHZeQqRD59DQHv65mtuujqL9293B1rDQ34ddqcN54S8pbGKWi8Pp9gN0wITQUJMb4obti2wv4xWqHFCaX0vFducS6nvtaJ7uNgc+W0VSO8vWjO36pAWqmXY7PnbQnj43xNFf5ABAPqJPPUHsu6mBuPYrrrbmlYFqfUEHzNtYn6wjQ2VtqpuAHjZyt7zU/Yt78vB1PHqoTcD3E720c60Y5VOW0zQqkdo3TK02eFEpHgb974zv8+67UouhJ2F27uodXiYWRt7NjvJr4OdQXMc+z4wrF67ThCwT0IiRhjrb/v9sHGcdDMfvUtMoQgjFrHlKIilvcgq9t02jXtYhvITx+13kzCXLcu7Qf3uZLUmlWmD2c01yymPofIRke5+nrXG5Hwk7hHErSo6DTX8kDuOjJeDPqzysetnT9/pO1AfZlNDAFWnO5QARJNLbWkR6zXmM8EIo/9SD+YxtW/U+EfT0aOG+WwTPEvdfO70BnzZGE7jjZfPliFM/9IBcB0vMhD8iGMT3WsmRMyf9Z9s8sQcxvK7/s/9NyGIAOEfeur4k3XZrZL51iFoTd1o0DsQ/ag5hr9nW0xgHw2YE48abjOeLTQJbwbSPDG83+A04ARaVP1YI323RtGvEqwMrAu8pzL2oTirSdGH7dYYlBHGLpc63rdeM1MaTuk47RrhlUf3lDsGQeuX2+8WwW+1tpNubEkRKhMB3IgHp7bIeS7ffgKFZQoWyRNqIMHgMFi2aZbL8524R2ivx4ilf4PtaJ3oqF+ERiSoEyf1yGOd0Kj32oSqv9QhY50lsXhaEQDmI5JNYQklpowQK7tj0skXt2GLE2hObDBBHdhe+sAWgdIkNjCBEhQB9kQBqAKjxTO7n+m/dQ6EUoAq6hdqIlDsm8maexZiaSHsg6ItRI/g1WUDPQudgU7ZhJb1GG09WpsI9+eTqQ5g2dOQhjeCLUq/uQD3E/wYI4oZ/n1k9BYRIs2KsRMErE/7n3p9nRgeBoKkbM2Dte1xJkuaSdE7iv903anC0ESWQxBHzwpbGPOnPzRXV5zKze2ec4oq4dFwyqi+twkh9fmOsQcKNH5FI1lMS3dY8yvjmunPGt82H0P9t00lbzub5mcs0mgLW3DEfVBZfHuiKGbSQ0PDCTt6U8PwPGHGsd23MPZaQ9JuUEqhKIrrfQCQFcUxHMep3NT6HH8ctPvXP2njZUbr6hDDCgrUKhQKH3Cm3uTE3kx8+nnr1T4E0cL+wMB5tOEmwiWs15uzlsFNr84oqA0KxrCzwUcYtrpEGI1xazVsun6Z6k6tanp7p0lmkSZ+JxHU9hvw1rnhevDZiLNCLMU2LIJMjoNPP8Ols0HglYVmzOUAe5MB22+vahm8ypq3eY0wQ36qme0Sq7v1soH9hatTssT1rsc9d6ENYE36WQQG0Ki/e0IuufTx+PklK4IMdxx18inALWfhdNIZB917xLaAhuozJWIEV7tkbe5EiHaKjtWzVPNRsepCrF29+qlfIADRwmli6kcu1zNjXnLkRh759izQ5z0bzAsluLYbK39tQ4R9UTvAVDOA7gH2RLF+N7Oa1HTR4k5OjUe6UYab+HUcOObzeXz0/gcolUuNNynFwsICisUi3nz9dXR1dzcE4TkOjx49irFt29qgbZQIPmJ3ilGtUnz+McN+BkwVxybE3lG1bHJvUaExlZZVQUtSjam0veqbHk67a2lbdWAWcgcsTrHp1jjBcBputxcUMJY9G+7E8KNdZ9GNFthVs45DoUjmwN55aJwUmvfFsCZrvtZKktFNpj4ONn7r/W4UDWSHFnnHI4jdglQclwroRGZEBadJtlPabvHt1+xLs9gxIwCjnYjCTk428Sc/hAasKCHy41Wm9uTYJeGjfByCuBE3bnUo8PyLEM9nzCl9v6RIs3NCM71PTP/aV7vUl+RotIvWAVCiHk2sX6O2/Br9BDWnUU+dGkyKaYyg3rKYz+hfUL/ukCFWQvWIIWGJ2ea+aYPM96NBqzPbzrILkReHIWVoBNpY1kqQmKc4pIFYUb9S69PNEhtE2zZgeXkZf/JHf4iF+QXm/Vq1CkopvvFf/5jZYIiiiL/73/5f1pVECT+ls+XHfuC8DtNl1tgPFJBq7qk70RaWawEz4NQpeouhqFfg8On4T08PGF3tZ5FPviMaX6LVp/mA/qR4DdBY4XwL9hXIXw3zM4hrqgRCRfbW304c+RmURlKTAgvx7hLtIViTPCcpYefOLDv5QcPE2c/sIwiaHUHYRyKskUnQhy5qQshLN3uYILMqv7o5xHFUmzR+9cvDOJnbLT61fW98RpxUtBrO2SxNVjS/0W12c+sXvO6ZP72TdFPQQ3m3Z9p2yatsWZ9+NLNP8X3r6SNoaHLEjxI6MaBP+H3YLeij7lsfp4EnsX5tJE7UG8QUhxLtdZZxT3vNR80iqbEsSN1fpZ5DqgXUZ2zEHEsLRgDzFi1GHuoOqnVLNdhKj8jKeMjZqTn42orsOX8IIi+UQu2CUWxeLVb7oY85mBqxGhxHIfbIrYMlOfO+PAH356EK0DMi+grrf2NZ3Urmh84gVjS1zS5oFqParOwxXzUf4dhu9PX14Xf+2l9DuVxuvEmB73zjG8jlcvj13/gNdPV0NwThOA779h9og6Zs2Duw6KbF3oKDjpVZsfXhWH1zrWBq2eHvWTf1LD7S86qZTl1Mg+gIl1TY2yqngZWzCtHWFrsNHHVhJBtUJ78DNK8BVWP5uOnmEsinjn76ICe9HSdfoYiH4OXulZ8gKbvmR4ffGWQoeCdU1zVaXy2/YxG7Hq2A73pmimB/lhvihJk9hen6fTz8LN0sebX/9pFkM2XhN66fdt3pebSjuXrsZOSIx2ou4vzanBWGZSd7UvaWoB4uRGl7TS58RmOJcSp3P/lqlOpRfozbXvVQR7j5k1OO2T/dbMOyUXQ6OatmzIsZujRsPGtXiGojYZ0k0eMRGKSJZWNZCpU4MbFJahAKQgEFgL6wyKA69XGMRXei7mXJmHQ2etN4wGfVYgVZnKv5SCB8m+Ma0/FmuBoTLp0AxmtKCf8iotHIPXZkvYgHWeI3nV2PJHyFC7SchzK/W7vt+gTD3kKov60TEHaj1KpBoh9kMhk8/+KLzHuUUrz1+uuoVqv4wvPPYXh0dJ32PXECu6u0w799XSYXxP2y33SsD6i5oSZ6f1APEaJisAYXztMk2DIQvia6DWCtFx3qT4i0nQZObhMDag7IHJlEYwNX+9sUt+jEfP3evE523VyJFPslYi+e5nRkDZjdBsm+iQffKvnpdKjpuztYydg7Ynun7Nlu+Ek4aOPjKYR9x8/RwPbJl9OzaVbTTWXqEsZtruYVNkhce3jfdZIRvxPi2KuLOT+EqEtzeR4gHIEsUygyhaI0vpl1SiOIvk6wl7tbPTDDqf9RP4nls2XwMnpAMay2AnC3sZPd/DUnTk+tr8iBo7CiOT2r5k/vJJxCENefbjH8EFI+RTrEII2XQsSOVCcfY317XXXShWr/EJNB9XGPEY5Sw8vEXsfZj5b5JaRtDK0JoHrCWkL1/VD0zW713p6o+tkVB4wXXH6mPswlqI0/vaQECh0qdkOgcGl6xnINELLRCKxEcFGtLIHI1HWpkK3s6QJ4omif+oNFGfep/rwymhDK7uRYiKgq3b/wGLWFG9R5NeHhY7h18dT8zafibgML+6DEfs2qgNHrsJTyDdZg3lNMxBt/siY8dh2dY9pLsZlpAXvyYtbJX80yS7Dr6Q/2gaBbOTXo5l2AtlTcdXMLEcZGTHn+C91Bov9IbhNLu35BJLvVQMs1Pwk0V409NDQnbE3IaYBdH/g6707kZivPOutT6yBPOKst8arLbr9bFccrDAEQT/BIpnj0DSSQzgrgOQJeIOA4AllSIMsUkkSxtFDBWq6GUkmGLCk+J7LscmksM738nfmHxtrlp3cNQh+4iIpgENdML+IVz0//RnxpEMJOLlH89itu9QOM8FbpPpWB+/DCSUf/0oOCWNM160YaQzoRCq2ZL2i6Eefuw6k2+dHJ7PBBtEjmDV6JMbEyLe/RwhhDYv2aoYM1ZT0MjLSIdd95AmPPFV2+HtGLTCFGOOe86vmq/wiCFpRqS/p9hqa+0okgf6whRwRoTlSLjNyQjEtDZtKklQi+sSxlmIaaFDU90JZ4FkFOPawtcKtzv+lgsp9P0war5ozhP2vfFAc1wqVpjk2tAl0GAW5S7FFdh1SEkWDA9sFpIOQ5lGMxqz6IFb8DIPe0GT+MEY5+rflG0n1waNfDBmoP4KNyuIhmlQ8rBWqP4JVKg572NKln+m6TVadBr3f9Ylyzd8aBCsRffvQQzbUH7EGr5Z5TAXtd87SBH838XGOHcPcUoLZ75t+UaWuvesGqJ/YJCgv2sPZPN4Qp82biOE6VCRCP8xgZS2J4LIlEkteus8uLUor+wTgoBXLLVdy9U8DKchWKXK/zTm29+ZN9z1zu1KH83VsSZzQ5mHIaskUgxq3VZtVJL5nsp8+rtfeBiPJu/83Kl78+3MmK3go4dUlO9deuV/MgDT8t5RxAt2h0IsyvOtwIFDA+vcrPIttGnNSZDZ0QgXpaj9apWdpmAgupoidKCLXtbWJ9lsxzT+O6tvyHGgG02HrZ0Hpci6ouE/jgc/uW1K7GG8wAwdMOl064tMKlE15k8xKcJUWirsspUBGawxPBPFHsI1bGSM17jhessd9CABAS2HZug+TwekQn1D5VaGBo/Iz2HeS6TSTY4kza+EzPqxNlpavHY0cgng8Za7LkpFcgG9gF+zSC20TfLQ+e5eFa/uF08xveKb4jWeGqCiuA9VqQqh504GLRnzXSD/yMsYbe7iEc9UFj+fgpr6DNj6cNAI9C9iE8EjgpZ/9OHUOpv1WlnCYBugRqixN0H41OjsNzBMNjSWzfmUYyxftamquHIQTo6YuhuyeGxfky7twsoJCXYLap83PtBy0eBPmpkwwVnNq6IFXcqz/wavvZz34IW4e0gZOebrDbSr/GatPcSAxXRZzu+bjstx9kNYXuOto7kGh1s4+ZguvkkbjtctDxgm9o5IXTEJ4C6uax5uN19CORmfpp/xKAUt2zkVH3tOGkZdxJoB2xDNMyH+06rOH1L5brjAwYqrMehCYsGuipb0jPVyzXtIPdiBjtSicQfPShkSTjLKXV8u0Id8Qx0KCp47zO9HQ6D/E8Am/BGw3tgu2Cy7zGqdH2n7CHUJsw73rgnErD7gLEJCWEYFabbh/YOGpjTtujT/YzMPGNAPuouMmmtk9zeM+Bob0XtQhiT+CCDAxZA0mmTvbRt/1mQwR33dz08aObo908HzJWAGuFZmXVLX3zp1t5suqBoxp+KpSrAK+71HIt0GQiAviq82GUCdPoNQU/SgYpF/1amMFm58XhBYKduzPYtiOlTlxC7G1GCAHhgYHhBNJZEdcurWJluerjuW4BXOaqrnECwp3q9R+fFcepXTV/sn55X3cJGmHxuNnC3j4Thgr1zwCFGSAfblNVr2bdft85WQfpAe0cmEjyHV4fu/lXyDQriVgXPQyxEPcU7G1c1TAmH0RtLRDRiBQQGPunAGr7VB8SanMqxh5zxmUK64k9BCbZ9ZOALDBzOuZr9syb4rLrd/gH0TWm480w/UvLA0SkSLtFeUuJJJ2INoxtJg0WuADSG65Qqv013PCO3q5BcevQgTlomNj67Fn9Xw4nLGA6bmkT25/1qk8htiBeA0F7mswBHfumI3w8Ikw93TsMf4m7DVYdRTP+mIHs0sJMTnzc828Ttwvh7eUW1p6a05+vjDIluUdx07X5IYuLnKAPs6PkYOWi/hGmXoRxjaUa8wVZq+D2MIUpoA7sijoZgkCw78EubNuRAseRpjeHJ4QglRbw4CPdGByKN/eQBS13ewU3dUetBIuoNacbpC3S4xPmHbdY3peDhg0ihuVJArDz7r8P8dGzOXQFbn2N33xF0oSzlHK4zLrtl+gJ7Lugu3l46OMY3ZZuU1y4ytwChDB4DZUIaXgnpnlyWBw6NJKDUkBf6kO1sPr8DCCglAAK0a7ROlFC1XuUEu071O92GZSavtfnfXpaahp23cyfqnw1Xf1M1xa3UhGKDycq+FizXQjSJnhLcr8aSToOfXQnWNW/J4oOanabNTcrJjjlzNZrOg1i3USsNx49dhQ7d+1CIunv+KP1h4OVnWq5LUjwjsKhh3IpcKcOs+m07fu1MAR6DWxYHbd3uuaQhNEbOqdnHxj4S98cwRaj3ss1yHQa5MF23ayXd/oNX2Ddlc1dAkunwIMlR51MF+qvazx18zMh0K/70dlyz+98wdfbbdoQglWXnGwM23U3OL5R9jsK91+RfN/12hdE//TKc1ODYwd42tStoPwm4ASn7jpMI9v07GF9wXHAjt1pDI4kwHHRjjLicR6793ehUlnBak47ptNsr2Zmsh0GexvnRsxbPxsrYdPD4zDPSwRwa+rqn9Y2yTmm/9t+4dYXNde3ssY74XRrJoyveuNTN9b8g9ru2+3lS7Rl8xHvGIZ3ifZb0YbNrK356p4d+mXV3YNo94yTd2yZavBQMW4R1GusdpVoC4O0TVvM3ijErAel9WEvqW+OXj9H2fTKw2RYex5Y8LSav4LwE8h/DMebrFF0E4iwTYtOlL+xWdPp+fQ8aXU6XvBNoggiUHdcYY3GGHAZbLlOyrQHMeIxTiT46q/9GqiiIJFMrrcqFnAcEIsR8LzbmzX7kMdWCvZCcbgVfBxNodYdRnrmdBiCw6Wno9EOjZ0htdyLboLAmhUxdKAU1GWfk7B5tw5AiOUa66n1l/cojNOoi9f8z7JxmkkKbQjZXt30wA2buiFIvQ2it5dEtv6s/DjqZw/kI1Vv+KWW/MB6ekmjNKsN3LTwU0bM8LQ+NjYeXbemNXzDGQJeNvaqGZs4DgEGh+IYG09HTqDoiCc47H+oC1cu5FCpKM66tAJ+HnZ7W8Wox0Gqr9Mz5oS6HALzSUT+M+d03XeL7R8E1lNPiLMWdo3M0LcIbk5L+5jbK9XGu9qwmq2H9qNFlnTRykVHmzJ+WoJW6OUVhPV8NOas+bQtp/gwgxJ1Q1mtvhFzGHNc/XvDNWI8//XvxBLWkm/b93oZEEsEszyz6pYmijRmx9meHmh42NxrtFNzGTydIEq2CKYGnWifjir66TYd79Uv6im0xBT2DspU6cxpNJ12Q0foH75JlMExwXgc6o+p+gumb/ZOxq0DdgSlqNUUyEW+WZIoUhBCkOww8kRHIsVhMBWDKMaCuSebWylfBeQ8rPKqyC2fPzil1MKEXet2ZJPQMPCXYuDib40aESam5qR+SCwxrrQkl22fJHvBXYF1Vw/oIFttJoQZEbnF8Ru2nXEQUL41Di9wGB5JgwuwiDkoCCFIZQTsO5jF8lLFRbcttATrZNpgJbuO9cApyYirp3WqY++X24gWm9q/2AgVIJYP/+FsEQgxt5FWUsQxDdMF/bWojR9RvxNz62sS5qMsGoYGDIIlCJppfT3DB1SsdXW/hU+V3264hQpEUmZeupqZvABEim8ShWM8FPqZ42YdgcY3C8T2yYRJZ0oAwqGjCJSNAN1m9nJxj2QyvK8o9tK0l7+zmPp1RgX1qLPB5lv23iISoa4pOT60zPv+Ew6vokthmhpCr+Jv2kS+n+EoZtT10iCWT+s333BVycSQMT7Xjx8grol3RJMaoijag+Cl1jk8kHO77B2GFcdv2I0TJ5uNeXhqRgN1jxQRhUINtZriotP6INy4ty2j5Q0N35YJMj6LAMGGdQ6hm1K3sRduHgEkNZFo4KhRFytjfGbvc+xFZjmpjDUGNb5QLX7jeNkatj5bNlddS2vAyHfd08U84GwM3zAf176YZTu1POzq2ngxbOvbyqfUp+rrDGL5cO2G26OJywXXy9pNl7umW0HGdYHeyZj2Qoqe4Oi4ynO/oEMMT2x/7UpzXeA/4ZaoaLaxRwKsoK0xG6t1Xmew6qPbqIEVzDNkC+AnwQ4xcWfB3gi5ERFBYgR/3reKJ1rwPEE6LQYiUBRZwZWLt3Hmo0uoVKqB0uM4gnQ6FlTNUOUeJE646exWrQwF7+ajpcm4D6V8KNfu8dhGRYR2so8bWM2V/ZL9pTklKjFCdPZBv65HtoenFNQW0DgwhGoCTTL0zWV1esQIZ07Hds0UW0sAFqLE8mkjUKwwh6xvikspCboKY12wsR6pztHSL4ESUEokCL6xrCfMigas1YwHfAvhEMyUTZRZKLAqM20M0moviZYKDpqwc6ItV9GHKqzOLnozeVEP69g4OBEpzIGCSxQGWpIrv0TKVnvrgeAzIfUutfwiAYzNesb0a1vFFQ7xuACODzaIWs0V8M/+0X/E9PQi/l//7r/FI0f2+o5LCEE8wYPnCGSl+XL3G9f6y0tK5wySNwXaRJqwRPtLxh6KBIm8DmiPYr5TCfNghtCjoZQYw/P6NdXrxLJ3rb7PHqmTpTpJQu1japMLCNXcks0Eq7FPksHAwBj2EJPbiE6kEPNvs/yGvGn66FeoIYppCHs8NhqJlE5ZzeCqRofoWEfnKNTJ5ImOFq4OBsI08x1UfhsOTFY3tJR2g1FXPFQJUbuCq7Ju8DNRCxIjerSfVXdLaZ0KjdnK263SwWXZEXV9M4L1ZBDGHyte/ZNVkxr/ghdimGLfqHEIgESCDyzz0zNXcOP6FHIrefz8Jx9BURTvSCaIIgdR5F3Lp7EmsMvdHU51qr2t86aGVwVbVzP7UY40Xu5YtNagocaN5ma5hQSKr4B13sHYZYZopEndg4SaHT4awbpH9Q/NM4VSS1jYwte9UojmrVI/IrnunUIMz5Z6miZjUmpKF/opyCYvGDhkon6D2q5YQpmy0W54Eifr3m5sIQq0wBPFjvC1RKFbq3D9wqmdYJDYPsCyeLs9VDRa2kMVpw6xaW3bboL2TIRCCza/gXHxVHGKFh28Bozr0GM6qmQa7XhUKL9Eyrp5rWy5QLQI3kSKPynBa0sQ75h6nOAwp6LH9/odVRxAXVojxvhAS3kqlRp+/rNTGBrqxdj2AXzw7nn89l9bwdBIn28ZhBCIIodKRQ5IdG2NeDoCLA60TckGd3hwCel0q2OJn9an5iv1FqkYTqxz+64ei6yF0o4X1v081CE0cR1MWOqa6Qc13SW0vrNJw5xMD6urQUzhqUbz2BptSuqSDFm2Sm/vmUjDBf3D4YYJ7fZQcezBO65p7yyFmNqEVrE9eWuxJ0pYqJmv1OR11mPjoCp5vyVrrkqtx8PmkKaPGWdLtL2fmWNz3gPYoP3m6sACcnzr4EUI+b3qfa9phK37HVgc9w8I4898D4xrUdcwwpTs/ju6OABAOAKBDzbUmbm3iNMfXsQzzz+KX/nas5i+t4DPP70eSAYACGKHDrHuZ/ip+uvUbplV862C03ioI8Yrfl8PtCblwCaI0G7hcu4/FtH+axz7EgtpSxluJ+YQxOIlYkQy/oj9gi2IebWi7p1Sn41osanNK8S0j4mi30edjGF5oDRcMv+g5mJz9L+py6KNf82ioeqs+7Pnho5oHCyIlkBpFv4TDtDDR5EbpwGdHWqNrskUis/1xPc7yjXJyhA7mNpvCbCxHg+eg7Y+MtKycUTbBihuk6CoYrReNVbQ1pquvakFQoNqbtZh6x88Riv1d1AEsCq1hQ4Bq3awCs5PDfNbGdY3DiEEJMBIh1KK99/+DMViGY8/9TAePb4f3T0Z/PRHH0CSgr3Y2SJROgSsqgLbNdbvFqvi3ku5PJP2Ex46rrtzey6jT8meqmcqoSIF1ylYzsPGqv9nv94g20SYNKRIYRAqZjSQDPpGtNQkw85wsOSgTrpYpnU6gaITGvboXoQKK80GNsYck41miRVL8PZU/RDoGEUAMEwTyl7+WtNWoQ3LecJANUIymYFCq6CUtvxYwo2OiqQgrrnxBbEUQRhP/XCxmkf4dFumcdtNYS5dlhtjozLBY4QES1iIBFpj0oiUawVYBdSgmh9drWHcYrQ056wGqENMvYX7D0GHDoV8CW/8/AxqNRk//M47iCdiKJeruHDuJiZuTWPX3m2+xyNb45Y2wal5X0eYVfI/HyC22Rsj5laVMmDnxFoXKbj4dsTylmonUvRNYM0MiBaOaNf1imtTiQL1zWTrR/SAUjWuHtwQockhaJRlVsEcl9iu29WoL+nR8kKsv9Uw2ndDgfCDD+uGvaaknMI3fAne/9wvaDBLKDu16rnxj3V+TeLMGhGOgBdivpap3O+gFKhIssn1jgEXki4ch7dezJ9Luh7qtEzTdWObmy+1tqjkkJAbf9y6ppGVUtsLzhlOqhHA2WvF2XJeIduacy/17eO9LWwhAgR9o3jz+hQuX7iNXXvGQDiCarWGffvHsbKSx0fvX2ht4ltwhp+mb52acy+VvEObQhpeJi6COwJ+GvLWptaaSC3WiRmzDdDGEEaKhBiTfWMjWaPiEhMRoF2kRD31h5r0NwgL6uAIQkBhOoLYYD1Mn5RYvFAMUEO0yadEk2dKQ41LTWH0cNSkh5Y2Jb7aZHuJNETx59xi3Gd6ubSta+isxqNBk1CqdU5+QnqiaA9OpLDKJIRAUoC1ioR0vEMdZjoExaoETkiEe+vlUJThSrgV9cJvugiUdvAYTWC9zNJJCGGD9pvN/Px0aIG5GcW458dytvY2cIwWwYlI6QjltrAhQdUjQP10j5RSvP7KaXA8wd//v/0fcPSxAwCApcVV/O2/8f/Eqz/5CL/6G88jmYz7SlraegkUHOZnuTPGyczmxVu1cLE6F+3RPZDVvPrDiBBd+a8TLP2qvZPVPEqgEgyG90pDODVoo59U/Z4hjpi8SIxzkvXNZkmdxLFJoiY3FEJMfihU19GcF0vqjI1nSd0hxYCWP7vHL7GWljkrDUnab3rAKZjh2WPNTkRY33amg2p+OAQwn39PFKL/00rz1NklAgKO55Gv0q2XOS6glGKlWAXHx0GCLPw2E3kORGW4x3A9WU8bu+/jNUH4Nwn+1TCutQXBc9QSG0SUUNt085VyhwyA3VQzfjsFcq6UwWO0EUGV66Di2sL6QqGALPsjM0rFCtZWC3jq2cN45OhexOIiYnERw6N9+MovP4mu7jTmppd8p31fkyis58/rOba3Y22EX5WsqtkVtYUw713i5l3SMe3V+ijnz9aMSKzAEasbSKd2K+eUtFdyuisEAeyWNxw3bPMuixiTlwjs1y0/zScF1V1KdPmNnhl1XajZQ0XzaDGnbZelmC8TmFgcs/akMQzLJKZYDBHWm00Upzkr9nw1/HmicxoSi+lh0qypR6Fd+Qsmn1Dqj6K4+FEllDphQCmFoiio1spYXbqHg0MxxARua30xA4pCcXWuBCQHkUykwHGCcWZ8KDBqQ3Mc1noyYA5pe6jUMo3XlQwMnnhAwj08QiSwfqbcQIyuuSdzVLuD60UY2Htv/doW7l8QoK8vgWRK8BxD2IdD5vDme37GIpRSLMyXUCnf56cMNkxoOg/NqeYSu4Pz7Iz1UTpUqm1QNVwS61TwLUjW4Fl8ptsQlBHXcsnWlhKoBAdhtBlGU8LSR7vpdM/N60Pf84TqUyezd4qLzGbaNfMYKnwdo9afHdjgNJBQzUlpA1S77nk04St0yD1RWs8EEULAcTzERAa5Uq3F6W1MUAqUazJKCg+BF1RPlGaLxqvBYwfxIbDzHm4nlVqmaUeZwLtcnMq95dnwkUBzdbIZdFQhusNNVaMwg+cnSD1ou7WCJLiBinILTYDCN5FBCLH8Od3zg1pNQa22iTxRwjwvHdj9h1MpRKwOynMjOlq5jsGGIFDakJznHh52zxBzcIZXhdUDgzbcM3uYWLxFTPo07C1CrffM4RvTVC8bCoHtygAALbBJREFUfg02GZZ8EwdnEHMcewCTfBbsXhrhYKNgKLHq4tuDJXps3NYluOYBNxtxKvoWlBQBOMKBF+KYXV1GbzoGgfP3Buh+AQXFzEoRQqwPHK++ZYvEOoyiZU1a/Ze6eQDSzqfa4ZW0j2rMsmMkmrdMcJiE/dUWlrkiLUk31VwScSNSWmtSP3brMPcHNxtbNpFzAjuAXyJlXa3hh0xiwe7Js+4Z2UJYlMsSFDkGXmjP+IFSimpFhiJv8Aqzfmx1JPCaxLDvO71d0dtJsuHsYMX6MVuhUmyTmhuCMHFKOmI17F2d0Q3qy128+k39q93jwxyGmIOb9mKxJWwlPYhJEK0HpzaViJVIMU8biSmO/XFmEiqmvt+eH2a+TN8tjiqMYVZwItfJncZFEqsLalG1ZWoUOq12PVvNpRPKE6UxyegzS0BAOA6iEEMJMSytlSNPYyODUopSRcJcQYYgxMBzHAxeNcricJG14TqdBji18M6hW6I9S3AnmckBnawiQQvLy7cGrO8dCsL4swdo2AjOL4USrDw6xlpO7GEzcrawLpBlikKh1rBcpxWgVF1mm8+3yYO22TppfzDXv/EMjGDqsx5mj1jEFmzDYX0K1bVLiTRSMJ1YSfmP5XZt44OVK2q6YSY1PEFR95CASpXop+vYPSfUD+spP3aPCqqH0F1EDGaCWOJR2OKZPFcUu+4mjxYjjD2LLGLFnk3jMrEFJRavGmL2oDEiuU0A9BpKbb8ZWIdqytw9IlSa7RozR5tOIE8U9+TsLFl4qMeQE9UThReQSnfjbm4aPen41t4oGigFJpfyEOJZiGIMhHDGHEe3Tss8BVw8Nvyl6dhMtxhOLUywDIXLsw+w2tF181IJX5LBJDSRgM+E1qu2OTfWG+TtNPNxYVRSz+xYK7JfIsXmrNo5VouKSHHKYNue+/sLhUINqZQIXkCLxxAUxUKtPZvKmif3lteeAeI6/e4Q+FWrMZybURhESofm3x/WV/mmU2+T+uG48GYY9AjQhmTdnhAzoUFsgeuctH6ajotUfSdXQqAel6zF04Xb3EIafC7sHi7mk3xM7iYWLxNQ0726AD2q7lzW0OXS+u8GTxbTDcs4hejcDoOlMeWkvtWuKbZGChk5IPXwdQ1dKoIejOWoYh9nRA3dlvZ0Len5HcW16xlj9xY6ggy/wu2J4pjP6AygbmZOwPM84rEEaiSJ6ZXC1kk9UL1QlgplLJYoUqkseF7fMM9q/5ZVx5YIbhcL6ZV2dEEjwbqNjVjvaIINJjya/egQIqG26eaaupsGG2hE7ysbwWd3TrUvqAodC1YGie27X8YpTNr3GWSZYnW10tIxBKUUtaoS3gvFaTbj9OcVd50RtmoGqf7uKTGus56xDrSdN9qrfKhUvBrtNqjfXDJtrhhtSo7jgFiCA+eyjSLHE4gJDoQjGonAmHia9ojST9MBJeB5AjFGTFFMZIDOEeheGah7a3T183jgwTjG98bBEWtMvdnmeEAUiekxNnmnNGzeonm+WDxi6rXBcioQY62Oo0eM9t1Mk1PbPYuXic8+x+yJo+ut/lF3EXaexWlc0QR0jxOeBwSRWD1QPB8ye7n4SRAYGBMw8oCArv6Q27f6Tyo0gu2JQphfbabxyzj5TJLjIPAiMtlezKzMIhUvYzCbuG+9USilKJRruDqzikRmCKIYA0c46FSp3Sxh2TVPsMxPm03P/uS3kzHzkSFzUBfnFaA9tm4fnIiUDvM7CpGQWyvSfm8V1r0NwhoHJVJ8ea80Bg5LpLDekW0Qy7aXSLG/uI/CcJ1ibAoUixJ4oYqurlhLxhCyTLGyXIas74VyHxNcrPF889IcbtneYjcjbv1hfmA6Q9GmyrKNWWAllUxz6B0WkVuUUMipG0wLIsHgNhHlAsXyvITgblwqMj08uvt5zE5UITW7ek8nDXigZ0BAppuHVKNYmqmhUjb1gQToHxYQT1knlrUqxfxUrYEkTnepOi7PSSgX1Gl/LMFhx4E4Zu5UsbZk2nTbZILufh4D20TcvlRBraLfqwegVJ/qE9Mt9f7ANhHJNIfJ61XIVasLS0N3YPLoiCc4pLIccguyxaPEmFUSoHdQQNeAgMmrFUhVG7lgCDenqUqgWoC6o0i9vTA8U+yeHHXex7ikmF1XdDcVWm/vzSIoTPeoroVK+6jqmRKpm8MgmVh6cjwgxAjEOAGV1XKXqtSsglXhZpoSLWkhRtAzyCO3ICOZ4ZDu5jA3IUGWgnTs/hXQHXpkiSLdzUGWOFgpq6Bgp02cfgTIVsCNZdnwN0YKPpIiIOCgLulJxBJQsv24MTeDhMAhm2zNIKiTQSlFVZJxbTYHEutCOpWBIIggHKeSgB7maPlY1oFcoI23wglsO1jpa9c8VLO3XZHnwkW19iE8ZdY2Vd0S8lGGOlpalq5g9YKdMCNtEoEm6n6s7h6GZcWNzAe0DPY+xItEtldJe7myjO03DitMBHHya1XwPEE6LQIgnv2mH1BKIcsUy0tlVDfTiTwmeDWlwWM5SCGA2VXfT5QO4RoiQOdkaP018IafOaKiAL1DAniBoLiqgFIglVUJgpnbNY/Y7hBEIJ5UvTV81XN7sMY5NPqGBYzujKFcpMj0EKS7ONy+VIFU02gAAsSSHJIZXv3NAfEkQSmvYOGelUThOKB/RED3gBp2+nZVHb5yQCxB1I22HbLOiwSxhHP7aMy/GNkWY6a4tjxT02NuMYFGQCgKsDgrgcr1QMZKIAC8QBBPNB6iQU221JsQYiRsJjnqMe0rb6hBWFAQXaBG0BIAVI+gQDsOWfNyscsk1HQ0spUgUYMTKwljhCKNq4H0iAQQ4wT9YwJiCQJF0qJyQH5JxsqiDKo0ElSGbJZc0vjTMtbVfnAcQSzOgeNk1RMo5rffdOuYvbG6qCDd3awXCmn41WCKJhq78CQKw/i6ZpQVwLgWYAiqVUCO4yCIMSSUFMqJLlybXcXBsW4kYsJ9Q6RQSiErFLcX1lAhGXRleyEKMXAcrz7ePu3Q0PBErSjjmWENC/ynG36iHg1c6rGHasThe2S5iOARiw4sZdwVCR4jJNweDZ+8RMvL0nfqrN86Nuj03qke2y94cknuNcpXMj6w6YkUP/BLtnRgHEqB3EoFskSR7YqpQZoYR+hLeJaXyxvqSGO/vJY9TrAUAsYyomzmcV3n5C0STdqUnbB1slahKORkZHp4CCJBrUrRMyBArlGsrUggHNAzwCOe4iBLwPKcBEWmGBgTQRWAF4HFaQnxJIdMjzqhK64qWF2WUatS5FdldcLMAdleHqksB1AgtyihVKDI9vBIZjnINYpYgqBapliek8CLBP3DAlYWJJSLdYKkq5dHuajg1oUyuvsFjO2JIZ4kBomiKBoZomU+neWx86E4VuYlUMVqDzHOIdPNg1JVt/mpuhwdqSyvTlSpSlBUSgpW5mXDtt39PHiBQKpSLM1JUGQgmeHQ1cuDcECpoCC3KDd0ihxHMDCqTjGLawoKORm9wwJqVYrcvIxklkO2l0duUUalqJg8NTRbcASZHtUzBQDyKwoKa7Jhp95hAYQA5YKC1SUFyQxBuptXT0SjwPK8hFSGQ6pLJZDWlmWUCwp6h3hQSrGyICOeUnVYmZPqnkRU9TCKJzWbiEClRCHXKJJdHKgMrC7JqFUoxDhBto8HxwNShWJ1SQYnAF39AhQFEASC1UUZvEgMMqC4pqC0poAQINXNIZHiQKmav0pZAeGArh4esSSpXy8pEHhgaIcIqUpx70YNiqJ6AcVTBH0jPGoyRWFJgRBT7UY4QJYAnifILUjI9PDqEhxOXapVyisQBAIxAUg1IL8sQ1GARLpu80pRQXFVgSxRlAoKFMNpSR2PqUSVRv9wQLqbUz1kFIr8igKpSkF4gmwPB0EkkGX1uiwBmW4OnKDWE44HygVqEIKyBKwtK9YlUoHAbhUce6QmBnSReKIYMM0t/b0T9CFSI1J4jocoxpDN9mJ1leLCvRXsG+5CVzIGRPQ2qVNBKUW5JuPmXA5LJQ69/T2IxxPgBQEc0VlwIMzwvqUTggZas9l0O2n6wsiQDo836y3PRceYySdD0VSMiBAyYT+mbl9xBKF3OqaS+AdrcuzpIuRGrIS3QRACMEgqetgNWDobCpSqHimSpCCbjUGMqYPGIGQKperbxmKxhvxqFdI6HWccpq44DSbdc++3tWsuyuYBi6bqDITSpk3ZYVWZZpJTFGBtRSVRUl0ciqsKEhkO5SJFpUQxuE3E4DYR1bICUVtOMn2riqHtIkAAqUpRyisY3RWDVFU16xsWMXGljFSWR/+IgNVFdZK6bXcc5aICQSToHhBw53IF2V4e/aMCKiU1biyhEjmyRNE9IKCYV1AuqrNTXiQQYhzKBQWKAlQrCqiiersUVusErXnpRu8QD6mqTuDtyGpEx9KMhN5hAekuTiU8TEhnOQyPi6iWKBSqeq6A1kmavmEBsqxObhUFyOdk7Ngfg6IAikzRNyxAkatYW7bKFWJAtoc3ZEzdqKK7XwCIOpHuHRLQpS0zMsrb5NWR7eUwtjuGclGBGCPo7udx57JOsKh5A1W9jCitIp7kMDgmaDoqkGoUIztjkCUKwgPdfTzuXKmge4CHogAr8zJSGQ59wzzyyzJqNcWoe+kuDj1DAipFBRwP9Aypnh+1KkU8SSDECBamahh+QIQYI6iWFfQM8iA8QSkvo3dIAOFUAk+WKHqHBXXpCwG6+nhM36ohliAY2CagWqLgRSDbw+HerRoSSQ4D2wWU8gpiCYJUF4fpmzWke9Q9bBbuSUh3cegeVEmR5VkZ+WUF3b08SjkFg9sFxJMcKiUFsaRqy7Vlgq5+HkIMqJYpYnHVnpJEQRUKMaYSNpWiguEdIuSaukyqq4/D7IQERaHoHuBRLdVHJ3UfHzVfPYOCEUZMECTSCuYmJfQO8cj0cKiUKGIJDskMh/m7EtI96vdKiUIUgWwfoEjqkthYgtP0Nr2UcBzf2UZM5t2CbfDdTwboUKPfrYXUP8x/jYH8N4uE1E/qiccSyGZ7UOMzODe5iLlcURvMbL4hp56vtVIVF+4uYlVKoLt3CPFYAoIgql4ohitYiLc+phju5dUEzAIZ46vg6bVU24Bw0MWHei3PQSeZKYQyrBhtyUaIBN10Df9UNovO1Cpy2LPj64+gzrr7jgQve3lZ2q90VpwtRA8KoFSSsLBQQm6lglpV8RxL6PdlWUGpKGFhXo0bJYHCKm8/daa1tdglJWL+C6HcpoCXvTpDo0DarEN2nKpMMAmNsVeXZMiyOvFOZjjEEgTL8xI4Tp3gV0oK5qckFFdlpLOqdwAArCzIuP55GbJEIYoExTV1yczSTA2KyeuDFwh6hwSUiwomrlRw71ZVJVL6VS8IRQYmrpRx72YFigykMhyKawpuni9byAdC1CU4ehtkXk7BymUixSHbIyC3IDV4mHA8QVcfj2qZYuFeDXKNoruf7b1PKXD3RhV3r1Uh1VRyhxB1Yn33ehVT16uqJ0ZGtcvyvIylGQlry6pHRTLdOJWsVSnuXq9i4koVlKrERG5B8+jpVj12iqsKalWTHqYlQrWq6rGTm5extqJ6WOjlQhVg6noVk9eqqGn5AqnnY/pWFV39qo/A4oyEtUVZ9dDQvFIsFjClad6XVpEp7t2sYX5SAgHBypyEqRtVlIsUiZS6eW5+WcbKvIT8ikp6JVLGDjFYXZQxea0GMa6+5J++VcPMrRpKBQViQi2bSpHi3q0aFqYkVb9uHvGUKqG0pmB5VkZhRSUS9DojxAh6h3ksz8qQaiopl8+p1+MpDvEkQW5RxvRtCYWc6pWjaBWpUqSYuVVDTiPclmdlzN6RIMuq7ooCrC3JWFtWPVBAoNnctHzKXM1U8eB5gmwvj9Kagpk7NSzeUz2WYgnVA2dtWcHMhISVBQXJNIdYUi3HWoVidkLC0pwMQgiWZmXMTcqQJQohVi8llRfRNgkm9T8QaN+1umM/ojYkaICXKdF6ouggaGByzHvvhJOpLesRRMSRRHdXH1bB4fpCHqvlGrb1ppHcRMt79P1P5leLuLWQBxfvRle2F4l40iBQ1A1lLdVbA6MAAqJ5CcEE23MQ3J8meKzWgJXB4NZsif2jUS0iuCXsrpS5rjTvU+ADZuFNJLRupnYFy5puYTsvB6HB6io8TUAYYZwWRZgTas4XxU3VICUYRqN2xwmDZnRTFIp8voZSUYIgckgkeMTi6jJZdc921T1ZoWrYUklCrSqrb/FcBjVeLRzAKkM1VvCJY5CS16MEdCuwt4P3FZw6z/VHKM06qClvzor+KqVUpcivyEh38RBjHKQaRWFVBuFUAoQXCIZ3iCAEkGV18049nlShKMoUizMSuvp41XtkTYY0KxnyeZ4gnuCQz8mQahTlguoJEU9yBrlRq1JQStRlGJxKUNSqtkJQVIJAJ030+Ywss/uC3iEBFOrSFEt5Em1ZRkZdorRtdxwcry53iSUYdqLq0o9qWUGlRI3TV3S9FUWzC6eGzXRzEGNEXQKjET8NIhVAqqlxpRoFLxIU52UoMtAzqOqxOCM17Cmig+PUiTl60bBMiWr61qrqkhEhBpCSeq+cV5ef8IJajv3akiK9XAkhULTZv9HTMp4FSglkiUKS1LKqVijkmrrZKR8nUCiQyKjeFFKF1vd/0f6qZXUJEOEIZBmo1QBFopi+LUEQgYFRAfkVGbIElIuqbDFOsDQjQYwR9A4LoFT12gFRN0NeW1HU9KpAYVVB9wAPqarnQ63HhCOoFikUWf1T76jWU2RAkgC5Cq3+Kahqm9Jy2klLyQwBJ6hLaghR+0DdVtpJzKo83X6qI4q6pKmqepPkVxQUcgrEmHa9RtVNcDVvLH0LId2bSZZU/aQahSyr1zmt77XuGWMuK3173vrzb3sEQiNIXN8kSmCFGBEa223/o1jVjqo7kyCIAIDubg6VSgKz+RUs5Jcx1pPAcHcKcYHfsGSKvvfJwloRk4t5rFWBeKoH3dlexOMJCLwInhdcCBQdYYbWUUvwIdghgXBph5kVtQKsys8YtZh+sjRvGZHSloT8wKm8GieRfiS0rL66JWSHR8J+W6X1Gd/60a6DRt+tgF8T2C9YxvG23w6DxEaY674lsumaE7ESfPIdpocMEseeG/2aWY4bEeQUJkwcJ5jvKwpFtSKjWpHVvpUQdbBHiOqBoqCBNAki3999e9vnN0cuKTmJCDNG2pjDKp9otjTbB7smgTRbBzIsmmRC1H0NlAKryxK6++OIJTisLkrGMgpFAWoVBTN3qiCEQBAJSgXr3kapDAdCCKZuVJFIcxjeIaK0Vp8+KQpFrUqRyqr7rsST6oS2lJchxnWGwUqVEqKeklOrqF4MACBJ6v5K8RSnbqCaVCex1ZKiHi0b41Atq/uHxJIcuvp5Y88Muxl0L5iqts9GpaROwLN9ahy7CXlBncSLcXXfFid+uKtfQDLD4d7NGv7/7Z1Zl9w2dsf/IFlV3Wqp5ZZkxbZsj85onMnTPMz3/wLzmpwkZxKPo7FkyWpJvai3quKCPIBkgSAAgjtKur9zpK5igbgXCxf8eQHGG44f/nWpbYIgEAN/zsXfNAbubjg2txkenIgpSFcXRRSOcl4NxLSXxZLh1f9sEUYM3/9psfudibVKWCDEnPWN8pYeLgSDLAPev4rFNJx7Aa4vUjx4JBYZDkKGKGJlfkEo2izeZEprKeQXtsMjEVFz/i7Bp/MUz14sKuPO4vXEaSoEnShiQCTWL7m7FiLbwVGAIEyxPGAIImB9m+HesYgeOjuN8fBRiIdfh7i75uUQIgyF8CB8FkLI8iBAlnEhVnDg8EGAm6sUQSgUnapezqRbkt29Cgdw7wHD8jDA+98SJFuOf/lDXSLgHGXkRxhBiESZmLYULgEWAvceiGlxV+diOloRjRPl04ayTIgjokzVm2tWRGGher1V7yV2vtfvhPRfWtDiFnecSJTO2D0vhJQwAFgklLMwCBEtVri9vcYvHy/w+8Utvnl4iJOjAxyuIoTlm2v8uQCqFMLJJklwebPB6ac7nK8zLFcPcPLoPlarAywXq10Eik72JTznMx54DspnPkgnCCN9rlH+HTN9juSxBZ5GeH5dLr54gb/3MMR0DNYLJuxO9QHQ9Ih1LziWK+SvNRbRDGfvYjz5boFvni/BmBh83/2jur4Hz4DjxyEO7+eDwFQsqHovn96SJmLqybfPl/jxzytE+UKsn85SPP42X28J1QHh0XGAH346wJv/2+LyY1L+cPkxxbfPQ/zh31ZYrBjurjJsNhwnTyM8+W6Bf/59g/VNhq+ehAhDhvPTBCrRIsD9r8Rg/Zf/3AAQosaLvxzgOJ92gdwrQIytnr1YIsvXx3j/Oka01I8ztmsxMH7ybbQTX5b11o2WDM/+tCy12usLsQDvxYcURw9D3F5nSLbVfeRog3grFhp9+n2ExUH+0Dh3iQXA9y+WyHKB5vJjLBZolfI6P01weH+Jpz8uEG/For7rmwyb2wzHT0L8+OelmFbChL3H30R4cBLg1f/GZYfVCklClxBREwnH8eMQR8cBFssAWZLVZpRcfUxxfBLiuz+K4XYQMpyfprj8kOLJswjP/rhAmC94fHMpBKaHX4uFjqMFEK+5iILJI2niGHjwKMC3zxeIIoaHX4t+cHWe4e6aY32d4f5JgOXBAsvDoFYG2/diatXDJyECJiKswkgShuR24sCjbyIsVwxvXsa4OhfrwnzzfIHlSixQvLnLcHUhFu9dLMU0uturDHe3GR48zgUeVuZY2hCxM7mQl0+hzbhG92f1r32u1sX+vMXJanIRpXchcyElCJArWQGCMEQUhFgthZjy84dPWJyvcS8CTo5WOFxGWEUhFmGARRggisJZT+hJmiFOU8RJhm2SYpOkOL9Z42qTIeYMq9V9fHVyH8t87ZMoWiAKIwRBAMZ2JzZzFIpK/4Gp+vBilCf9BgP97Hk8KHdwTfe0dS5fpkP3JL59DrMF16iGOzjjVXPUaOOd3yUZDNvFvc1BXFRXWW26jNWwveJub+x2ab8PU/ZxeYI+xj4m79rX18j7lNPFWsQamM45unQE9O3iR+XYesogHjLl78i0O2PYjpf+Dqcp8DZfq6RcpJUDp69irG8yHNwLkCYcV/lbd96+3JYRKTdXGX79+xpHx2Ixz/evY1xfirUb4pgj3nCsb8XT+8P7AdJUiAabNcflxxTruwxpBvCY4/TXGJt1hu2a4/S3LdY3VcHm4n2CNOE4PAqQJPl6LjHH9acMnIvoD0C8MebNL1vcXmveCMbEG4XWt7vfxFt94nwaDsfvL2PcXWdYnIiB9qd8wdn3Nwk+naU4OOLIXnIxZYeLMicJcHOZ4vXPWxzeD0pf0lhuN4aL9ylursRCrYslw+11Vka/JFuxmOnlx1QawFdHM2HIcPZO1MNixRC/F1Ov1jcZtmuGeCtepVNEDRVtJoQN4cXVWYZXyTZ/0wzH3TXH3Q1H/DrG5k5Eh1zk+cYbMW1mu+FItxyfzjKs72Jkqajn01cJbq/F1KSLU/Ga37vrDG9+iXF0HCBNObJTEcG4WXO8f53g7lqIAHc3HK9/FukAjtsrMd1rcyeEooN7AbIUuPmUYrvhOHuXYLvhODgUU79ur0T0zvomw/GjEL//My6jYTZrIeTFcYarc/H2nA9vUxw9FJEqLOSIIrHWyfm7tHy7zt01x4c3CbZr8f3sXZpHCmV492uC1SFDvBFTkeItx3YjFrTd3PK8noUAeX2RIYzEFJ7zdxm2a2B5AFxfiMV90wT4+DbF+pZjuRTbby4zZCnHp4+ZmLaWiSipD2/ElKksE/5kKReRNLIo1XAyKcUPTTr17CJrNwxVManN2YZxxxVZ//tv22FPvKoa5pJI/iV/UsR5hizLkGUJ4iRBkmyRJDHiJMZ2u0Ecr7FZ3yIKAkQhQxQGZXTKNMgavAg5y7IMScaRpBmSNEMQLnFwcA/RYonl8gALWTgJQ4T5ArKMFX739X6YQc3oQyODgX52fRrQWXxxcHPSkvhUbSX9e8KsQ/wBDHvZLFb2z+O9Ya+qVn027fKsuss+MzPOeJBwZj8qu7eXHuhB/cx60E7qAGwCl6wmnPzp7+TX30V4+sMCP//7RkwL6o05POD4UYCvn0UIQoaX/7WpLCrLADx5FuLpDwts1xz/+I8NuOqOPC+F6bYXP+diNONFTEPFL6bWrbybWt9c0raVNEw97myXJM12Y+tpflgsGZ69WIjX/56JRWWjpZgCVLz5iTGG714swMDL1wjfXmV4+zLRR9WYzLN6lbo7v/uZSwnV5GJFE01fkXx49iLC6lBE2Zy+TosdnWaimu7tXY4YzoGf/rpySDnndB6naAPzEEesN8PAuZirGAQMLAgRhSHSxRKrLEV6cA9pmiJJE2M+w6K5W1J6YvFtuUuBIAgRhhHCMBT/AiGeFJEnDGLBH6GcsQGKojvy++UyCgYDpvtSN1/qh/J8WB5Rd1iJedT2kC86syoPMv36sfxQzpuoFZfflGSAZ81ixcXL/SiJd+juDjQ3hLW0swSvWCItBt2ni28t92ka7HgwPtwv+jbM/lT4PkWXjKcHetJexUV0TvFEruTGQ2AYRzdrjsuztLJ4bXssvkiCw+pQLIp69i6uTeUBRGTI3U2+/pROz5HepFOtH7NyUVu41nBrrUYjyKcTXnwv9pXEktodaCG6cFSiHSr+5olN00aY5kBLtuJtQSdPIxw/CREExeK6YrqLyJLj7G2Ch49DEWnzIcXF+zRfc6eQNFjNHaWGKr/VyqFLpKH8mckVuesMVS+Uysw/f/gtzRes5bt+JOev1qlkzrU3t5m6o2O+SBQVrv1oTyht4ijmTWXgmXhVYZZl4DxDmmWNufbDPe9ysFOoaRxgQYCABUI0CQIEjAE18aT8bwg3xspgwFy6ZdzPtm8DN31f77H3ePhWdQM45FWRBnDGq/J0Yv9LQBCEDd2tvCeDbAea9LTeGU/McGY9a8MZNLdGM05+jORsp+cW7X0plnPUCiTdsswz1ORjeICgfT7J9I/ktBEPDv2GsTz6RY5MaYqgYNU0RpGDielOLBALzPJM4xLLy1lZ+kZWdiqltBRM/O7cLJ0S5uJOXmdM3swK67VYonIbah7ylod2NVXhw09/PXDau1MkyijPCTWZOtthu0oMWQjOAnDOEYYA5xkiziXVSn5mO8UTzyZ7uVCSv/O6EE7KErmIJ7usvBhnjOaGSSodzLYnFWjD5qLy26Sl0antkzuhGi5wrDCHX2ctTpPhhjRyE+1BT9fQovMTBOEBbY5L9T7Hn4G36+lX97mzoZmLP4x5f9qwhCl/RzTj3JTWBBPUoetAq8PwVM46q79EqJq4K6Z9JQdkAaMUKqToBq5JV1sng7n5aY9NKKYXKQJBEUEhiz0Q/pcaSJ4uTfT5y2uCVHyXx76VTFH9XmRQEVrcugeTEjb2EiZLIrmNyr6sbBMupTFlWPWPVbarUlGTf3JfcMFdRGH1i8QoQgokO1xnxzw4Kt7Aw/JXEgIA5wHUlt3tNfVNt84eq9QtK790PKO4jB2ddu6UwQg5ORjQiG8q7vZH97wFhpK06Bq2uhjzGK5tm3V8a6uwZiHFZdskxXNpd4e6drmH9FeOaGrLJkbt/QRBeCyGdGHwMXdTRhNW12crlBRM7JpTz7eqCOpwb266H8uNx83YxWTmq3y5DrtFF9KNPYtxZbnOCnMohuqArNxonebVKUMM5feKsFKOEyUDpQhSLZQax7ETU5jyfSeGmASIqviyS1TJLv+B12qwEExEgepvza0KICpVcaPdq1Vs39v8qtJrTZTRb0NzA2Y76hGwa/adoAJwLn0GIMkqqHeVsW+sTXZGOKN4NE4Y1RX1oHa0382nuSvVppK5+Ta6GGoy6klfrNPfOVsOkxfdxWBDGtPZyNsmdMbU+x1OIrV9CGJf6dKPbceLTwM/Oy53e4OUZqLbvC50c8PDAo3eiG4uGH9wrq7BpboB6O4Lkz9MfLmsDZgdn4TZzmjFcH23ksfuiTzfJVJEh3rhK/pJHlZSLu1QyxBCFJEWSCknu7DcB45yrMvz8BPGWC6myBkZ2lKzmWs+c0MClpeJVUqu2t3VSLGYrBChUM4uMgo2De4bwhIa0zQxTiSKAduQbhCY9KcWSaJ6oK/pShhXLaW6pe2Jo8uNiPRX2X3KiI12O8t083KqvlKB23/ulqkvAyndlcDim2FzQ7UNx2SGutDfOVv/Gr3v2wza0rR0xiVbb5rUiXbPKMxp2ooxBDEX8j1IWxGky/EyPyave3vflMGM1TOMaY/be2LdodXR4uSbR3U5gC+N+tBIdMmeWb+4R6vu3vwDMFm4kAesal4sF0OKqBaLoANwoFzXhDndVsgiDpe2VO9M8jfjGPOzKIA1UWc3OQlctrRLI4+31YgV1YpOSKks5dKAy2MwW7q2/WnQt/OMPrTMDfgyhBWM480ouZqOi07iSv8n9wVT9Jk9yngADL61aP/BukoTuo7gTdWO45xLDpNVQZsD0dGpIZ4E7B+6wUaXPmN6ouOyD7H/dGlL1zNKm+37heWWf08MdKeLFGbvM54UzMbELrbSa5j8wdNO07HX6HJpzH5ExqjNFsuo1nyoRaFw1B9scuy+F4EnWlUnjzsxrkbLqnnI33VKgWKD5yEwcnl302/U1w9zlIu+cqZtX1azYYks0fSNynoump2KiB1jno40dUtZ4HJh8FccN6k8QxmQhb66rcmG6Bp7Le0yzVde/WnQEuhc7SykqOxfhEq/UgxXB8Nj8K1F+w/WVVxhhs9eVKnJuYLholbkNJMW3dWpgm6nOCve6Wi9aOozTfu13Wf/a+zLRCfA9c3j86OphIPVgMd60zCudTm/zMhMgkm/xL7WcbdrkpPkMsRpzMGPKXNqFFSYFCXBoH01sX6DUptcJw3kb6uRNmujNHR+VTaynYma87s/tf1qwo701puKIywPmOG7SBTFZzlfVvugsa1Ln2833X3rRJzuuGc0uIhiYpRbvDzTovJKparWgea4uVRPO44+zDWKGMRe/0xGF+EcDNlK0VxCXQpfBjgW31oMjmcd3PtQjVr69Zouuc6Oi3MtC9BVR/O6nibDJu4Zbt4q21zyHyNKYt/3calb3wZT09C3hp1rrY2hIm0nQ+Ni6139c94TRna16UrduFOjf3tU1w6UclCnivORDs4qZZeFgtriqE7Z6xUntYqLKTcVfYHVrzhyjqq+URdUeCU1r6gcimzE1SZnO1FH2xcKUUhWlKTPcn6y4FK5ZO4y5poy1oUkVqZtFrFkO6pd+eOMkSgFOt9HE1KKj9J4UG34KlPdbheeqFfshl2Uzwz1XSeJ2OhkZJgRr204MCgGQyb7bj5M1vs74OBb01jMUj+j4+DbfNjO2N2PC9dL/ixFd3FOdwPa0llXMyrDy1r7hv5mrXmba360j337Xo0uBoVJf9tqFa1qrYvywJS/E2KT3HTf2+W6J8zkbqtmtzaMz/Xd37daDuOpe2NnOUzOuhAQrRnNAK4hw7pwotlVuT2vvL640C1kEYDtBBixe/GjOk1H8ZVhJ6rwqmBSf5OO4hdTjq5yjRjLnZb2fnC3sfzEq8lq505TVTfd5Km/8zbjPMFkkShfLg4didgLvpyBlwUfK4AahmgJdReCmI5Rh5x7djC7jscIn/nCWnGiY8yzwLABMStyuqot3+LDdn/bvDGmGtghR4Qo+YOB53Nzqg/rRcKM70QdOYKkTMJ0bWVvRTmahPNCKBFbTTpdmweJvfpOUd+6RVkMTC6ijD7eMUajzOLNcHY0wQL+3zvIMmN/jycrs8VQPx98brUG3xyaUhdrMWmbTWqwDy5RKe0L4nXRdfcQE4SJ2Gra6/oiCM9wOV4GGfx0OTA9HHU1FWM4lz0sfMFEEQwutI5uqm3w9WrRJdbLnlu7H4ZhvBoewPEJyl5+cJmwoBFVqtvqETF6saO6sCyA6hovclLd7oB2EVg5Qf1tPeJ/rnw35VDuX1WGqql4dR+nBrOcm7yYzmNDG8EzggFZWeO6BOXnqYQUlR4x7ZopFYOXYjADqp7YT4ZQGaX1LIb6+dA17mwKHHzTScMNgspkbWYzOInhLtic7SakNDG5wGWiqegmOjqty7LrvZF33YggBqDpeBh9/Nv20aMnmNztVoxhB8WTY37oPpsL3RJ6UBAj3X1z6l0TFXWcGvZbNGmsc2a4V2n0yf2OTix9oTfUbEexWQtRUbKt5adOXqpNZtKnrk35qUgs5v0MMJsbLTpARxFl9ttvd3JX7R7PVZ4edjW7ujzf7sWu33rV/KOLcg6Ghq8SnypZbXjFtw5RBbOVTm5Dn6rYiO6Wp39El+6zy1NmL6rLdBfY5en1AIJMU+u0MePpKZaYiC7t3rZ/FUwyTG+6NuwJloeWI1gaL/fRmdjtTnKT0wHjc/13982pd80koHTPZX+ulLUy96iEndjBpG3tMixexuK63R3DzpzXj9c2hmpzmoq7JbvZ5nyV7Ft0qZYiyrBH19RRBUwxYI5OGc0TDT1GARaXRzu16M7CrQ2N0/KTtaDBUFdF1Ly3TxcIteGZ5meDr4bR5WTHv45B+vFUuD6v6Se2uJzdvemRpsOlSz49C+TSOm1ck7vmsPIZ4TNN7W7rQ127fi/UTmnK0OfxqERTcYYrxp5UiEwntWJ4F9pst+/kQYGc6O+bUw57JZyoOfVRIno70t7EIDbdMzFqFKzh8KjZM8vITEpTTs/RGWaNL41uQPXDnNsYGpAO7xaWVU9to0xRKQa9TCNszUrP0iu7TDbgGcTQ6C0/G/1Ksxej/BzTibb9ZKdZo1Rk+hVnYnS3/S1DhByttI2s8Jo2at7EBWorn7XJl/YZP+rDJbrLZfvg9/pdC99mu6cURTcNo4cd6O3DQL0Bw3OTMc05R/20Sqwm8LFNhu0z1nobEfkY846JruHask8soAzDSMeLZsHbRk9Y1Q+uZFN0OldPh+gGziJKxXcufxnKFcXWmEgGdO8+51ov5ohM6SikqF+15RuYNgMRp0z6969BXOprKG/CYXxxMDQ7Oh8tlVDgEKViSDouluLsB7aa7H6MtTlH75MMWOJabS7MdcNG+8y+z6yDiCbjXo5whsG16CMOUwezMAmeuNmqXZwSe1IwK90l01aSy4Qi2LDmBshpdFXakm1vW3P1Yb3d2lZW/TK0t9b8uOHzhHSLRKkNIvZqVFFHcd9emqnLOoA9S/lGLc1ghobzctKy64w2b278rbUhL2jwrUXD6Ablk5d8MoVuKlxqsH8t62769irYpwtN2qf6XX1M7pL/Z1Vhnwld2qVtuxd8BgEPBdNVwRdc2R653skVJn+w3UXNybi+lWKFB1UwjBldQUYQUEbCLi60ycWvi7lVqOtTt8p0ny6t323dlp2lmuSTf+Utpqgw3iY1QRAEQRAEQRAEQRDEF0owtwMEQRAEQRAEQRAEQRD7AIkoBEEQBEEQBEEQBEEQDpCIQhAEQRAEQRAEQRAE4QCJKARBEARBEARBEARBEA6QiEIQBEEQBEEQBEEQBOEAiSgEQRAEQRAEQRAEQRAOkIhCEARBEARBEARBEAThAIkoBEEQBEEQBEEQBEEQDpCIQhAEQRAEQRAEQRAE4cD/A7Dg9ghr+n4UAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "output = svg_renderer.render_svg(cover_page.svg, width=2000)\n", "\n", @@ -223,7 +156,7 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -241,7 +174,7 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -250,17 +183,9 @@ }, { "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "BoundingBox(x=48.92804718017578, y=35.970951080322266, width=258.9908447265625, height=258.9908447265625)\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "print(shape_bbox)" ] @@ -274,22 +199,9 @@ }, { "cell_type": "code", - "execution_count": 60, - "metadata": {}, - "outputs": [ - { - "data": { - "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAEDAQMDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDv/wB7NOttbKHmYZ56KPU+1asHh23A3Xckly565Yqo+gFL4fgUWb3ZH7ydic/7IOAP6/jWxXZUqOT8ijN/4R/Sv+fKP9aP+Ef0r/nyjrSorIZm/wDCP6V/z5R0f8I/pX/PlHWlRQBm/wDCP6V/z5R0f8I/pX/PlHWlRRcDN/4R/Sv+fKOk/wCEf0r/AJ8o606KAMz/AIR/Sv8Anyjo/wCEf0r/AJ8oq06KQjM/4R/Sv+fKKj/hH9K/58oq06KAMz/hH9K/58oqP+Ef0r/nyirTooAzP+Ef0r/nyio/4R/Sv+fKKtOimBmf8I/pX/PlFR/wj+lf8+UVadFIDM/4R/Sv+fKKj/hH9K/58oq06KYGZ/wj+lf8+UVH/CP6V/z5RVpUUAZv/CP6V/z5RUf8I/pX/PlFWlRQBm/8I/pX/PlFR/wj+lf8+UdaVFAzN/4R/Sv+fKOj/hH9K/58o60qKAMt/D2mspCQGI9mjcqRWTe2M+lkO8hmtSceYR8yH/a9veuqpksSTwvFIoZHBVge4qozcXdCOUoqoZ1tHe2kbLRMUz6gHA/SiuxVItbjOo0D/kBWf/XMVpVm6B/yArP/AK5itKuEAoorjj4l13Vry8Hh3TbaaztJDE091KU81x94IAO3qaAOxorE8OeIU13S5bmWE2s9vK0NzC7Z8t16jPce9aFnqun6g7pZ31tcOn31ilViv1waQFuis+bXtItyRNqlnGRIYzvnUYcdV69R6VZF5bNcLbi4iM7J5ixhxuK/3senvQInoqBby2eaaFbiIywgGVA4ygPIyO1RWmq6ffySR2d9bXDx/fWKVWK/XB4oAuUVSj1jTJrlLaLULV53ztjWVSxx1wM9sUkOtaXcXjWkOo2klyvBhSZS4/DOaAL1FZtlfXE+r6jbSm18m38vy/Ll3SDIyd6/w+1Swavpt1dNa29/ay3C/eiSVSw/AHNAF2iqNzrWl2TSLdajaQtEQJBJMq7SRkZyeMirUM0VxCs0MiSROMq6HII9jQBJRRRQAUUlFMAooooGFFFFABRRRQAUUUUAFFFFABRRRQB5prpI1y7wf+WlFJr3/IdvP+ulFUI7vQP+QFZ/9cxWlWboH/ICs/8ArmK0qkYjcqfpXGfDaZIvDc1lK4F1aXUqXCscENuJyfwNdpWBqngrQNZu2urywDTuMO8cjR7x/tbSM/jSEc34r1yz1jw0xsvMSwOqpaXswG0MmfmII6qeBmpdf0/T9J8ReF5dHggt7uS68orAAu+Db82QOuOK69dF01NJ/spbOEWO3Z5G35cf571T0rwloui3P2mxs9k23YHeRnKr6DcTgfSgDjdB0HS9RtvGVzeWMM0/9pXUYkkQEqByMZ6cntUFtI2m+GfCPiZmO2z/ANHuW/6YuduT9DivRbTRrCxivI7eDYl5K8043E73b7x5PGfamf2Bpn9hf2L9lB0/Zs8ksTxnPXOf1oA801H7Ufh3qWtAmOXWr5XkZjt2QFtqgn0wPyatWz0HUofEmjXy2mi6ckW5CLSY7rhCvTG0bsda746bZNpg01reNrMRiLyWGV2gYArM0zwdoWkXa3VnZbZlBVGeRn2A9l3E4/CgDlvBmlaYugavqc0ccNybm5DXpXLxLyMg9sDPSsm1sbbQ7fRDqOm2VzZ/ak+y6tp8m2QsTlS4xk5789q9PsdIsdNtJbW1gCQSuzuhJYMW69c9ayrXwN4dsr+O8g08LLG2+MGRiiN6hScD8qAON1e4uba8+IktoWEojtBlTghSmGP5Zq14k0vR9M8I6TeaPDBHfRzQfY5YsB5WJGQSOWyMk13cWjafDeX92luvnX4UXJYlhIFGACDx0Pas+x8F6Bpt6l5bWAWWMlo9zsyxk/3VJwPwoA57TdH07VPiR4qe/s4bloktlQTIGC7oueD9BV/4bqIvDk9uufLgvZ44wT91Q3Sukt9KsrXUbzUIYdt1ebPPfcTv2jC8ZwMD0pdO0uz0qCSGyi8qOSRpWG4nLMck8mmBbooooGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHmevf8h28/wCulFGvf8h28/66UVQju9A/5AVn/wBcxWlWboH/ACArP/rmK0qgAooooAKKKKACiiigAooooAKKSimAUUUUDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooopAFFFFAjzPXv8AkO3n/XSijXv+Q7ef9dKKtAd3oH/ICs/+uYrSrN0D/kBWf/XMVpVABRRRQAUUZooAKKSjNMAooooAKKKKBhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRSAKKKKBBRRRQAUUUUAeZ69/yHbz/rpRRr3/ACHbz/rp/SitEB3egf8AICs/+uYrSrN0D/kBWf8A1zFaVZgFeW/FzU9RtrzRbPTr2e2kmL7vJkKbslQM4/GvUq8X+K95LD460Zo4GmNvGkixgH528w/L+g/OgC6Ph543Iz/wlsn/AIEy12fg7RdW8P6ddR6zqhvnZ96u0jNtXHTLVw9z8R/Gulqt1qXh2OKzJ6tDImPbcScH6ivRfDfiKy8V6Kt9bKQrEpLE+CUbuD/nvTA8yi1LxL8S/EF1DpuovpulWx6oxXAOQM4wWJwTjOBTdbsfFXw4a21KHXZb+yaQRukhbbnrgqSeuDyK9K1S/wBD8Facb17SO1gkkCN9mhALNg4yB+NeZeMfGi+PGs/D2h20mJZgxknIXcQDgDngc5/CgD0fUYrnxh4Pt5NLvpNPkukjmWVSdyjqV4I+lcn/AMK48Vf9Dpd/99yf/FV6BoOmDRtCstO37zbxKhb1OOT+daDsqIzsQFUZJPagDwXxfp3iLwpLZwHxVfXdzdE7Yo5ZAQOmfvdya9r0K2ubPQrG3vJmmuY4VWWRmyWbHPPevLfDwPjv4pXOsyAtYaeQYgenBwg/PLV7FQCCiiigYUUUUAFFFFABRRRQAUUUUgCiiigQUUUUAFFFFABRRRQAUUUUAeZ69/yHbz/rp/Sik17/AJDt5/10/pRWiA7zQP8AkBWf/XMVpVm6B/yArP8A65itGoAKxW8SaG/iIaG9yp1NTkQtE3B27uGxjp71tV59468D3+p6pBr+gzCLVIAMqW278dCD0z254NAHcajb293ptzBdKrW8kbLIG6YxzXlHwWnMEWus5ItoxG5OM4+/nj6CpL4/FDW7JtLmsIbeOQbJZlZFLKeuTuP6Cu28F+EYfCuhGzZ1muJjuuJAOGPTA9gKALOnav4f8ZW0q2xhv4YXG9JYThW5xww+tcR8UPCOj2Ph46vp9rFZXUEij9wNgcE46DjPfNVpfBfirwbrk994TKXNnMeYHYZA7BgxGcdiDmm3ug+PfHM0FvrccOn6ejbyFxjPrtBJJ+vFAHe+BdRuNV8F6ZeXRZpmjKszdW2sVyfrjNZPxS8Q/wBi+FntoXxdX5MKY6hf4j+XH411umafBpWmW9hbAiGCMIueuBXnmu+E9b8T/Ea3ub+z2aHbMArGRDuVeT8oOfmPHTpQB0Hw48P/ANg+ErcSJtubr9/NnqMjgfgMfjmuuoAAAA6CigYUUUUAFFFFABRRRQAUUUUhBRRRQAUUUUAFFFFABRRRQAUUlFMAooooGeZ69/yHbz/rpRRr3/IdvP8ArpRVoR3egf8AICs/+uYrSrN0D/kBWf8A1zFaVQMKKKb5ieZ5e5d+M7c849aAHUVz+peMdK0u8mtZPtMr26hrgwQNIsIPOXIHHFS3/irTLCG0ffLctdpvgjtojI8i4zuAHbmgDboqhpGsWet2X2uykLIGKMGUqyMOqkHkGr9ABRWVreuxaKlsDbzXNxcyeVDBCBuY4JPUgYAFXJr2G1sDeXZ+zxIm+Tf/AAD3oAs0U1JEkjWRGBVhkH1FOoAKKMj1ooAKKgvLy3sLSS6upVigjGXdugFTKwZQynIPINIQtFFFABRRRQAUUUUAFFFFABRRSUwCiiigYUUUUAFFFFAHmevf8h28/wCulFGvf8h28/66UVQju9A/5AVn/wBcxWlWboH/ACArP/rmK0qkY2Tf5beXt8zB27ume2a85U+LP+FhyYXR/tn9mLkbpPL8vzDjtndnNekVH5EP2g3HlJ5xXZ5m0btuc4z6UCOW12eOKSXRdIt4Tq+prm4ZRxEhGDI/4cAd6nuxpfhPTLJ0txcX0UK2dooAMsp/uj8RkmrF14N0O81Ge/ltpvtU+PMkjuZU3YGBwrAUlx4M0O6W1E1tMxtVZYW+1ShlBOTzuyevegCTwvpEuk6bIbpka9u53urnZ90SP1A9hgD8K5/7N/wkOt+Ivt+oXVuLBlit0hnaMQjZnzMAjJJ9fSus0vRrLR0kSzWVRIQW8yZ5P/QicVV1Lwro+rXZuru03TMux2SRk3r6MFI3D60AcLFEfEL+CrzUmnNxciWOVkmdNwVGwwwRgnrkdc11vj6ziufBWo+Zv/cxGRdrleQD1weRz0PFbL6RYPNZSm3UNY5+zbSQI8rtOAOOlWLq2hvLWW2uIxJDKhR0PQgjBFAHC6nDDDaaDo9t/aFw0kTSC0hujH5gwCS8hOQATwAax47vULrww1nLe3UTR+IVs1dbgtIkZI+Xf3xuPNd1L4P0SaxtrOS1do7XPkt5z70B6gPndj2zTrbwlodpbC3gsgkIuVugokbHmrjDdfYe1IDnV0mK68WPoc17epZWNkssEa3LqzszHc5bOTjpWEupakPD+ladFPd3IutSuIpJFuAkkioxwvmE8Z/pXW+K9CudSvYLiHSrW9CRlAzXT28ikn+8v3l9qk0Twba2/hKDR9ViiuCrmZvLJARySfkPUYzjNAHIappmor4S8Qx6jDcwWcPly2UUt55roTwwJVuR0IB9a9N0u1istMt7eEuY1QY3uXPPPUkk1UtvDOk2thdWUdoDDdDE+92dpOMcsTn9au2FhBpljFZ2wYQxDCh3Lkc56kk0AWaKKKACiiigAoopKAFpKKKYBRRRQMKKKKACiiigAooooA8z17/kO3n/AF0oo17/AJDt5/10oqhHd6B/yArP/rmK0qzdA/5AVn/1zFaVSMKKKKACiiigAooooAKKKKQgooooAKKKKACiiigAooooAKKSimAUUUUDCiiigAooooAKKKKACiiigAooooA8z17/AJDt5/10oo17/kO3n/XSiqEd3oH/ACArP/rmK0qzdA/5AVn/ANcxWlUjCiiigAooooAKKKKQgooooAKKKKACiiigAoopKACqcmrabDIY5b+2R14KtKoI/Wrh6GvDZGLSMxJJJJJNb0aSqXuB7J/belf9BK0/7/L/AI0DWtLYgDUbQk9AJl/xrxmit/qq7jPdAcjI6UVn6ExbQbAsSSYE5P0rQrjas7AFFFFIAooooAKKKKACiiigAooooA8z17/kO3n/AF0oo17/AJDt5/10oqxHd6B/yArP/rmK0qzdA/5AVn/1zFaVQMKKKKQBRRRQIKKKKACiiigAooooAKKSimAUUUUDEP3T9K8Nb7x+te5H7p+leGt94/WuzC9QEooorrA9WtNWs9I8MadNdyFVaFAoAyScVD/wnOjf35v+/dc54m/5FjQf+uX/ALKK5KuWFCMldgeof8Jzo39+b/v3V/S/EWnavM0VrKxkUbtrLg4ryCum8C/8jEP+uTf0oqYeMYtoD06iiiuIAooooAKKKKACiiikI8z17/kO3n/XT+lFGvf8h28/66f0orRAd3oH/ICs/wDrmK0qzdA/5AVn/wBcxWlUMAooopAFFFFABRRRQAUUU13VEZ2OFUZJoAdSVyT/ABA05XZVtrhgDgNgDP603/hYWn/8+lz/AOO/41r7Gp2A6+sTxD4jj0FIcwGaSXOFDbQAPf8AGsxPiDpzOA1tcqCeTgHH61nfEF1lfTpEOVZGIPqOKuFJ86U0Ml/4WL/1C/8AyP8A/Y0f8LF/6hf/AJH/APsa4Wiur2FPsB6n4f8AFMeuyzQ/ZjBIi7sb9wI6egry1vvH611fgD/kM3P/AF7n/wBCFco33j9aKcVGckvIBKKKK2A63xN/yLGg/wDXL/2UVyVdb4m/5FjQf+uX/sorkqzpfD94BXS+Bf8AkYh/1yb+lc1XS+Bv+RiH/XJv6UVfgYG5e+P47a8lgisDIsbFd5l25x7YNQf8LF/6hf8A5H/+xrjb/wD5CFz/ANdW/nVepVCnbYDuh8ReedM4/wCu/wD9jXY6fex6jYQ3cQISVdwB6j2rxSvXPCv/ACLNl/uH+ZrDEUowinERsUUUVyAFFFFAHmWvf8h28/66f0oo17/kO3n/AF0/pRWiA7zQP+QFZ/8AXMVpVm6B/wAgKz/65itKswCio5pkt4JJpDhI1LMfQDrXKt8QdPDEC1uSOxwv+NXGEpbIDrqK5D/hYVh/z6XP/jv+NPi8f6bJKqPb3CKTgsQCB+tV7Gp2A2tV16w0bYLuQhn5VVXJx61mf8Jzo39+b/v3XPfEE51W1I6eR/U1yNdFPDxlFNgen/8ACc6N/fm/791cg1ux1nTbxrOQsY4zuVhgjINeR11vgn7mq/8AXv8A40VKEYxugOTPWkoPWiusYd663xn/AMeWi/8AXv8A0WuS711vjP8A48tF/wCvf+i1nP44/MRyVFFFaDOs8Af8hm5/69z/AOhCuUb7x+tdX4A/5DNz/wBe5/8AQhXKN98/Ws4/xJfIBKKKK0A63xN/yLGg/wDXL/2UVyVdb4m/5FjQf+uX/sorkqzpfD94BXS+Bv8AkYR/1yb+lc1XS+Bv+RhH/XJv6UVfgYGFf/8AIQuf+urfzqvVi/8A+Qhc/wDXVv51Xq1sIK9c8K/8izZf7h/ma8jr1zwr/wAizZf7h/ma58V8KA2KKKK4ACiiigDzLXv+Q7ef9dP6UUa9/wAh28/66f0orRAd5oH/ACArP/rmK0qzdA/5AVn/ANcxWlWYFPVo3m0a9jjUs7wOqqOpJU8V5T/wj+r/APQOuf8Av2a9ioranWdNWSA8d/4R/V/+gdc/9+zQPD+r5H/Euuf+/Zr2KitfrUuwHBeM9Lvry+tXtrSWVVgCkoucHJrmf+Ef1f8A6B1z/wB+zXsVFTDEOKtYZ47/AMI/q/8A0Drn/v2a6bwjpd9aJqQuLSWLfBtXeuMnnpXeUUSxDkrWA8dPh/V8/wDIOuf+/Zo/4R/V/wDoHXP/AH7NexUVX1qXYDx3/hH9X/6B1z/37NdN4r0u+urTSVt7SWQxwbXCrnacL1rvKKl4htp22A8d/wCEf1f/AKB1z/37NH/CP6v/ANA65/79mvYqKr61LsBwXgnS76y1WeS6tJYUMBUF1wCciubbw/q+4/8AEuuev/PM17DRUrENSbtuB47/AMI/q/8A0Drn/v2aP+Ef1f8A6B1z/wB+zXsVFV9al2A4PxBpd9ceHtGhhtJXkijw6quSp2jrXM/8I/q//QOuf+/Zr2KipjiHFWsB47/wj+r/APQOuf8Av2a3/B+k6hZ64Jbmzmij8phudSBmvQ6KJYlyVrCPJLzQdWe+uGXT7gqZGIIQ8jNQf8I/q/8A0Drn/v2a9ioprFS7AeO/8I/q/wD0Drn/AL9mvTfDcEtt4ftIZo2jkVSGVhgjk1q0VnUrOorNAFFFFYgFJRRTA8z17/kO3n/XSijXv+Q7ef8AXSiqA7vw+wOjQIDzHlD9QSK065Swvv7MuXZwTaynL4/gb+99PWuojlSaMSRurowyGU5BonFxdmA+iiioAKSiimAUUUUDCiiigAooooAKKKKACiiigAooooAKKKKACiiikIKKKKACiiigAoopKAFpKKKYBRRWLq+rrGjWlqwa4YYZh0iHqff0FNJt2QzltQtvtmpXM68q0rYPrg4/pRV1EWNFRRwBiiupUVYRPVS5d7NDJbSSQsTzscgH8OlFFXVXujM067qgP/H7L+dH9u6p/wA/0v50UVxkh/buqf8AP7L+dH9u6p/z+y/nRRQMP7d1T/n9l/Oj+3dU/wCf2X86KKYB/buqf8/sv50f27qn/P7L+dFFACf27qn/AD+y/nR/buqf8/sv50UUAH9u6p/z+y/nR/buqf8AP7L+dFFAB/b2qf8AP9L+dH9vap/z/S/nRRSAP7e1T/n+l/Oj+3tU/wCf6X86KKAD+3tU/wCf6X86P7e1T/n+l/OiigA/t7VP+f6X86P7e1T/AJ/pfzooosAf29qn/P8AS/nR/b2qf8/0v50UUWAP7e1T/n+l/Oj+3tU/5/ZfzooosAf27qn/AD+y/nR/buqf8/0v50UUAH9u6p/z+y/nSf27qn/P7L+dFFAFm11G9uzsnu5mU9QHI/lV9EVFCqoA9BRRXTRSsA6iiitxn//Z", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQMAAAEDCAIAAAC+s/acAAABNWlDQ1BJQ0MgUHJvZmlsZQAAeJx9kL8vA2EYxz+aJiIaBoTBcIuwoFUal1i0aCyGlqRs1+ulEW1drtewW1msFrPZYPQ/CJPBYrJIJFa+791wTaSeN8/7fp7v8837C1IzKNJZaHfCoFIuWrXDI2v4jSGNKBy36zM45Pp+ib1Pi//4BsVIw+u6Wj+VYaDDtWVDPNmM+dxwPeZLw2ehH4pvDQf7lZL4XrzQ7ON6H7t+YPyv4o12q+cm9ybjdQ6qWmvKWcqcajRp4bFMlROOcURbrFGgpHlTXGCdonKHvGqbnNgmqyovzWZVnizbUW2bvvnP+MjWFNhzkLpJtPoHPFzB+E+izT/D2B48Xida8se+EziRlFamvCJ8ad/MHUy8w+iF1GnTHvBW689bLXbp4LIkWtHdcxR+AeYeSrjIpDMoAAB0U0lEQVR4Ae19B4Bd1XXt9NGojXpHjSKBhAAJCUQTxgZsAza2f2xwie3E2HHad/53Yic/bnF+HCeOS9yTn8TgghsxptuAAYMRRYAAiaIuIQn1Pr39tfc6d9/zzr2vzMx7b0ZoDmjPevvss89u555773vvvspH7z5W0VNRUVlR0d1TUVWZgbt7eip6Orpa2zv3HTm2u7ntWEd7W3t7Z0dnRwV6nCgH945CLSbUVpnEvdNVgB1uJkhStbprWHqLPiXcg062bDjqL+XfyGGZI4mL6bbmka4ypz7m3C7XOquP+xt+BtDCDFBdU1tfW1tbP2xkw+iRIybVVo6tqa6HWGVVVbbJauIOWwawFOuis7Oj5+jeA+t37d1ZWdFdP6xu7NixYxpHDhtWV11T5+WZZgwgTSaYxlia+dIChZc+7oXl5ZupF0YNtGjeoDDYfsiz4SK5UllZ2dnR0dra1trWtu/gq6/u3oYFMGHs1Alj51b3jKqqRKFXSQmgebbVxLsB94TuHvzX0X1478ENe/bugNJZs6bPPGnGtGlTq6urZayoAFv0lKVZQXtW+x4UD3N30vmKecTKZndZotfvScoX/mjTshn7arvs9tj+hVZ0dXXt2PnqK9J27Nm3c9LEqRPGnFxbM6YSJyWZial89K5jPqunu6upfdfGratR9nPnzjr1lFNGjBxRXV2F2i9n+RcWBMaMsha/TP/iLa8wlVmkCtTOubPoeM2xyxf+vocOCwKtq6v72LFj69dv2LRla3dnz9yZ5w6rHV9VWe1XfqVcJ3i7wZHWbVu2rhk7bvTy85eNHDWypob7AFJcnpaMLufNW4rZFkAGP3EuS+X+DuDjeBllaEkcvArpdTN5p5UcVZ6wFjpLacOfCFy5goLFgKk6O7uOHD362MrHDx06OmvGGaPqZ1ZWxYsh3hN6erqPtLyyeduz02dMWXrukoaGBpwCDaZ9oFdZ6nWMS6u90EocxHLHf4B0e6hoaWl5ctXTr7yy8+STFg2vn14VLQa9dNBrg+b2PVu2PYdlcP55S4cPL/8ykFUbHTFTsR1DmROTST0iQ5XxQ2wjIWO4aNrFC9egc1A3Ok8TLRB4mYqP/wDxBB+1jQqfMX3y5u1r2joP4DSBW7/cVMLFQ2fX0c3bnm4cO+q8ZefW19frmDLnkdPloMgPs5GkzB752TIZ87053M1c43AOiCbn8DmxLqC0ylG2qyjiwUjpNi2zEOBlgHMEnkHBEJMhzkshYDLEZaEs7Pr6uqVLz20cM3LbjtWdnc1y7oR3EOB2d1fHnoPrOrvaz1uKZTCsZGdEiJa1JCYnB2XUUynUGl+wagHHsEJvB4hkXLHarNQCaXBMYxKLXlVJ6rTzT4LvsQcU0kmakMTkpNIcgYC8BcLHmMX45nS2YJlAGcHw4cPPO29pa0frvsMv47oA1lb1dOGe6bH9+3fNm3dK45jGUt4ezRYJP2bAfkSTGBw08lOx9KpG1+vN6u8AgqkFA1JxqnZK0gKjADkweweeeoFwZUqbyDeaDAo5RumqHwgfszegnIgBTWJyykh5mjSmsfG0007eu39nZ08z3jqo6qnsOXR0a31D7fz58/COQck2BHOU8chB/bgmMTho5Kdg1ev4OeaACvRSSzacoj0aRQsCipfHQetDUBgmo3AyB2av0cEaEdQ57ouePn8eKv9IyzYktgrvJe8/uHvOnNl6XlQGw63ALFrGYXGSb4VqUQ84EEvJqupyfNObbaZAoz8TtZOTPhO4mRYoY9CToaB4KcLV8+xZM/ft24k34Krauw+1t7dO17eQS7AhsCg5eRK7ktVuK0u8MuwXZ4Ah1t/rgUCjP6toj+wgDiheGieJyRkYyqBy7iQmJ5Waw+hNxdBpfGLzEHxrPjbm4AOodtxCnTF9entHa2fP4apjrbvx1sGYUl0h+FEJMOONCIGfxEE2IGacGKtG8IXjafevAXwcz2S6OHeskboim8hPpSrodqUkJmdgqBcIcdgasVGGAL3gJLELatQLMeMEmPrZm8TkDFaKq+Jx48bW1dY1t+6ram05OnbcGCyOYm8I2SJnfGYAQQIniS0/7IWYcUJsGiFjOKnRn8l05deOYVHDqEHd6DxNtEDgZSrOGyAMtDAR56DoOg4btwXUf3PLoarWtpZhw+pLkGOqzEFZhHkpApyayZjvzeF2BuPk1Q7JPNq9BFPSYwwySLdplIUAL+mkcfIGBUNMhjgvhcDx2bAtDBs2rK2jraq5tRmIHzHthy9+kSQxOQG1/ICfA8OoEl4PcG6ZQ50nZRyyYfYOPGU4aUcSk2OUAYYwOMQ5KMSsl5iz5MAmcByChob6jvbWKnwNAV9p6PfbCIictQAz9ugNopuaE4gZn1ioagTfsMLo2oC9qdohZ3w3PuKIrkxMDlXnwCYwwEDddjYEmI6hz5z3sbnNXnQZJ4nJAWWDpDUfG/N4AzhBqqurb+tor+rBGwr8KHcfffDjQRzQ3PG2XGEUMJpxiGPq6Y2vB9Bt/LwzJbX7s8YzAQ3mZg7DyFScNxB023c+G7Y4MDn28jUE5JN5Xfi0hYtlnz3zI0RsNBldPwMBhgHg5KKmF5IejpdOoBEyxqFecnLNIQb0NyKqo5QkcB5TpXLMeT8QPjZXcweerlCmlG4NrG6shF41Px5JHESUUYd+8P0MpGKIlfB6QLRHdhAHFC+NQzyQNBlaWhMEGMwcHHM4W/gxHDIBVYbjJzE5r0Xa25XAyCUjZFFHVyoOsgEx48RYtbvcejP57wn4OJ7JdHHuWCNQYiZyAipyUV0RDyT1nE8pSvbS1RzYBTJKCN3jKHPVZIxDt8lPYnJeixQrgbEs0Llk5IzjxziJyTGK6bJi0wgZw0mNUIFe0+LjXNo9RzF2UDc6TxMtEHhpOG9QIGwBSmJyjAKcwK231wksnhzUL8hUjGBbJtOxpz39egDDLL99m4MZpx3Eg5EyELTMC0rsPLpyB4K9EMsT8sHofZltynZ25BdJEueIa97MMHsx9bTHOwAynDqHn9kcM8XavXBC3pqPjTnAwAuEK1wa1J9AYCxdTVIq9wPh4wGOxQBMn20l+FFJYnJA/UgTBxQuGSeJheNp93eA9OsBDLBZoVfGR5wkJkeEtFE+iV33gP/xAuHKlyaZw3iZigsPhEmas4M9KGZoyUFNYgbExnJC3AuKdya6ujrwUA35HpA8cayyuroGFB/784rW5VO/N4pjP4qeNC5ry3gv5vbqJHVUwtOCGHKzuaeio6MdPuhbkBacgoYXJJRqbilCQJ0F2XTCCSVXgp9p4lSakj1UTGtry4svvfzU06t27d5VW1M7fdr0c84+55RTTuZ3o3UxIMQYK1T1+tQtQfBTtGcWOrVQkjgvhUDfGp6G8IMf/aCuru76d12Pr8BiSfRNT9ZR1JdKB1UgsjrwWujwVwKjTq/yZoBFGFMsg+bmpu//4Id33n0njqIsl86urp/d8vNrrr763de9p2H4MDyIj0Wu+wDLvVS7Ad2gfUlceOrg1969e+697z5sbG+68o2TJk3uy0JIhraPYc48HsThz85POu8HpfBAvNYl/ZWACFmzGIOTijOWCkq/ra39rnvuvv3O22uqqz/wgQ+ccfqCQ0cOPfnEk3f/6p5f3nbblMlT3njllVW1tTqBXgOgxGRZKI0OszYTteMcCxycZklTGZH2dgzidOr0izzVc6y81iYnPVFzAgkO+lH3U6dO/eD73489Ydy4cf4ySGqI9MV/Y5keZ0Z87inaVdIo3SafOKDoMk4SkxNQvDROEpMzRCsquBIQXTSLcVCQ+fm4KtiwYcMPfvjDqqqqz3zq0wsWLKytrUFdLTxj4fTp07/zb9/FzvC6Sy+tqanVZdXT0dnV3dXZ1t6BZ3PX4Oy7pra6Rp44KXb09DS1tMCC2rq6rk7ItPd0dwPX19VV4WvWFRUtra2Qqauvr8Zzj1GYmFvPyjC0IfpQLb6MhweetWNsTzfU19bW4UurKHfUZSc+ctjRgekwDAIYNXLkKMyKIeB3wLKuThR9DWytxYkQ+isw/uKLLgEAz9YM9EOyvb0DYyGALk4BMcyCEyoA6MF0mKW7uxsY3wjBvPI8zl4HGEp12fSKwoKhVnAEuBI04ZIftIAy9uRnzQOK4uX1L6OOLrrwwnnz5yPnrBh8TxScH/zoh3gq5e7de+bMGY4qwDOMH3744SeefHLN2rUo61PmzsV2ceEFFw5raMBiaGpt+eu/+evOnq4Pvf8PfnHbL59/7rnO7u65s2dfd9115y45F4X1+X/4+0OHD33szz52ysknc/EcPXrks3//uY72jk98/BNYeCjQtS+sfeDBBzFFU1PTnLmz33zlmy65+BJ8+Bzl++BDD9562y+XnLN4565XV616avqMaf/8hX9C0T+z+ulbbrnlpXXrsPBGj2m89JIV11x1zcSJE+H54cOHP/13n8HjDv7h7/4vng6CQncurHpyzZq1ra2tJ0cu6IMDK1taWz75f/4aa/0P3/8HmOu5557r6u7GN8Wvf5e4gDXmFoMf7ILCjAG6JAqkKj5ECoxAcfYE3CzasGkjqn/xOYv1UOqWE05+8Kz5T//tp9o7OiZIVWEZtN99z93/+b0bUcRzT57bLUto/cvr1m3esvX33/teHOnxkNZNW7Y0NzV96rOfwWF24pTJr+7YufbFF7/0pS99+V++PGXyZJxoPffsc088+cScWbOq6upwuH3xxRc3rNswe+5snL10d3e98MILn/v857FmUHzDGoatX7fhGxu/dejQoWvfei0s3H9g/4YNG/GwWFQkdjBQVPaWLZu/8MUvoqYnTJwwevSorVu2/fyWWzZv3vzJv/rEiBEjcVDfvGkLxkISDeeBcOG/vncjOCefPBcVv05d2LJl6/ve+17cG8Bus3nzlqZjxz792c9A/6Qpk3du3/HCCy/+85e+9JV/+fJJM2bi0bR9OcYjqMGxiEkmP4kLLIETWgwBdS3YE5KHJsj5GcBLy0aMUX8bN2xAlYwfPx5nOU43npyBYqmuXrhgATgoOxwa1659/ns33gSJT37yk4sWLAR/9bOr//Gf//n2O25ftnTZwoULoB1HZZz2nH766X/+p382fty4PXv3febvPoMt5ZnVq9945RuXn3f+r37965WPr3zbW6/FGQzOZ55Y9SSuKC5afiFOUg4cPPDlf/0qavojN3z4stdd1t3T9ejKld/4xjf++9ZbsS1gqeCcDXaiQD/8oRuWn3/+qFGjYNgvbrsVQ6684or3vw/XA7Xr16//7Of/7oUXX9y8ZfMZp58BI7He4ArBGnUB+K8/+ckzIxe++M//fFvkgpOvqqILmHSv58K0adOqqvQsEXIWWh8zOylhhpCG36gyJCHWfGzMIZA1Alar8qlstLyxT80YBjo+auvgwUPQMnLEKDl3994hRgHh/B4NfOwATz39DI7W11xzzTlnnTV8hLTFi5dcc9VVOOt+4MHfoKypcVh9/Q1/+KHp06Y1DB8+dcoULBJcFezduxerbN68+ZMmTty29ZUdO3agQNvaW7ESUM3Lli3DXBs3bdq7Z+/4CeMvuGA5fv1keMPw85YumzJt6tGjR9etX4fjN4zGMlix4pLL3/CGiRMn4XwGnObmZqyPkfJ8/Gqcz8+ff/qf/vGfvOf668c0juECgAwbzgOfVhfecs01Z591lnowYsniJVdfdRW6fqMuMJy4sIEL06ZOwwkV9jG4gOMCXOjukieu5Qo5etEok4rZa1Skh1pvI+AfMwTbnoAXQdTJSaUYKIN9KoPlerQdFMh0gW0YtbJu3ctYEkvOOQcnUTzLR8UsXrLktttu27R1M369gXoxqnHMGHlnThZS1dSpUzAKZ+e4OMa3ri+5+OJbfvGLVU+tmjlzJs5zDh88tGDhgsmTJmNBYmvi5entt99eXSPeYeGBgokqlLf7YE9l5djGsVgPUI+XeO9v6ZJzn3rq6f/+xa3bd+w4d/GSsxadhcKVS9zaGn1PUEax8YoIGhafcw6ugLlOILlEXdi8dTO2RzqMLrgA4wHw7iJcgDvYecRB/MPMqdTvJc5LITDUeh0BViWHCbbrhGyZycrX9wRcL3I8ZcqUYxs3YmfAiUp0GizvFWBh4Ed+IIczGZTjtu3bwRk1ajSXAfgozDGjG1Gie17djUIXjtYJCsiwvhEhK0301NScf975ONvBac+b3vimp55+CvIXX3gRlhbKdPvOHSj9Hdt3/PL22zkcvdhwsN6acOB3C1gWg0yjDfd8Xn/Z6zHFL++8Dcd7LAnsMGcuXPie69996qmneoIi3d3d88or2+WqetRop0RvjzaObkRh7351tx4HVC9vm0blLi6wL+JkXQwwLYeM6nZjk5icIRpGgAElN8BgghPvCcB+BthNThILR0tJVAAjzdNnTN+wceO27dvO7z4Px2atElkGzS0tX/v615qbmj/4/g9OmjwJD6PEfaTm5hYsGKxCjIfwkSNHsDCmTp+GspNqUT6pWSBc5UPzzJmzcEcIV7G4qP3dykdx9oUrdZzY4HiM0yHc08TNqEtXXIp3NjgKFMU9btx47hLGFIXSKnDkXrFixcUXX7x9+/bVz61++HePPLlq1abNm/7x/35hxowZvjwsxNNj6YKMRIPN3T1HjxyBYdPoAgdYOFVGixuivQ2z6tJ5NF9UHQWIr9gb9Qz9TYuAVqvrCDBTkn6dQNGUTKoqvesvywaNGJVUvfAMudi97/77Dx89igpBoaPhYLxp06ZHH125du3a0Y2NuBc0e85sjHzx5RfwC56QQSXi2mDtC2uA55+qD2alXo8qjAkKDqctKy66BDvAT2/52Z7de5YtXToGp1J43HFV1YwZ0yGA26xzZs+Zj/P9008HPfmUU7B4xo8fh/UWK4pQU9OxW2+99a677wIDm8A73vaOz33qs1jY2N/WvLCWJ1eRLKaonjN7Nl7ChY72TnGyW1xYs3YN4Dx1wZUsI8wydVi3POO7EHJ96wzgsBevfEt9rIJDJGcEGHSKEOegDLpbCZYB5sEodKWo0Lw4PnNUW1N9wfILZ82cufPVV79/000HDhxoa21tam7ZumXL93/0AxTTecvPH4Xr0ZoanMbgVOrOO+/CERdvP+H9hA0b1t9+5104fuNcH8f15HxJn+XM/tylEMYbAui98MIL+J4XOGedeRbO7p94/ImVj62Eerzz1dTUfM89d3/pK1/at28fijWpDZw77rrzxu9//7ePPIxLZ9wRliWKUsQlfnTSb6NwKnXRhRdhyd1x112bt4gLuHqBC3gJF3DvCzZIEUMDQyPY9oEsewK0J932LfWxmTIEskaAoWe3pQEvc+H81wk4btuboordBMSaZbkeGDVq5Ac/8IGvfu1r995/3+rnnsW17P79+7du24ZT6uknzXjv9e/B+8Q4JC8+Z8lFF1zw8COPfOZzn128eDFMe+qZZ1qam9/+9rfjUlXKSBv4tNrMJ9/1VlbgPa+zzz5r5crHRo8evWjhIg5E7eJk5p2/986bf/Ljr3/zGw89/NDECROx5HCn/6QZM9o75B3lZKsfVo+zqZt//JNvfutb995/77Qp09ZtWL9zx85Zs2eev2x5TTVDpMUtl9fVS85ZcuEFFzzyyCOf/txnlyxeDIVPP/MM3gB5xzvegS6xRIKCn6XQE0jg+GO4iT1BwxcvFRoHz8FP4og39DczAgwieUkchJjB9SkGSriZZou9DWO38PEvygyxvI74rFd53wA1svjsxZ//7OfwjjJu/D/77LM4suJ06PI3XH7tW9+C62mUKepjxPCGj/7RR1Gvd95912MrV+JsY+ask5aft/wtV19TF/2ICW5N4uDN4paZKuSJNGDiTWie3UAVrr9XXLzi5ZfXrbj4kuHDRxgft3Hedu21uM36k1t+hjeAYXzD8IZly5a+793vww1NqK2rqRVVw9wPpkAVPuvxtre+DZe8t991x6aNmzes3ygrdvE577nu3fgFalmSMHvECI2DbBR44/yP/+ijWFpwYeXKldjiZs48afn54kI91Ip8hXMh+g0vKKmrrR8xEr9mrS4EYVYnQVyTvETNxxFv6G9mBJgZ8pLY5U1rOBeu/No/3bh48aIFZ5yOn5rVA7FlCcNiHOwAGX2RHM/78Umhjvb2ffv34yxl1OhG3LTR3UAOkxgFGVC85QyZAwcP4bRKZfC5I1mTIoLPHclNnoqGhuF4BQ7KF+dXeKMXd41Q6KpGrnT5ySKcrhiTwZCurq72tnZc1+LsBW9sqQn4ySzppypcVaNRFZhOW0c73hjG5fuYMWNHjBgefZIcF8T4sBPecKgYPkI+LYJQ4L+Ozg5McfDQIZwU4RJIbrjWys+843evceXQ3CLyeDMEc5LTiQ8ptbVDRu694u5tHNoofMahG0O0dxGw8CHkvcA4GV6z9oVnn3kh2vplMFpWqlWEg53IeFg4Ni0OpbhnhDfF0PCxNvBdxlmDlFSM2kUhNgwfAXUsd1HMpgfg6IX8Rb1q3fJzrK5HmdgYzP54hHRh0VRX4+Atp+tqrhV9UlU0hYwZ3tAwYcIECtsQfDgCx3ibgEd9uoDtSPcAKXcJhJ4IAY9QvoUTnFo4gQ8gsmUNs00yBHobgaAqMdw4rFByiJPUnR2Fw7gDqC1yCKRKqCZOqsng8PtpuJOjpR+fJKtpsSQKTWrKVYuZqZMWgUTV3AtVbghLm+Nic70VT6N1QRThE0ScqHSB6EUABrkok+Enxsc5UxUfrqPkKUc296gGUaholgd0oFnpp2Azx1RCyLAbH3FkPP6lUWW73iQmZ2AonLFGbDTpPDlGMTAHZm9AORdGWfOxMYeAVJm1JM6RJIxCryUmxjqGfHcX1b3AAM2CT8NSphroNsU+VtXxtDQhlYI56Jo676wiDmjSeXKMYnAObA5DZqj1IgJ5EwNdliomgJwM7O0AcnbjVbuM5Z4QK9IccU/Iej1A9UmanDzWC+QZq68GH1HnnVnERiVu2gNKnEohIlHNTrXTyRAP0fwRYOgpZ2nAywCnpiROmEo7GWKPxiuB+4CbLDWbsUrvwOdPTtPIMTOdRv5RqtN7rwcK0knOnsTkGKXzEAYnRyAgQPd8J7PhgXJ8sM+bTAYttmTgZSrOSExyB1AtwW4Anqt8fCzMTePlS3YDsMlJxWYIe2maj8mh6hzYBAYA0D1OHODXvvMDEO+CpwySYeNYX+xNxUyboyqXjrFI2Kta3LkPvgqca33BClPvY1UUHxzRpUrjxUOOUYBB1OASWg5KZyiTxMe38+r7ICU5UpItGT7f1WDiGoBH/Xg30DeFMFD4EdazI8usdEal72MdEC8Jk8lrOM0EHVwtcBjGpXJyuM0QYGAhIRhczg9ma1LTkExPnsSoFhzpJUkRllQFmDtDtD/oSgiyKQo0XHkmzKwfBlgnI3TV5V4M4B86QwOS2FyFQIAZiBwUQ+iwTzkROUlMzolLkwlgLILQg5mDk5ES7gAqHx/1kZjMnUFmUY2yDxBzN6AucOQ6wfIIoQCTYzRSkWKmqI/MT2JyBobSJc6dxIHDEAMnh8PshRhkUqmyXW8Sk3Pi0mQCGAtLA14GmMkgP4ndkZ5p05Hpu0E0UuTTMFaCd51AIcxJ0SRNmhMYjpeDqMEBa8Q5aKrzGO5FLsTsNWpzDYE8EehnYqAdGtxRX6cKdgD2ooc7gFC7Hkhgd9Rye4J2Z10A6EUrhKrgoCEoYmvERukweq3Qc4QAYsef8+b5IATFSYxqcWkjNhqd/XMH8CkTHu8MTCxi5PYEqMhRCTqBqEDzqTIcJ4nJKR81nzBlEpNjlA5TkjgHhZjvNjEd8zE5QzSMQDIZlLBk4KVhpoEcYkeT1wOqJdgNwEvfASJd7M2odtWTdp2QahRNCyhVZHOUveWj8NVagGEiOVE8RNAwe42iK8DkBBQvjUM8RNMjECTDhCwB4KRiS4P0qhbHCXByB6B8NN7fAcAL06vaoj3B72YHKBXRzIDi5SBt4qma7lM6Q04Sm6u+wz7GQMgYVThECohAajIwzvjJZLA3IyWZd4EkMTo+3g2ia4DkbhAXvWnEBEkMZnid4BtCnErBHKQNXqKlUolhtL5TMQZqjPNQnWGIFBCB1DRgnKXBx6kpEUnVkk6TuwE5qbowWbb0oiu8TvBNIwZlo1tJHPUPxF96xpmzeWl8iz84qRh66KRPqZycJCbnxKXJBDAWFnS8TMVMAHvd0V0lU7COl+M90uNR0RvtBjGm3lQq40VJBlWGkHhPwAtVnWI4pdUIQifjXgzgH3pGAwIv6Qy6LCo+pjPZHLZec40cvvSxCZygIJkABqJ3yVBpl4wkJgc0cwdgQee/BvCTmcSWt3hPAEsnS1kxaooNGRwg6VPAoTMwFvwkpkvkG2YIjA4OR48HK4LQw+SAk0wAZTISkP16AMKyG0Q7gI/j9FoamXAZEyWfOKB46TfZE9ACw41DUfYSDxZqfsOgADMSOSiGWC9xKgVzqBUUgSABGGMcBpocCzp6U7COKe31AGZFI1UYE/dNHRpOdjYcDyo/8m33vUnF6XFOHCIwlq5mc9jnl9/lwTtjH5IBZyTcPOpnw6rXvxIg5qIJcY4kYzI/sX4as2EMcSsh6RwT4fPJGRia9MB8lQirUaDEAUWncZKYHFUgBJLWfGzMIeDCzUBY6PHSEpAN43hvMu7Yz1GqxfWqRLwzMHVITDxSk1RISplAP43ZMCzO2BPUIHo4aKjvTSpmhGAver1oxRhdxk9ic3QwOm/GDRKQmgDYZvxkMthrCZAkZb8eYC/SFe4AgRa8NI1JTI5RgEJaxp5AhwoZVj4ZFmgqlbipIRYVcoyiky7lpnSGMuVz7HicycIN4wNsQc+WjJivI+OjPo/3pLw7FFGWu78bSNBsJuK8VMYU0DL2BMrTxQLGlkDEL8ckJscoYwsrwInj7GF00Rmf0mpykpicE5cmg85YWNDxMhVnJKCf1wORLtkZIuySjOmNQxxQvDROEpOTSjP2BEr4wUgdU0ImvLQWYEYFvUEkktGiA8bHEOOYcnL40scmcIKCIOgWBfKNMrjoTU+GylHGHfspqdLxbsBjP9JjWoLdABM4LWpIgNkbUBV0CU9iclKpWwmpfQPAhK9oqZTRYm8Se7GU7KAZhzigIjHUskUgNQEQNn4yAezNCDp3Bh0TXxtE1wA83vN6IOXYj1GpafT5mNJksnlSOH+QrQTfs1TMSATUzwJxXlp4hE5EydTQIxDg+6UYpMF6HV+1xDsAxhonczfw94R4DmhBK5yqeB8JZhmglUD/aHYS5/A+jLZ3WMAojXQK5UTs7WOsXsPD+pAAREPCzaN+Nqx646O+yksYNVHkxzhHYjHET102LKr72qBzgFZCNm/IN6oxE+/AIdbo5sIQNhnDoiLiEw/ROALJZORIAIbFyVA5l5gkJkel/d2AZe3vA5Iwp0WtCjB7tUeISEfNxxGvj38HaCXQWvqRg2oURRYyxBrdXBjCJsNZhmjWCOQIPcZY0FNwtBugy+0MqivA7EVCwh3A12jp4nwyJpqbOKB4WYo2oCvBYgDPAmxZsKgEHAzR2OehpYjZa0dnEHQ/DUG4wzQk3y1WXfGxH+nRMT5lifu7gYTSZiLOS2VMsRtsKPFKYLHS7iQmJ5WGkfcOFJDXqKdQTsTeYgfr+NSXDLqfjNTQQ4Ahjmm0AwgniVULj/o+pRbhRMn0sZsDk0W9YlgyscKN+ElMTv8p5i3xSqBnSQ8CjxktiIHvRS7G6DJ+EpMDygbJoeYi0OcEYHycDNXiEhBgLAxyVNrHHO/vAJKYQtLIBJLSj2zYednvP9Bf4pWQzQ/fV2CNosgaJscounJgzkIZw0MgjkAQbnQEnGQCKJMRdO4GOhJHd0mV/HPXAEmckkwozdAYJZx8UDbIlLlhxpTfKeunEfj1PmhQ4mnS+LnXxKTd+IUyiWYcIfCjaOGn+0SqG79kCyQQP4SMH69yP50mclFOBeGnAUUmnFq7CiHhL74VMub4kGFppVKGG25EQU8pYMrEx3vEmKE3yp0hk6ZoxDSSoexUO50McXkorCrBSuiuOHDwQHt7m9SuxZneJ6KNn3CdMGG8/Awm4ub1YmRPVw9+xLOluWX3nt2v7tq1d9/ekQ0jJk+dPGnCpLFjx+JHDd1vXUbLgvHD720ePXqUy6ZXQcQCmzhxAn51kL+21quxg0w4GXQaSH4uqqXs0pDE5CQokyy7RJRAH7sSSJ2VZnFUEpczqrChBiYWt7V1tP3Ll7+05oUXurq6Qs1YGyxcdCjGD3V+7H9+DD9mLL+iqaZwH8Bv1O58defPbvn5I7/7XWdHh78nYFvAz2Ne/67rLrzgQv4kptSujsUvzN53/303fv8m/GRtOHW+1/iF5v/9sf913nnnYTHkkx3k/UirtQCzINHL8mOvYZSyjyFG+fQdAL0m7WMsiXikGuK0RJi9+kqISEfNxxGvHH8xbw2DUazZcDDu7urasetVHJml6Fn62SlWy7EjR2V2i1ZlRUtTyx133X7zzTcfa27u6uxM6tn2yiv/+o2v/+bBB274ww/NnTNXT5mcHx2dnS3Nzfi95956hMXW3tnrUb2dpcTyXhD9gPYSJ476PMYnKfUWugPYsgmsLHFMClIP24p/xYyfej6w/4D9DDLKtAo/eu5TnIiAoxQd0Y82y2LAf22tbXfdc+f3f/CDw0eOyDKoqMCPKzcMa8AvJaPhZ5yhCQsMPzn+zDPPfPu73znChRT5Kz9UXo9fQy+o1VTHh3+oHT1y1HF+asTDQV4alGJYojo+3Aeioz73gXg30GUTLzXkwbQT56VR6gbyL2yOS6FfhtB7RKGnArsBjq/cDUaNHHnmmWdWV1dnU15bVztp4sSqaj29qazo7uxe88IaLIOm5mYZUlk5etSod73zXeecdc7EiRNbWpq3vbLtF7fd+vyzz+MSAudCL7zwwp133/l77/gfKHwUMSZasnjJ2LHjcImdbUbjYzt6evUz9957LwDGnjTzpFNPPQ3L0wQGPYiCLoZa+YVl7Z0IxTI86nNUEpOToJzD3wF8XKgFjCqtHPgIIyTaYE+RrhP0MKI6ew4dOcRlgLpceObCj//FxxuGD3MTWi5s/p4KnJdX6f0jXCHg/P4Xt97a3NQsGioqZkyf/qm/+dSsWTPlkrqysqdn3NSpU884fcF/fO8/7rnnHlRwW1vbz2/5+Zvf+CasBMhLQc84afq06W66nH+am1t++8jDvLaG/qvfeFVDwzC7isk5dJB0xkHXcodV5IAy0OQksTvec5HoGJcYHRnvBroYoCTbDiA5ciOBEpicgIqcShIMMGXA1J5+XydYJDSKuOF5+NBhufnZI+GbNHESTmtwWexdiTH+6bSpqem555/v6u5CUdfX1n3wAx+YM2e23c9BmeK439jY+M53/N5DDz2E20SIIxbPrl27xowZg2XAJqdP+Rp2re07tuP8SraviooxjY3Lly+vrj5ebhwx6HQyMwEFBloLOHHUT14J+Jy46DXVBc1EEymfLyel708NG6YFH9cJSvthBLxEi2hPd8XBw4fkQKtVOW7cWLn5ny1yGMjplXZ3dW/euoXXBlhIOMwvPntxUJ2qtQL3jubPn8+Kx86wc+dOXJyoHQURmIf1c8+v72ltbcUAbAhvftObR43CRUJBwweBkG9oFHoxywLtYwTX+BlYR+KAJb0RxkDuADGHO0PGyEijSONfdqqdToZ4IKk66QwgjmlPL/cExsP8g6LMCPVUdB88cEBWAvaEqqpxY8aBBjJZ8gKpHtwwnTlzJq4BMOqUuSfjzmayOrEYcA0+adIkABiCuXbt3oVbVoWHGNZhG3nggQewijAKb0287tLX8QSscCVllEwGnZNnhj5bWCM+dwAmjDgLZbr8awAf50omzWJRJHEZI6ZTFRg2yEKyorKX1wlcQ/SJ2KhOjHP9gwcP4Uaq7AkVFeMnjAdFxHuk5HqEh//c4SY8sFRXVS89d+lZi86iepQ7bgKx3MkhRemj7g8dOoQ/4ECAl8u+TA6MUR0d7ffedx83BFzMXHbZZbaucgwcuC6GmPMHWIMuPRpmoT5mr6Pal4FtN9AlgYHcDaglxuiVvmiOJCYHlE2ko+bjiFeuv0GobNrUUPXi/QRGguosKqY04qDO8AYzyhPFj7OXUSNGtbW397R2NzU3NR1rGjN2TH3dsOqaquqqmpraalkSngbUNC4J+M6xmZ0EqH/cOV23bh1P8TELLpGTCyY50NneU3Hw4MH77r8Xt57AwbZzxesvH6wbQmFB94OYhrMc+/1rAP+o7+N4AXiJSpsjc6lkC/4A8KPKzGt0wXsCImGN2KjlC/Xf3bNv/z7uCTj3eH7N8z/66c1rnl/DssMBeNr0aaeccsp5S5YtWXIu3h+QTUKWjanWiHqvfIhlhnbsWNPPbvkZ9gR2TXTXDFlv1AYaOjs7Hvztg4cOHwYf9pxzzjlz5swp5CLb11MunCPoMCFIQNacq5zbiAPM3SCirBZ/NxBHTS9xXipjBk+zIMGkAJtjws92nUAh+pPEvgoPYxngv3379oGHPQFv9H7vphu7urv994nXr1u/ceOmhx58CEfid113HT7qg0i7IzoMkpFxQ91jCfHYj60AS2vv3j233PrfeBOAS2v48OHvePs7Ro8ejdVUYMMdpzvvvosfx8Bp1RuvfGOvTq4KnKVPYgwlhyYxOemUR30WbRKTk6AscX8H8HG8AJiWbJTm+qnzcZ/i0I9BvQsbA8aqy3adAG+sBdgmo8fsjXBnR6e86Yuy1RMkFhzeUZZ+nN3jI6UVFVgYTZ2dd95z10sbXv7033xq0qTJro7Rl9lQ7r/69a/27N7ThZuzRw5v3759w4YNOL/nlS62lGuuvuYNr7/cbrNmjg5fcV09uvJRKEQflt/sObMXLTwTFySh6MC8Zig5dxKTI4H0Dm4O+2eZKkd+uA/oYoB+/6ifgaVPtYMmMTkBFTkdRRBgY5YJ9C5skasyKtueQMMtKhb/nBxcFh89Fi8D1Bo+HDG6sfG0U0/FFcL+ffs3btx4+PBhfDSIO8bGDRtvu/3233/f+3D3JvVEHysBHy5au3YtdxuuJZpWV1v33ne/BytBT7H8AOSKOT6jcftdd3Top5KwFVz1xjen3p7KpaIkfQwrVecMcVyoKSkpeDfgsb84O0BJ4lGg0uKEjes4255AU1hgqTRLvqoqq0+bd9q6l9ehiFFk73vPey+55JKRI0bizie2hOaWljvuvOPnP//ZsaYmWQzt7XfcdcelK1bgyiF1JcAKvMmAHYCbgB8fZB0bDDSMGIEFEp1f+RIJDCVPr35629ZtMqCiAhcY5513fvB+RWJQeRj+Sk4NN8wAP0vQI76OdDLERjN3A+4D/m6QoR2TSYDSqLJdL/FAUnXPGUBslGFAHzh5wkYFPd7njmwwuvIOTpsAB5kpUyf//Wc/f/jokc0bN02YNHHWSTPr6uugDd+uwXEda+Od/+P3ZsyY/uUvfxmrAvM0NzfjNOmPP/JRbAu0yKdYP5OnTD7WfAzrat/efTi5QjUDA+C4/sObf/jCSy/8+Z/8WXx+5Q/OxKh+fDTjrrvv5gkbbhZdcfkV+FhU4RcYmfr68yoZaGrrXdCTOwDTRr5HmUx/B/BxrlTTLKY6ifsTgr6MLU7Y0mpbrKn0VgLXE20kNmpGMCoBH71oWu64MYrTlWHDGiaOn4AbMjjSyymsjuJRH4vh/GXnLzvvvIcffhhljZpev2E9ACo1uS3g/YS/+PO/QP1jBsgcPnQIb0Lfdsdta55b09behguGVatWffM73/rkX34Cl87J4XSFFBO99PJLa9asAQAHZly6YqDeTWP4aFcSB8GFmIYvQVWOiZGju2VYpR3HRqLXMPcHN1KtCDB1aY8Q9FrzsTHLBNRJN1eA6QD6zEkfm3vsRZdxDFf0VIlO+peD5lBBpd7EqEh8thRXsXjXQKpTJogbOKjCq998FQTAxQJ4ZdsrOMzHEh5S4XpUOT6SjeP39OkzLjh/OS6yr7/+eu4h2Bmefvrp5557DuvEGxdCtyHc4zYETP36y16PD7eKeQPWcoQbNjGsJsMEOIpSRs61T47uSYygR70IP3GsMUOXum8cvAIOqDIGDVHHxBk0o3SAnCQ29yBv7gUYZy2izbqTmANy0OT05AQUL6OGvQKfGLVb+ChifcM46k77i5JFwx6DdwDwAaG3vuWtZ519FjXgnOeBhx/s7MyzErZu3fbE409wwWAVXfGGK/AtOehMm608vLxBhxmQSQk9N9mIQizeAXwcHfv93SBDo4xUX3NTFRk0JG/YUgIWBTKHw9gTYhdT45Gei0i1mcXpoYscKvVxPI0gPco3kIcDNt70xfU0QLJljnNXxiOGj7jkwou5q+Bs55VXXsEZVCBpL6ET1wa/uu9X9vGKJUuW4JPethRNspSAweUMSRyEnkGHsISVR/1sWEfGR32Vl1lkpO4G1JVKIcYU+VQGR/wkJqd8lIHhfMQ5aKqTGgh3PIEe31Vi50zyOsFEqYKDTR1eZsGsZNympGYcbnPc30T5si5FfWUlvo7MwzMO8LyiBR93ObNcRsvmMG3adJYyCn37K9tBOW+SomfX7t33339/Z5ecg0Htm64o/7tpftQDnAw0zISMCzSP/eToSONDLN4NIi3+DgBepAUogckJqMipJEGAjVkmEIQKs5Jj4SEncl6scuERGGJyAipyaLx3JBHzhtk0prQADmT37t37Zx/7c3zHAG+l4XsFX/j8P6ReyKI0dRPgrPKRh/ETJsBFnPT/7Oc/v+UXtwDg3s5Vb77q/e/7fRSuGhcS3EMSP/M1rBB83u43v/kNFx7W29y5cxYsWFDGd9N6E0RvASAgenrjQk9cAGX2OTauhAISmC+UZehnqDhR38KGsYW46stEfunZETqogjSvERCDTCaFDtQ9eLgxii9wbtqwaffu3clDNTgoYrxZxlN2lOaUqVPwNplcWldW4Rsz2FWgAU9qwdvJHR2dqRqwpeA7CfhkB6bDzjBv3rxspzpYdbgI+dW9v+JFOdbVm8v9bloQXJgccLKGW+VcL3Eq1eWBhGTsBpA0vZmJSqbOcSA2wE3dczYQp1JzzHfSx1BhMsQ5qJuP3+jHMF/UV5qKIQx+QOUrL3Vnn3M2jvHowV3Oe++XTz77pQyM0jx8+Mgvbr+VZ0Go4NmzZuv3++WcB19OYE2j1teuXbNu3cu4FE5qwGeH7nvgfmwdmAjTLTxjAScVk7yGgfi83UO/fSj+uN7EiectO6+U76YxlDQiiYNAQwwcF2KUcgJDwF0n6EheD/iUY4QTJcrHTqNoUYt8qgzHT2JySkvVJTdFEpOTSiNXvYD5gVSVJoNXdJszZcPu2RbstsGY3sdQYRziNIqjO8rxrIWLcGKDfhyDb7/j9kdW/g4HeL4XhuIGOHBg//d/9P0tm7dABg13VPFRPF77Yg1MnzHDrg3w1tt3/+Pftm7bgmsHbCB4R5kajhw5jO86v/zSy1whOMyfccYZqSsB+o81HcPHK+zdtCuvuHLkqJK+m5Yt0hZQGJWKcUQ3vjv7p6RqdByV8DHHCCdKkdROhAFDTI50aBPpqPk44pXyrzrmJggwHUCfOeZjc4+96DJOEpMDyuY76WP3bAuyTJ1NXyAnmgVPWMHTuB56+Le4x4/axQXD1776tccvePyyS16Hr8KgHLe+sg3fmXzpxZd4roLyxWcxcNZuddw4evSH//AGvFmG9YNCx6c2/vdffvxtb7124cKF48eNb25p3rFjx1333P3iiy+yuLGELr744gULFibPjnRD6Hxs5WP8vB1s1HfTVtTWyMMBIpOL+JfBosICA5cS6AKuBHDU90s/rpYCZ6WJVkVFDEFfVBVodEqovAWQu7cwh/U95myKoAKG5qUqQoIPSH/kQx/528/+LeoPh3DULj6A/btHfieVio9Vywe03aesUf2TJk/Cd/NRoCxNUFT2ihWXrtu4/te/+nVLawuq+ciRIz/68c0QFplMDRCee/Lc33/P+/A0pNTixiXHHffcyZMoCF/+hssnjC/du2kIojXiVJon8zomPuojAcaJFkDWZYDpC08XJc3iAQOpQYI14OcJlZpcPId1JeSd0jeLMSMnE7McZ86a+Zf/6y//66b/wlcRcFcUmwMaBZ24vs2Mm/q4NXTSSSf5RQyM95Pf/97fHz1y9K2/vBULCWNRyqxmU4J1hfVz4YUXXvd779IvXlpPDDDw2eee3bJpM5YTuHi+xhWXX168d9MYMk6XxIUGlDsAc57E5EQLALXh7wY+zlUzNDEtXXGsyof6HqoCFkY2J31+dlez7AkYYNkkNkpd6LXmYZRyDa4WFi36/Gf+7rcP//bW23+5e9duvNWA3QD24O4q2oyTZrzx8isve91luNeEmvZXAlXikS3vvv7dF190ER7yhU8W4foY1YwdBpKQhwbcLHrH296+6Myz9AlFYEN32LASVj/7bC2eCKZDli1d6r+xHUr3+rU/Y4At2+AnMTmO6sh0zAUADZ6WGKMXJpsu4lRKz0Q6aj6OeOX6G4QK05LjORnvBuwNnKQkuuhGktIV30kfszeNVn71izcuXrxowYL5+EJ9bAQGm3EBTtMS8HgYxm0fnM03tzThTGnPvr3VlVVTpkydOGkirnFx2xQXFRiVWsTgQwNae3tHZ1fHoYOH9uzZc+DAgeEjh0+eOGX8hHEYjo+4wuBsw6lBL7XdJ5pwvyj1+QCB5b18GYQmW8hS+N7xnkf3bJTlXugOkJyplx6VTLzvofJWfNK9JKeXHuCIuWbti8+uXpvYE6AIRueg2pmbsEBxKoJyx9kOLnbndc/DENsBclQwNUMAbdiwejz3aHjDCDz6Dh/GwKEfT8sDHzKkOczgcDzDJYdMv7vEEu+w5mNmnpyUKuCdIh0fXwkg9MbxToqQEH83kClNI3EOKtKDoeUNlbkEyQDDfuMQ56B9dbaw6wRqp4m9mcmqFmugN+NiWWjQys/+aNVYttSI2eAsSWy5SmbSHe+ZT+4GPvb2B2bc3wF8HNdDyhyZ1QIre5+u4gWwd+HxTM/tmN9LY30nfdx7V6L3mGE6WjZKvewlPhEpIm0twJZ5ZoO9ht2RnsWpfZTnkd7fB6R8kYZ4pKbESevkARbpiG9YGY5PXG6qbrhJiY3SAfR5TmZgdAVOUpJ8owA5MHt7Q3Ul+MZhsBndG0WvadlksQUcP1cZGMd7CyixjpQjPfjaJzQTx5VgqVBJlYvqRMYII4MqY0CJOiMOoKXSjPBEztA9UgykjLnn81WxEPbay36D6KQl1eh+a3+tKLCcwKEc2M+nw8l3jnV8vA+gFsDREySjcSWYRkycLUU+f+AD3rvweEXvu5Eb00nKFMvhHvslETpAvT4u1kzHkx4/xkmcI0vuSM8DXbQbQD7eARQjFvE+gBci4faHJCZHwuenJRsWuXK2ZHg4e2qQYLS6mpViLB3zKRWW2mHcjHFxy+aS6z6h/mSLup8fYGYVkTHsjvTkqLTLvErE+wB3AGiIR2ZiKLWaCTAzMVjSpU7SpHClJsMDOc9hGZXNSbqXzUmf7+bu9594T6Aq37F+Kz8OFfgx9rORiplVeIleyzBeBjuA9KpEvA9wBwhGhloivaIxE4PDNpDpgrloOWgyPJQPnKHb6Ar45BgFKGmL9wROQ8dKOuWgVu6XFnEqZfayUh2D4z3+xvsAcdpuENcAw18IHfh0pQYGZhk/a3jUduvFq8IdptuloPGeQAdKMcfxoZPZoK15MyMlbgex5PWAagl2BuHpGO4MMc7QxZEJqgxXY0lMTmlpMjycL0eoAsfigOlI68Ur4IAqI8NhckpH4z3Bd7V08w1ezcwG7Qsywxyiy7LnZ9Ud9dmrI12vSsd7QqRFONF4/DUsU0d8h8mRF9pEOmo+jnil/KuOuQkCTKPRZ475mIZSJhVD2PiGAQJMTulovCeUbo7BrjmZh4DDDMMN8C3bgrkbqHQ6zrwe8HcDpwtKTWMSk2MUYAAag8GJiQOaDA+EIZPDMfZCDDIBVcYAkMpi/QrtANieMqV+bA98+eAqP+PEj2qkiMasZDaM42fMz63D0ZWA5FzHpNNopL8byPQR32FyclCRK39jMDivBQYvxWmvlM0Z4wccDAEnL1WRASD4DdjyzIoaRXWi4VuY+AwdPlltn8aT4MjX/OXJkPiYHXrxwT39uJGfhELNxLdzXnllGx4xP2P6DHxuL7ESLHsybZRJw0H2smVVdgAuA2gg9ij1kp/Ebta8M9FhWlCo8/2XS4aEOvOamzVUUZhNQ9KxcjuZFqby7AkodHxAetPmTc8//9y+/fvHjGlcuODMeafNw8ekYRS+SIPyffa51Rs2bjh69NikSROXLlk2ffo0roc0q9N5mAV6vvSVL+G3ZTH26jdfff1119m3orkUsd68RYgMWLNMgpOKLZPSqyMdh9gouZQBhnsdXfI1PfxsFp68KZ+nBS+agziVgml84nJQdcNNFODIsQLCowqyOUntEpqo+TjilftvcfcEVBvKGsd9HIntkA8WlsFtt/8SX8JEQYAP+tPKn133zne9/W1vx+Mw8EWcb37nm4899hicx0AU680//vFffvwvly45FwVdeESgdv2GDfgK9amnnfqWN18ze/ZsPluAGmDGli1bnnzqycXnLDl57hx8XcErSOTc8paCc+4AyT3B3w0qOrq6nnrqqc1bN1/5hisax4zFT6rkmkntKNzlUknmNTElSLlDmOgtlel919uLUitkEjxVZeVjK8c0jsH39FnHKMHNmzfd/OObx40f9+EPffjUU07Btzq/9JV/+cnPfnrRhRdNnjz5wYceePTRR5csXoIHyk+YOOGRRx75f//5Hzd9/8ZFCxfh+B2c3kAbFhtPtbBwVEDsAhPfFF216kmsh/9x7TvOOuss7AYcyyH40s/mzZvxZDH8ssnMk/AsGf6OjmjDMzfwh3NVooxxwiMP9BM+xLS3Qr9XBL6cxGE2rnNd2LCQR/gePI4GVyg8/cM368AGp6O9/clVqx586MGlS5aOHIVfwRKPMIfYnIUqe0AJTEdLpXkXCQZmc8zn6wyDihR5JbS2tn3jW99ccPoZ+IIlVwJKZ8PmjaiMyy+7/OxFUqCLFi1avnz5gw8+uOPVnePGjXvx5ZfwJba3XH3NqaeeiiGvf/3rb7/zjh07dra2tuBbPn6wtKZ78MiMbdu24VwLjwo+ee7JWEs48WhvxzJY9cJLL3Z1dr2661V8o2fJOYujLUV+rG3VU0++tO5lnD5hHY4eOfLcJcvwxTnU9f79+/C7bwcO7j/l5FNPOmlGQwO+UFqJ65UNG9YfOHgQz19av349nkWG37BCHvFN1HUbXm5pajlp5kkTJ0zaun3rqXNPHYtfX6/A11O7jx45+vL6l3fv3jV1yrT5804fPqLhyOHDz69Zs33Hdjyx5tnVq/GDQ2cuWFiNqyCtFlI66GPf5XJgFjdnIi46TTo5kA6nB7XIKwEplmebdnbIwVYbro3PPOPMv/ifH5s/bz4qHjwcUHHegmMwfmMBnDdd+caLll94hjy9S4zBt9Jq62rl92qHZXzdjMsAK+SfvvxPeBAqJMGBqhs+dMPrVrwOP1qFhyPh10bwfdEbv38THmr09a/8K74PDTEc3PAAsu/823fxLVCshF/f++snVj3xL188dfz48Y89vvLb3/0umLR2ypQpf/LRPz7j9DM6OjvuvPvuBx58AE+Wx7dGUesXXnDRiy+98NV//Vf8mq58MbqqasLkiXte3f3nf/bn2NnwwIK1a57/0le/jF/aZRWdfsbpf/rRP8HzWDHv/gMHYNVNP/ohfmXrc5/5bEON+71TFyA10cfKKCNBUVojNkpn0MvCTVJ0UYYOZKPUz94kJmegaRFWAsoIX1nGeRFODlpa5KF3ONbK0+/k+rCyvq4ex1r8jg7qBycS6MXjU59c9eS0aVNReThsLzhjAZhYGAgF9Lzw4gv43jOeyIIHEwXBwRXFN779DTw17A8+8EH8hvnOV3d+99//7d/+/d9mzZx1yskn/+Pff+G/bvrek088+em//fS0qVPxvBnL0siRI//pC//46MqVN9504/XXXb/ikkvGj59w7NiR//yv/8LUH//fHz9pxvTHHn/ipu/fdPNPf/ypv/lbvOHY3tmOJY0fh/7QH/whdgD8juh3/t+/w4A/+OAf4LRt/ab13/72t+GjnC31dOO5l1/95tdxN+mGG26YPXPmfb/5zX333YfnMr3r9975xS988Uc/+uEjKx/967/6xNy5c4fVD4NTrCh65+PA35K/tCJOlnixOCX3oWgTFGEloBqeeOJx/EhUe0c7Tk7w0C7cvfn8P/w9jpxYBjg0Tp48RU+bZRngDOE/bvzPY0eP8RelsFS4BtCFtmvXq9/+zrcbxzRec/XV2Dd4ok9f0bt161Y88+vss8/GOhk+fAQO2PgJ2m9+65t47OncOR/FSz46aeKEifroFyRTGq7esSQmTpzU2NiIw/mYcWPxa1TYqdCDm0tjx42fP++0muraFRdfgl/r2bB+A8705fKkpwIncn/84Y+efvp8mPHkk0/u37vvDZe9/oo3XD6sYdi06VMOHjzwox/djFrCL16temrVgX37oe3C5cvxrIG3v23MQ7/97X3333/du96Fn9ltGCG/9zNhwkScCvLke7AcHBmhVJp3kSCydCM31RQcF6QIKwGhaG1r3bdvLw6cuIjUku7Zf2A/znNwhsOH1UncenqwSH7605+tfmY1Hmt39lnuCarswskUziK+8Z1vHj5yBAdpnGr7ywAyOPhu3LwJSs5ceCZqFGfzuO+kvyFbhZtCuGGFMyWIYZTeqORX/l2WyNR3APRzoSrW2Dj6vGXnP7P66R/+6OaDhw+2tbYdPnRYjHf7vWjAkqqtrcfzNXbt2QNdZ555Jp+pUV1dO3rkKFVb2dndhR/Igu/4KdEf3nxzFR763dWBR93geqa9ta1mBG6eSq2BQB6YNgknqiXgcjRMzKLHZMRFp3Sj3I4VJ3hFWAnI+iUXr1h+/nIUEQ75N3zkBjyo9K8+/lc4E0D69TgtywDnEnfededd99y1dOnSa996bb30Wmbw2ODD//7//h2Pf8TdVb3YlXssvou4n3Ng/wFwcFLFLvTjohmrAg/W1qsSX544SaHAVQQu7v/zxv986KHfYq845ZSTJ+mWgmsGHaO/J43HD+OHEvXdg/bWVtw54sUuNKiM2Ccrp6vn1d27cHa4btOGmm1bpKunYtjwBuxs+DGI4fhpUM+NbNgTKRlUo512YqMuJNHqBJ8coxiWA7PXDIfkcdiKsBJQl3igC/6XqujqxEuc8OCX0dAYEPCxMzz024d+/NOfYJF85EMfHiX3E1200IvDJ35IE+cY11x1zdVXXYPiDpYBRHE8xe/GQnjT5s3Lli2r7qkGfmX7dpzNz5o5U892VKErPMubn1XOKBzsXS+99CKeVDl//ny8dzFi+PCW1raX16/btHGT5lEWAKRVC3DlmLFjcfd086ZN52Hq6mrwoQEc6MJxfuK4CfXDhv3Rhz6MTQNPYdJeeVMFarFXRI5y9oGg6oabmLjolNoZ7IFwsf9zRt9Z67+mSAPOUtCiV3LUxE1MXCLj6nbqtKm6DEZhwaDhGY84mcJh+L9v/W/c0sHTHa+99q1YUewCxVjTg1rHU1Cx/6x6ehVWDnoxcPXqZyBw2mnzeLEhwm6FsfwyKN4TQFHj5izG4mxq7/79uPU5Z84c/Hw6hu3dsxu3pOTsTiq8G5KiTEhPTXWVPM6+svKpZ5/Gjzvgzlgr7sZu3ABJSOE+Eu7/Qm7V00/BXjyUDGduW7Zu0V94EC24g4wowFr463skusvTGAbOlRGS6EiPLvBhbDYKAQ1IVkrllCE+3mgR9gTfZVQkfkJh9kmzJf3akPut27b+y1e+jBsvc+fM/d3KR61qcUvndSsuffSxlXjDC4f20aNG33vvvbioxTiUHYpvcfyegJxkY/iKSy994IEHvvqvX1u6+Nxde3bjdGvO3DmXXfo63IHt6mqTK4EsewIW56xZsyurq+79zf04bF988Qrox52re++7D2+6waTHn3gcZ2i4q3vw0GHZfLRiXGYrK+fMnnPO4nOeWvXUl7/21TPOOH3zli147HFnlzziErshDPjVffi5iPvw0Mt5p5y2bfsr999//8IzF37i438Fw06ZMxd6/vuXv1i+7PwVK1b473z7oSsaxmRqvChMYnL6SWkrl00Sk3O80SKvBDzq9JMf/wTKzvKNoyxum4KDIsNvMNtpDwDeFMOvyu7YvgOFCHmUtfWiRi+99FI8+TR6d0xWAi45Pvj7Hxg1ctTd99y95rnnh48Yvuy8Ze9517snTJiAnYACw0eN0JXGLLEiBKN36tQpl1122QO/+c3NP/sJbkDNmT37z/7kT359330PPPAbLL9FZ545fcZ03DvCTaHx48c11A/Dr7/xAheXLDz5+ffq/3jm6WfwZtno0aNOnXfqupfWYcmi7saOG/e3n/w/+F2IRx753cMPP4I3BJcuW4rnHOM+EurhrLPPPvPMhRiIm60XXHCBRaZUpUKnqT3AtjAkJNGCMRwsD2gwDrFRKkevNR8b87gC0XNRz5hvh+ri2o89AbdZcchPqtXabcDbWDhPSvbi8rQez/e16wnkRY/3OMfAxe7hwwdHj27EZ/jq6nDljUKvwiU1ju4488H7xOR4mZRsYzTMwGPou3q6Jo6fiJu8uGGK3/7Bb/zg/WbUPWzAj6DXD5Mnrra2t3V3dg1raNDFgKsG3P89htMhnPfjLhNOgb79nW899cwzf/+5zy1ciGuDKpwndbS3Nbe0Nh07NrpxNMzCMqDtmBenZPhpOdx+HTtmHM6dks4Wn2NFnK3Q+88vvtEDoBHFKc9FfYbPRS2lAShlHNft0J6cCsWM/5P8JIerAsdUNJxZsc6UKbWFxYBLbTRdALxQycg2lgd6cYNfnrCqi6eqBhf3eN42fn5BZhOuHihBG+rre+qj0+aeiqaW1q9/4+sjR4269i1vHTasYfXqp1c99dSo0aOnz8BT73HjFJfNFfipUPwv71pE2ugCXuLmAUaRT2bJqdrgTpMCbE6Cn4phHPh5qYq8ZkiRz45KFhdmTNRrPXFR4JVlLFtWM/lYAHINglH4SXZg+Y9H/UgOfXKNoPM5jCvo+rra0+ad9pOf/BQfl8KsuNTG6v3IDTeMGe3qHkzqTS13mJvKx6jitDg8UXFTL/lFoVTI0CRxcdwYSC3Hy0pABqwF2KogKmARNJxRBTrScYiNRlpsGWAxgCf/UOL4MOpbrn7LWWeehU/m7dq9B8++x3XFtKnTqnE/KqpxkR6opm64yQMcORaHBHKQIZ9GBxgCxjdM7eQnMTnHMz1eVoLF3s9hLzB3gAJoXCG+diwGnPjjI+Vz5szFuxF4EwH3c1FPXAaUHJgysCL2zS0uHhjHyj3r8bUSkGG0VJqnInSMHO9xuAtodDrk7wZpB00c+/EeovdWiSjT5h8oI165/qYGA5ODnyckkemUxCu6kaTlcmVg54nfAhtYO9Jm9wssiYOMZWReT2wch1il5foANeJRVotwovE+drUkY9Q+nyrD8YnLQdV0N1ESk2M0cinrkoAikyE2H+gqX/rYBF5zYDCvBD8DAUa2yQFNYnfUZ55VDhyRVGnXayOjPYFVIXVEjYLyHSgpo4JlIeqMmynANBp95piPzRn2oovyxicHlI38JI76X3t/B+dKSOYn4GTLJ47okGSNOKwjY4wlEXEgJ9gqJx4Z1Qny7XRp5okHvgjUAXEUzSjdICeJzY0cTqo+5zDxiUQH50qwvCEVOTCzmkFV2nGIjfLYj9oBJ9oHiN1iwGQYmZeqyIASdSk9MBnBSKzy3O7RJ8oMqH8DMvlgWwl+HnLnDb3uSK8FbBhhdFjHy1FfOagcYin3HLuBSMsQRxVmxewtPlWjndokJieV6ioXc9GbSqGU7lF7Nlx8lwa7xsG2EpKZIQeUuWUmXZ61Lx0ndwBoMC3RnuCqBUqtcoiNAuTA7C0+pdPUG+BkGCDmOZaB0TW4HCt+qIqlcfCsBGQMLQdltiljmcfLYAeQzGv2s+0GcW1kaIlqRjTiXyZVRtlJajCSYYBd6nAKpRvsJQ4oXg41jcDgWQnJ8jNOtjw7vsrheC81EmE4xx3ApxmHS5HWEBRCB6Za1JmUdUnTrTc1PBKAAtwbGMcG46wDtRKYJUYkiYMcWubBdzuA5tkw9DisI7kb8BApOBrvY3cAlZFqhU9pFjnE5aB0mjMlMTlG6RKEwSEOKLrogE+pnJwkJudEpQO1ErJlA3zmFglJxe6oz17V4mpBpeM9IdLCPYG6wIsrhziVgml84nJQdcZNFODImSwh0UEuDGkYPHE9atlw1H9i/h2olcBoMycB1ZKWfvCTmDUS7AAiqdJCM3GsxY2M9IqcCGdQZQwoUQdc4RpOhgE2qsOO0g1yknhAHTpeJh/YlZAsReP4eU7BKhfvAKgL40T3hfzdQNJhWohTqcgNbLMAwIwAmwPgG4ZYgMkJKF4OtZwRKOdKQMasEeegfrbdDsCco9B51I+ovPZxjvcKZKSakKS0jHziclAGgDMR56AZIYkWAMYanzigVF5uxzjr8USxEvxslNR0PxvERmFDgMlxVPsysN0pikb6OwB44YESGoSbnWpn+WLB6ZzTfGEBwEuaaxznusrlwOhPOknl5BMP0bQIYCUw3mmdReP5eUjmChxmHvMZdrWQuQNIr453u4RKk8ORgoP6gVKnS92xXvKVNxBE3UgpXOPTaJhGl44bxwYimMWYszxnRyw/2huUYjLDfuZxpJeK0DEhTbse8HcGmc50EadSkSt/C8IAA4xjRovr3jo2DGHgvFRFhkiBESjFSmCWaEASBzlktiEMvjvSp2EI8NifsgPISHfvKKNyZExUS8SgbKy66FXp/ybDwDmDYICpzuShEKMDPqXCcjvGWY9fGiemFNcJfjaS2LLHnDOrLv/cAVjAKmd8iMV7QjTS3wHAi+snickBZRPpcrZkGDg7+JEz4aoln4bmwNBDGSr0cTkdPF7nihNTuusEy6HlKuCwCthrFQEZtzOodIAhLHsCd4BgpPRlryv0ssWuR5zy/Q0CgInVGVfKqZjmDnbHyhfC0swkiSnFnkBrLYd4GWDLuWU4g6PS8Q6AejFO2rVBvADEoegQmcTamXEAJad8NAgDJjZORgC8NW18CCddIocO+Lh8Lr02ZpI0FGtP8POQxOQYxcTAjvLuEDmZd4pgHq8KSDmGe0ISO40yxstONuyJlAzmDQNmTg+JH54IQzibMz6/ZN4c54qTyaBDlgCsBPdI3X566mcjwJiMHNAkxvHe+HbsF45yjeNGRnsCx4gb1CgoEyvDVVoSk1NaCgesERtNCYMGKZsz5p4pJIcvfWwCQyAjAslksNtSUlHDZ8pljOr7C8skJsiPtaydJHEBtAC93tzmblmrha5z7vxh8MyNwqa/glvRJQ/V14fBRvzY+cJyhMeSVdfIg8vs8WSFjXutSqUmBkGV6sDzjuRPkRoyhpZKUyoibTfA8ORuEHMCLSItM2al2llMD6kwD2UAKBQEgw6gC/zAGXLQpS41HW178nebN2/c39zUnme6tG4oq62rnjFr7HmXzB03bkT0nL400ROIx2TQYWKhWoeyEvzuXkXFsopRSZyaZ8wl/IJ3A+qlvJsjh15zETJJHPGK/ZcGUWsS5zDXBSMKnifZ2dH9xKObn1+9E795Im6zUT6Jo/7gb2tb14YX97S3d1/19oX41d8Tb1tIJoMRigPN3YDHnv5cJ/hLKMBmhGUbRhh2Z//k6Ej/esDHHMM9wY2HInOF2ChADsze4tPAdZvA3AUnFcMNtMAZlcQp0daN+7Ee4mVASR3hRhnODjq6enZsO9janPJQ/uyDXjM9+RPjnZXgirm/G6flExE0zMyTk4F1FdJEOdLr/gAxuSNECuMCLRxvVOSi+iEOKF4OQDOjMbdhGkpOEoODFjiDsfrDQK2txSlf/F50Swt+p0vnOlGI760lA84bZu3hNTgO92dPYFwtn3gZYJkmKlqHVSIDk6Nyyd0gY7zvSg5Ms8pN1Y0wADBCHctDB50z5Q5esedjMqg1PTHcDTza6z0BRWyNOAflanO10MvdQHaGoIowcdItWkN+EputRQbJMHCC1GAEbvTZsSL78JpUl0yMcLT29G8GdvXJ3t7uCcmSs+JkhjGfZZ6F6zKvcjHG9OSotI85/kS6NnA58nZvcNgkj0Ot8AhoTTlxYqH+9UCAtQ5FpvDrBOYkB4U66zUsZuiak2O8j2FQxBFDg5Ecb1RGqnZQYqPKKDsxczFzgGko+UlsDmCUYQj7uOzeHLcTMvQ0P0gDmDEnqkDhBFhrT/iF7wl+rlIx1IGfQlUax3jpjbCYpNI+TRmf4ZBqDzh4OQBN3cgoX+OkBCAKDAy1XuJUOgD+HKdTMug03hKAlwG22gM/xLonSFqwJ+SNAsSsEadSmQZGcM1lYgx3fB3p7wCC3UjdGSLsakZG6uQ+pTXkEJeD0mnORJxKAwc892So9RJTWw5sAkMgIwLpydDag5z0ethqT5LB+jTK8xGkBXtCxgxpL/ySIzYqqnUIKLEc47NhTM9ek4akYZrutKhSmpak2lmA4ZQrFlXTnTJiozQafZ4zIhk4w17yjYqcShIE2JhDICMCDD1ZlgaE3xKQgu2sROtQJFUaVA7HufeEZBEGHE4Mgyzn4KDZysvAnFJ7xVDTRS1uZKRLRoqqDKqMshMzFDOnYjrA3hzOMEgQGyyOlT2SRZgwNQEMPSlrD4mScEeHV8NSdVp75DiMhOTeE5IZM44qzFgAGRyVi3cArj9SXZFiKGQyxmiFgOO7FWDtLDsxpzFzgFMd8B0LHMjmXtl9Om4nDBLgp4TJkOLWSkuhWnWyPDRFPpXPHaU2p1T78mabqlW5rkKawhXJ9RdRlr6ZoiZHC8CNz748YAxlUi0uCbN3YchietIx2lpuZ/ABfPlkq/4Px/rYqvDZVqSzvx9NKHD2ZAI4MK5JFjdD7xW6q8kCOO5wnG0lIEvWiI2accykUO1zxgVYTYGqeAfwMcZIn1fixiHfqMipJEGZqDrj5iI2SqPRB07gADnoCvjkOHV5nNGjiYn2D6jNXAZNTe2vbDlw8ECzrInet5qaqsmTG6fNaqwr00f6GG4aGmCXAA1UBiYH1BaJJgQVaIdgh6HXUoTvJwTxsC4dnpHnrJyCV56ZUpjePNUSWF7Ul30JgxfXbKGijezNbS9kitpQ+VgAt/9s9eGDrfjaQ59119ZUnTxv0mVvnl+uxQBL05NhhY6jUQEVmENGqrFGZslozEAqTTcIhkarUIzWkTFVE80V4ZsWkY4OqcSpFMwBaKkBgB2+A9kwxBjVJKUn5JfXK3zrZ+2zOw4eaOnq6tf0XV1dG1/es2jxjKkzGst0iiRBRwspq44piSpQUhId+4mRClZdCoVS9CrFFXPcknkLOKLaakFVOA6xSmPlocU0GiOcCDstIhdpJJah2sC35mNjFhmo0U4ncQ5qRiddIgeKfKOz4SL7kEcdTocO7W/BesgjV0A31tKBfU34Yl0Bsn0Q8dUSC2XJar34WI70Wm8ZlItB+UgFa8+nrEBJDJMD6q8EY1JAVKsfoEksKyziOxytSzGUvTaSHGoBjUdGmBx9JYQyfOljEygyUHOdTmKjNBp9njMZGF2UoaE+pUZykpicLLRv5/HpyiKTurrT+3vN7anAztDrUYUOSE8Gq4s1GWCtLkmPpgg0A+tScTUZYSZQ4hLFxq0Ee+l3qVqxHr0ZWNXJCgM/FcMU00jM8UZlZKSXOKB4OQDNjMbchjNcj4xGb+AAORgIfkCVMUQKiIAFHbKpmPWGPgl3VNZS+hEH4Q8xOFAX1aGPxSJLF/cEe+l3ETPDGVRVxysPRut4oTDIozJNxCGWuVNdDPgiV/6mbsSxodMwQ91IoegavM6UP3z9nzFIAENP6iows/YkMRGHlSbLQNOVQqFIF4xRMdgSyJVgL/0u4owqUEWOQ6wjMb000GjlJTE5IobxAVWG4xOXg9JozmQO4KVhOkpORhicqzK0EGcoI9JDzY9AMgHstQQgFYbdkZ6hj2oPvSk7gHCFH1BRrssmI2mcEikK9gQdziGudMlxVHOagb0VyQm4FgXTDRsPrQEmh6YE2JglBH6BEhuloZhb3UihNJe9xEYBcmD2DlGJAMPNWCSxcFhdlPSwHe8lAfIv3Bms9lwvVCGlSuVvhJWlBJxgT1C10ocuYkejVYiueBX6GIbaBMQYKdKRriTWfidjuByAhnImMxovDdNocswB9BpGV4DJMQow1LJGIG8CkAqRiaouwHa8l5TIP68mo9pDesiXRCkOqbJjYnuCKnTCxBkUE8AwVRpSXZFitEi4CvGxKAU/lSrb9RKXgzI2nInYKB1Al+dMBkZXNmd8fjncOH7nyJEAhh4hlwTkoFG9sdIyqKbIcRRLoPzkEAvXa7YnMPPogVhGFXBdkq8qeOxP2QF0JNdohhYopes+pQ3kePaUGPoxIA4oXYcV6kwKRZfvhu+Aj0vsx3GrPj0BWmMMOkJuKUEtSRpSqR37NVGsOld7mqIMbOHyU+RjCNieoMNTMi9ry+qC2KgaIb3gENONCHsjBcYu6quYYy9LDtR0N4sZjdepGG6gDV5n1LzjjAQJgPXC4bE/gVFXsgyinQGpCHFUb6xASViULoeVI5gtRlE1Rj3p1wmuLnQaWVswMROTIw5QNWhqLYlcZBwxKJsEoJzNDMWkhmkcOUlME8lPxeW0/7ify4LuJ8DHrDEpd6/e3GJQDuuNvQ7rIiGWSkNjTUaYnJgKytL4WVTLtkwTla6sM+BUCnNVjtQbE42XkTplkirb9RKXg6obFi2Z0TgZTkcOqHvOMQgn3SAHPdIqujr1ab599QSz4dPO+KRniT/tHBndVzuT4+A8PO/q6s/HOFBFlTXVVVXVUsZa3CHVepOlomlJoV6KxMfs6Up64DhcCRjoZ55TOo5nhJkC6WxYjPB1cR5ykjirXf3soBFUksSBib65hePImZ7uir27jj7+u807XznU0dGXzyBgzoaRdSefOnH5ipPr6twDTLUg+hmFaDgmKHbjipVl0NWzacO+p5/YhiDIIcG1ZNDZEYeedYWiraysGjNu+KJzps9fNKW2ppqLIVF1riY9PistrENOwzQmsbMu7U/6nqChc0YTG41c5Lpk0YMXL4AAc1KRiJqPI16x/6q5TmmAIwfi9Qo5yJBP4wIMAeMbVu34FFp7R9d9d7+0e9fh7r6sAtVSUdHa1vL80R3DGurOXT6rpkYt9s12Uv39UzSVkSL5pPfBlvvvfrHpWHu8CvKYyeBSiLh7984jDx9sGj2mYeacsVWVVfEikcDL/qCUWCgGc2QSm16zQqQLaMG9I5kSdaGDAwxlwlezRLFiR6Uv4iSxSGuLAhi9LvVfdUNMRDNKQ8lJYppIvmEI+1jUuYb0Hz3UemDvsf4sA+rCitq6aX93t/uUnHd8jSbr81/6HsWgz2rigagSLXyQXdsPtrV0ZFkGFnQMNcy6IsdhPAm5rb1708Z9+JQrdLP0vXojx9Ued0vWoaUF2g2bneTYy9zA7h1RlRzpYXQqVRPhkPQ6aW8BmKMyXuf0qTIcn7gclJFIpTkcoHuwz3fAx5mmt7bgidTszuzo5SvoOHa01TQx373UkUWcEcjS2Te2nR01N3dm/3R2auiloK2CiKWse7pbjmFFSdGjVyWyUtiMOlQq5vvJ8TPhY5HL1XriPUFVO9NVhewAXJf4AyzmxqXvY/aqtBDXqIsvfBz1F/uvmuuUJjE5RjXSXkbUMQw2PrHZ6Dvg4yglJlgswEwXR1scjUzT+6HdtiwDUUFSaTxl5IhwPMzdIKDdWmOQZHUlqatDqKInumycG75vPnbdef5UxnuCDhYjYLD883YGciM+q4WOucrBLPI6ogodJ4nJKT71vQ9w5IAzl73qZIYD5MCygXem+OEpvcYg6G5CHuNZugHWGpOga+BBMzCXDeswwkyXqz1NFFMlc8UoEzs78vzRPUGnkfWnaxF/47WYiWUyNVqoSOuUhskxKhLlb4xHQGkojDEHfGwOsBddxjEMMNSyRAC/96A9OSgqSnqjSnMYpR9xEPIQ68IgXyiGq4yi4qeoUu4dad5lXcLUgMJQcCIqknDCpzJGBqZQZZedqAPp0VLT+WN+FbguhaR9h8vH+UyWGZCTcn2HN585vepnrno1JL9wT1wREE5PgJayHfUhE2OtLlkGwk2jUAq+R8WkZNUJt++tR1aCKoUpkt9Ms4wjMlEvcUhpgzrjzPFx3y3MPVLNciJJTI5HsQw6u7pbmjoOHmiSmzQ0MUmpMc0B1H/jmIaRI+tqSvyYEy2d3M4X3AtHit2iAwHeDTDVcaBZRVpZrqJ87NVYXG94GCPuFmiNWaWxN732OGtaisyeXgG3J4hCVSo0wqwT8h2Wvqh+iI0C5MDsLT5Vc53aANNQ9KljoLIMOrqeeHTr6lXbOvATZmzsdS8K+oN3gk+bP3nFFafhXbCCBhQs5HsgZg/aVmm7Kaw0QwmE6jJ2CcjEqB9UFGSs3nwsvRiuMoYlChGfWCibSBenuT1BjFbD4zWqq9NfBmp+XFdisjiRSYtjVeFagumTBnkcyO569egzq7a1NnemmE5JTu3jhDH4IcCX1+6aMWvMvAVTvSNiQu41zfCvDTzsws1yT6MIfLLGhCN7gtQSNJhMWF0509LPcOu9I5lc1yipOiCr0LnllbvI6YzZqHaWkajpGj1dkZjZOBpXP5Y9XT27Xz3c0aZvBed2gL3Z/ejo7N6x7ZC9C5ZdsHc9+abtnbaSSuu1AWaQcPtYOXbUlwqKdgCHo7oSvoel3lQVq45YPGBMfCrc4jd37wiKZUWigaqJ4qLiDCpyKkaq0HGSmJziUxpKvWY0XgY44QBijMN5JR313cjmTC7Te+SXkkvZvPv0/Z4mjpjvaq/Uxiok0Kh99xYgzERcpZelzKpRLIWudZVBo+riMpBkRBxFbmcQ28A3E2Mk/FI0+YwHVXMtCoYDSollVsqAEhtVhvRa87Exiwz8SBAbpaGYL7cD7IWY7xKtLNiBggWL7P0AqWOIOXmA9ULXFa5LgBYxqkgCrcEOMZdNVGkSS46M+DIRMaf0o+1j9haD9lSpoVCVsTojs8QV6YsMJQ6oSJSnMQY5aOSMxTXdAboHm+kejfdxedw5/mZJDT2P/SzcJLa6kqBr4EWGx3tQcjQVxBIUpsKnpQ9VdJ1gqxPTq3FC0QqhpbcymsGPTYDNaN8BH+dwhurpajTV0N+0CARBh4hwomO/hDvALPrM6rJdgosnoDJtsuqEW9oWvZ8QrU4xQjHNFUeDGqM95CdxEa2VM1CEEP9n/4RX3unw5Q8caiqx89ENDJDcKWW8A6ydr11iPhfiooUMwsRGyQFXFDK4Wu7ueF8wpl6OEpOYHEGZKSKn+FTMZ6usiZzzS1/6I77IUZ6U47Jh9vafchkcO9a2HQ/7P9giayJbQ4/FjziSramtmjwpetg/FwO2Y3dI8tRF8h6rANi3UQUopogeXAuWzi1o8cktFvb6w4iNytdrIA4jq/iGWIV8eA6VElHUTIi5bJQvvRiOfzImwg5FZpQ4wDoNHRLYI98KiQyiWQXRyNpS/UXlH9jfdMfPnz18oBUfXu+LiepYbW3VKXjY/5vm19biy1Bqbex8eQ47vQiRb5qzthej84tm6M8lzoqgRFp16Jdp0I3E9FTIF2sQSlAsg4IpU+p2A38+qIWd4JSjcRqltidkLAAY4cmk4FJbie8Erl29M8/D/mEiY5aNVsgjnTfgYf9LTpoybXSGG3SATpbameNPv79kiI0y6Ai8BN2j8Z6giwHBRm86RTyi6pK/EY7DRE78unTI3ML3yNXcsKIwtSfjDCGHL3xcCjtxOnRwXzPWg1PuR8twqunoNT4GV+K79j379zfJ+ZUa7d4QLbUDfQpK5G2fBhdnkG+CBVoKWtWDylEcWClxSHVnQLDBNypjIo5o0iWkKgXHzccxt7hIzI8asVL3foJxYIphiBNzXDYcaS3y34yHJTBCRmFKgM1o34EId+OL9hAQGcrFf/tuNA3o+/g8I3NdGuUZmuiOnc5rtC9ALFQLF1oijMOKBhP87h7bDcCzEyRioRjOkYaVI3y2GLmjVNRRor/pLnp7AuaFDI0mDmiJDEtRy9jkoDQUI2mub3Q2nDLNEMuPQHq4Wb4MdFTKEmLFQvVIT44smIhDLBRzKF8RF1Mm9Y0oLU53UZ3D76zl7NUV7STzGIljGI4U/Wn4NJv7rC9XbSqVmGcugIADC7K51B/jXiNjc2QoNdxSxFG4HSZHi9tdJ+AuEvZclcugmgqZMVpCEsRkcoRbnpbuoqsoPlFE3EUzpy1g5NBOH5NDyjWAR/0c3N+Mr7fbWF8mN4bm2rrq8ZNG1OEJJ/hQov8JT6jzzSocc0rIQ4FcDakeOWhRhTD61frgZ2/m04LrzYAcsup9Zj/DSl4SC4dHdy6D6EhvOwCSJP/hth6SpV/0sN3AyTDK0YKRBUDMKf0cxBhCRWzpbkXrmr2cUXF87wg2GN/sIYcvfWwCMqqnYveuI/ff9dLBfU19fsoDAtrYOOzSK+fNnD0uWgg6IbMYxZURjalMryVO43zsGe3emqOMb/ogw/TVGZXxouiG+toDzCBqqbvgOizFr6dD3e49BO4ALHFcLUDa7QkwN0qFBJ2B585AT8hJYnKKQwO3oJQcNTTEuBkc8H35Ag3CgxAff3jznl1H2tq78GHPvv2PD0vv39f0yP0b8Ngf96ZyFD8xA9gM9THNJSeJZeRQyxGBIMSQlFBGJRtj5ZAvVL9LwF4uA+4DxEKhSHcARV4FKj+HPUXqoltURhxQ1hIExAlH5d4ROalUO/MQ/Mz1qzsOR0+syiOctRv3DXoqDh1oasHT1Cgk8YwN9Y0OMcSyuaE6fFKe+xP+jIVj53jhA/oraSGGohjz2M/Q2z6AEGtxCwXGtQGWhKBMDEW6bIyKicnkCLd0ja5Qf+yWV0voUtN9yjNoFwZ/bK/s7Orsx5MQvfzjZ1Llc/8ucuoEcMLokEPHzGI67zkTfZgeLG8yk+8b8Gfpm4aco/p7/8FX7pxmKNkRx4GFy8h4ON4BkADlC+ViwF+Yp1jGRdcJrop0qRiO7cgfsPwSsbZ0FLsVpZoco5giwORUylvl0kip3cfklJb6/kdmyYyp2MxlL8SMY1b6DvjYBE5QEATaRYHHeA03Qh4HXQvd7QDKjbFcKEcnUVge3B+gDsGmJLFRzlSOVCRdJEfNEuPQDEfmkpOxJ1CSdpeDMjYBpaGY3gz1ceAMuoxjGGCoZY1AEG7ISaC5G9ixX7lW7uhFmG1nwI9uuP0BYuBzTyBm0hSDZCRHXpeupbqF6YyfrCtyIpqxJ3BU6awNNSeL2DiMaA7qOxngcJqh134ELMRgxhgFjapJpXZSJBIig9MhocS6eARDXURlOtaST4VbugaD0FJpjipSN2Qg7h3Jn0hDEpNTfOpHKBXTxBw0h9EMR/GNPh41Mri0PMYsWZarh+2oD8kYczdQikoDn3uCwwy2LqGMOuSUpUpF7Eq05nwX2Ws0RxVBJnKAv5/gVrCvjbhAit+D6Z3P0fSi38PVuu8KB2+A4Us2WKfYegOXMMQ4Zh85fOljqNfGHkD57RpcmPeviWmRw/iLl/24YxCZgmqKdIIlVkc9/fiLKEYR1ncsJaRdCDCU416dzBBgLAwkgXfYcOz3MZ7u5HYD4XKpyGc4JRZd8n6CaoupMnQOopxUKkj+zylknb5YgJF9MyWJWRvkG4bangr3HrNN0QcAH2bMGtfOp6fkHW9GwNwExk8M1Q7T3FVVTpo8Eo9RwS/WiGMJyZCTfd7q6sqRoxskWz0VjWMbZs4al/HZvuwDc/QgZeMmjmStDmuohfv4eaUc8gV2jRxVj3UKYdAZs8a2tfZ/ffVU11TX1YtS2Dxp8oiuznHuu0rRuT5KHwXYK4o0IaQwEotpLH7+Y9Y4vAVkKSrQ2UAM5k2MQhp0ZX1pUxZSITlkMAFC8JV//N7iJYsWnDG/urqPT3TDDbX41mdWqwvoUMeqq/GjKlL68qMSeHOYDhQwOodItfx+mfTjTY/uYpQsVGFpYY0BoATw3qJo73+rrOBPrRUtpGqSue9C6uzMUUc8znB5xMccjmNCXJpKENLi7IWpzvkOuCDIN1jWrH3x2WfWurOjiN+XvzBdvhGW2mgQu5I41VxGugq7le6VqTJUSMkkTrVEmVjsfV7w2bTCzKqiPxYyR0iz2RHz0wONoz6WGbdX7gA+LmBPSC4PWSr4YbQePSRgVjY/LRGvGH+TblFraoXQiAIp9CCJxbAxuw6YYi3A5lg2czHQnCQ2Sp3oteZjY56gIAg0oiAc77ji4/jUCOHWVAjHw0iCBDdKhcPK8TEYrgm3FC3pFmdRo9VFdZSGosv4NIh8wxDIxCVeCbQ1c0rhBWb5RhuGWIDJMQow1DIikBpoSBjfXeZqcRPzFMgwQh5g4UCF8hVpWpQjc0tfOZu5gkkNs07ISWKaSL5hCPtYboiVoflTBhjOgJNK6VgOWgbLj7MpguDCeuO4EEfHewl6JkYSbH8gFqrhd3uFYomIcDOpMspCzCHMFuAcVSTuqnnZaMlXQraJjU8TU2ngKuNM55OYnBOXMqD034LrSlmrwB3pfZy5M6CubH8gtkoD33AcYj8VMbe4KOlW6KJX4jmqqAAHSrwnMFpGfYOIAwo/jUNs1A9BEpNz4lK/LC3cUtBRQH3sjvHRniALJpIkdksoSgX+SlqMKnQc4lLRpFucKXYr85wCvZHRIhhgcqRDG12KXpVsJfiRM0wHMLeZaC6Rgy7jEAcUL4daRgQsuOCG2Dvqo09CHFFZGEkMFcrnsjEs8yEtAVVGiUnokOdiai3RRHFUDUvWEu1lb6btJVsJZgqN8ykNTaUQy+F8pulDrzQCuQIdHfWlIgKMZSDcQX5tkMs5LffeVhGLhjWWWUBFWgm+6iQmx6hmQFYtOAGFcb7ztJWcJM705MR7lR5oPdIjGBLc6Kifgu3YHy0GBN6/HvBxHFo/FTG3uCjdLXWIbpEGlSMuRhUFARrqUxpJDnEmxZuvxfgWlz9BgGkijfPNNYyuAJNjhqLXmo+NeYKCINCIgnB47PdxtBu4HQDhhly0ACSgioUqZkU5TA4oWznCn+6WOoTp2asO0FAxjHwaF2D20voAR0x5CxfvrNXW1HR0dBTnG1Jmik0ZmOU7YBjCASbHKMBQy4hAaqCtlCXoUVkb5jGe/BjrIkH4HQeTRFjmQ1oCqoySkXS3tNAxp7iSwGYie2muj81YStrLCODDMu3tHXX1dVXDGxra2tr0cBB19vmvmQUNATY3wA8whMHJQbVziHgRCIKLHuFoWYfXAwiuFrdRBNv2hBhjuLd4sibEs6EEMN2taAEkK8fnqANiU7KWaCn5xBm0p621tQ6fUqyrHdbW2pZVLGNM9hfJ6QOOb3SAoRUcowodJ4nJOXGpn6g4xCxirQI76qM3xt5ikAUjfRlUAgqOUmKhbExO9Ko0f9Pd8so6qBl1QIre+LDLNzQbTpiPPaGlra22tr6qYfioAwcO4hN5/TpB4sSp1DfXMAwKMDlmKHqt+diYJyhIZlg4WsQMqMPkoE93APlr2I795GB4lAoJNINNyhj7mJziU5hijdgopg+wmQh+ElOPb7SPbRYFqPnurq4D+w40DBtd1VA3saW1/cjhI/IB8z40MwVjUzHNDSiEjUMcULwcahkRSA0uQi58pdwBfGzHfsjEODr2kyNzgCMSOh2pQschLhVNd8urJdYJpqeJvqHZsNnqO2NMD6DmDx461N7WMaxubFVN5eia6uodO3d14xntfVgNfvwC7JseYDqWg3rmDkGNQBBc8IQTHfuB5UrAp9wNlMrykL5MiuFIi1L5G2FlKSEnfl0KJE5krkLjYHo1OivFQN9oH6tW10ucoLIhdHdt37GzqqampmJ0VU1V7ejR4zZv3NzW1p4Qzsnw4+QbYTiHG1BsDtsk5PClj03gBALJ4NJ5Cy6ybBhHdOCQ6pFelof0pVBRqIsnTyqKGXWa7LviY3MITDU6D4WYXyfZMKdIo60tbZs3bx3bOKGqQr44XDlh9JyWlrZ16zbiAV692BaCiWk6jUticxKjDEOYmFZmw2k+vNZ5QXDNXYZPerWIEbIYk6MStj8gwFwMElzbExTLSC4nBr4c4RdjoxZg54o6RBxQjDMOsVGqRK81HxvTA6hzXBu/tG5da0t748hZlVX4LmplVU31mIkTpr28bv2xY/jtGU88G6RMQDWuMgL8JKbb5BuGsI+zTXfi8oMQu+BG5SuBTmDbAdiLAItMdOxnrwRU+SnhZ0JKG/J0t7RynIteFQU1I26pdUnaG6NR50eOHn35pfWTJk6vqRyF/QCftsCvk1ePHX0yTpOeeGJVe3tb/m0haYRxaGgOSldTaW88OTFkLaxwN8bRsR8cO/Y7zKJXGu8A0hddIXiBl3qUfxFV6DjEpaKxK75bivtWOXSjYHNR4XgP7fHHV9XW1jUOn1tVhW+g8ps6lRW1VSNOmrLowL7DTzy+ChcMWReDP6UfRcMadckaOKkU5jIQtDsbLtir15Bg3uAiqHGgFXNPiKntABp+twP4WMMfBz1GmWkpZlTzuxWtRTU0f+VkM9rnZ3EAhY0nm2AZPPbYEwf3H54x+ayaqmGc0f3OGnaH+ppxM6bPe2Xbq4899mRraxsGpKwHfzJio6luwCDjExulrckwkX8i0rzBxTEEMi6gmTsDuLY/OMxlE4VfAu3j8oU/v1tZDppicmy0w+TIC22USWLXnfFHChrvo7W0PPb4k9u3vzpj6vza6kaZW4OKJ+FE546VlSPqZsw8acGrO3Y/+MBv8Q5DxtttZhaUp+I4R55jEDY+cUDxcqhlRCA9uFFZozfeATws+Yx2CYc1w8SSBLQ415oWm5a99rJogK5QXbpbXi1ZnYiL0QLA2ACTY5TKC6BYBKjnw4cPP/Dgwzu27549feGw2qnyRItIf+UDt+6PsFQ4BrR17N+26zk81mn+6aeecsrJtbV43oo8Lyjrg2h80wNcgIlDIgVHIAiuyxt3A6V21Lf8uqNWwVOUS5CucLZUt4pkiGwDCE1Pd0dH57r16198cT1+K3TmtEV1VWP1yBAtOTxY68Fb96slckRhaDGus6f5SNOWXXu2NwyvP/WUuZMnTxw1erQ8KQgD5BrbW6m9wnTPTaMvfFwk548rNQwfTU5i4bDQGXTiXlKmizuGTOSH3MfFjFu6K/2oHN9QH2c3mndB8d7ZoUOH9+zdt379xtbmtsmTZoysn1WNawOEgXoiGu8J1Em+rqSezq5jB45u2Ld/Fzyor69rHNNYX1c3bFhdTW0dkiHyqQ77ioiHaF8ikAyuaPEWhitxTYPDLi/lKfe+OJWlZqJyFDfYyIle9fJvZVdne2srPkXRfvjgYXyYqKaqavy4KaOHz66pGqHnNtEy8OayPYGhzKB4LCnOiLq62zq69h9t3tfUcrSjE8qxz3TqgmOq+kB76VdJxftgvp+2bLikNhdNebrzvdxz3K7ljYqXpR+eolmdqshzBWWOz0/gg9Y4sR8+bNSIhonVFY1VVXU8xc8ocW/U/wfg2b0JPwtzGAAAAABJRU5ErkJggg==", - "text/plain": [ - "" - ] - }, - "execution_count": 60, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "shape_bbox.crop_image(output.image)" ] @@ -310,15 +222,26 @@ }, { "cell_type": "code", - "execution_count": 62, + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "cover_page.svg.remove_elements_with_no_visible_content()\n", + "cover_page.svg.retrieve_and_set_view_boxes_for_shape_elements()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "# Feel free to experiment with different options here\n", "name_generator = SimplifiedShapeNameGenerator(\n", - " svg_renderer, RegisteredLLM.GPT4O,\n", + " svg_renderer=svg_renderer,\n", + " model=RegisteredLLM.GPT4O,\n", " use_json_mode=True,\n", - " include_coordinates=True\n", + " include_coordinates=True,\n", ")" ] }, @@ -331,7 +254,7 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -349,58 +272,9 @@ }, { "cell_type": "code", - "execution_count": 66, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "

👤 Human Message

\n", - "\n", - "

Find a short and descriptive name for the design element below as it could appear in the layer hierarchy of a design program:

\n", - "

\n", - "

Examples are:

- Car Button Icon
- User Profile Picture
- Navigation Bar Container


The type of the element is "frame".

\n", - "

The bounding box (x1, y1, x2, y2) of the design document is [0, 0, 2000, 681] while the design element is located at [561, 136, 690, 265].

\n", - "

Use the following design document as context in which the design element is contained:

\n", - "

\n", - "


Provide the name as JSON object in the format `{"name": "<element-name>"}`. Do not provide any other output or explanation except for the JSON.

\n", - " \n", - " \n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "prompt_visualizer = PromptVisualizer()\n", "\n", @@ -416,20 +290,9 @@ }, { "cell_type": "code", - "execution_count": 67, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'Conversion Card'" - ] - }, - "execution_count": 67, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "output.name" ] @@ -449,24 +312,9 @@ }, { "cell_type": "code", - "execution_count": 68, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "dc5504dd337d499d88a7c0292b635257", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/10 [00:00" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ - "models = [\n", - " RegisteredLLM.GPT4O,\n", - " RegisteredLLM.GPT4O_MINI,\n", - " RegisteredLLM.CLAUDE_3_5_SONNET,\n", - " RegisteredLLM.GEMINI_1_5_PRO,\n", - " RegisteredLLM.GEMINI_1_5_FLASH,\n", - "]\n", - "\n", - "include_coordinates_choices = [True, False]\n", - "\n", "fig, axes = plt.subplots(\n", " len(models), len(include_coordinates_choices), figsize=(14, 14)\n", ")\n", @@ -560,7 +387,7 @@ "\n", " ax.imshow(output.shape_image)\n", " ax.axis(\"off\")\n", - " ax.set_title(f\"\\\"{output.name}\\\"\")\n", + " ax.set_title(f'\"{output.name}\"')\n", " idx += 1" ] }, @@ -570,31 +397,16 @@ "source": [ "### Random Sampling of Names\n", "\n", - "To obtain a potentially different name with each request, the sampling temperature, provided as a keyword argument to the `SimplifiedShapeNameGenerator` constructor, can be set to greater than 0. Values between 0.7 and 1.3 are typically good choices. Higher values result in more uniform token sampling, leading to greater \"diversity,\" while a value of 0 is equivalent to selecting the most likely word (argmax) for each prediction.\n", + "To obtain a potentially different name with each request, the sampling temperature, provided as a keyword argument to the `SimplifiedShapeNameGenerator` constructor, can be set to greater than 0. Values between 0.7 and 1.3 are typically good choices. Higher values result in more uniform token sampling, leading to greater \"diversity,\" while a value of 0 is equivalent to selecting the most likely word (argmax) for each prediction and thus fully deterministic behavior.\n", "\n", "Once again, the execution could be parallelized, or multiple name suggestions could be generated within the initial prompt." ] }, { "cell_type": "code", - "execution_count": 73, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "85584350fdb349f3ac7a2167ad97fdfb", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/10 [00:00" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "fig, axes = plt.subplots(num_pages, max_shapes_per_page, figsize=(40, 40))\n", "\n", @@ -818,7 +563,7 @@ }, { "cell_type": "code", - "execution_count": 78, + "execution_count": 29, "metadata": {}, "outputs": [], "source": [ diff --git a/notebooks/svg_variation_transfer_ui_widget.ipynb b/notebooks/svg_variation_transfer_ui_widget.ipynb index 3d2380f..1f99f41 100644 --- a/notebooks/svg_variation_transfer_ui_widget.ipynb +++ b/notebooks/svg_variation_transfer_ui_widget.ipynb @@ -47,7 +47,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "id": "7f41585019d4f27d", "metadata": { "ExecuteTime": { @@ -65,7 +65,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 4, "id": "451bf67f87f40e4f", "metadata": { "ExecuteTime": { @@ -99,7 +99,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "id": "44db9b268dc86946", "metadata": { "ExecuteTime": { @@ -108,471 +108,7 @@ }, "collapsed": false }, - "outputs": [ - { - "data": { - "text/html": [ - "

Original

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " Label\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "

Variations

Focus

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " Label\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "

Disabled

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " Label\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "

Error

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " Label\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "HTML(example_variations.to_html())" ] @@ -589,7 +125,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 6, "id": "6a94e9ee1e65902a", "metadata": { "ExecuteTime": { @@ -605,7 +141,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "id": "23e0598fbebf65cc", "metadata": { "ExecuteTime": { @@ -614,356 +150,7 @@ }, "collapsed": false }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Scanning remote paths in penpot/data/cache/llm_responses_cache.sqlite: 100%|██████████| 1/1 [00:00<00:00, 127.37it/s]\n", - "force pulling (bytes): 100%|██████████| 2465792/2465792 [00:00<00:00, 8236693.98it/s]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "```\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " Label\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "```\n", - "```\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " Label\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "```\n", - "```\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " Label\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "```\n" - ] - }, - { - "data": { - "text/html": [ - "

Original

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " Label\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "

Variations

Focus

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " Label\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "

Disabled

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " Label\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "

Error

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " Label\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "var_gen = SVGVariationsGenerator(\n", " shape=shape_orig, semantics=\"text area\", model=RegisteredLLM.GPT4O\n", @@ -985,7 +172,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "id": "e4066ee5c86f63e9", "metadata": { "ExecuteTime": { @@ -994,363 +181,7 @@ }, "collapsed": false }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "To create a variation similar to the 'Focus' state for the provided design, we need to make the following changes:\n", - "\n", - "1. **Background Color Change**: Change the background color from `#212426` to `#2e3434`.\n", - "2. **Add Stroke**: Add an inner stroke with color `#7efff5` and width `1`.\n", - "\n", - "Here is the modified SVG:\n", - "\n", - "```svg\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " Label\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "```\n", - "\n", - "This SVG now reflects the 'Focus' state with the updated background color and the added inner stroke.\n", - "To create a 'Disabled' variation of the provided design, we need to apply the same changes observed in the example pair to the new design. Here are the changes we need to make:\n", - "\n", - "1. **Background Color Change**: Change the background color from `#212426` to `#18181a`.\n", - "2. **Add Stroke**: Add a stroke with color `#2e3434` and width `1`.\n", - "3. **Text Color Change**: Change the text color from `#ffffff` to `#8f9da3`.\n", - "\n", - "Here is the modified SVG with these changes applied:\n", - "\n", - "```xml\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " Label\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "```\n", - "\n", - "This SVG now reflects the 'Disabled' state with the appropriate background color, stroke, and text color changes.\n", - "To create a variation similar to the 'Error' variation provided in the example, we need to make the following changes to the original design:\n", - "\n", - "1. **Change the background color** of the main rectangle.\n", - "2. **Add a stroke** to the main rectangle.\n", - "3. **Ensure the text and other elements remain the same**.\n", - "\n", - "Here is the modified SVG with the 'Error' variation applied:\n", - "\n", - "```xml\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " Label\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "```\n", - "\n", - "### Changes Made:\n", - "1. **Background Color**: Changed the `fill` color of the main rectangle from `#212426` to `#2e3434`.\n", - "2. **Stroke**: Added a stroke to the main rectangle with `stroke:#ff3277;stroke-width:1;stroke-opacity:1`.\n", - "3. **Inner Stroke Shape**: Added an inner stroke shape with `stroke-width:2;stroke:#ff3277;stroke-opacity:1`.\n", - "\n", - "These changes replicate the 'Error' variation style from the example provided.\n" - ] - }, - { - "data": { - "text/html": [ - "

Original

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " Label\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "

Variations

Focus

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " Label\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "

Disabled

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " Label\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "

Error

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " Label\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "variations = var_gen.create_variations_from_example(example_variations)\n", "HTML(variations.to_html())" @@ -1368,7 +199,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "id": "db2f6877e3c0e6a0", "metadata": { "ExecuteTime": { @@ -1377,36 +208,10 @@ }, "collapsed": false }, - "outputs": [ - { - "ename": "BadRequestError", - "evalue": "Error code: 400 - {'type': 'error', 'error': {'type': 'invalid_request_error', 'message': 'Your credit balance is too low to access the Claude API. Please go to Plans & Billing to upgrade or purchase credits.'}}", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mBadRequestError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[11], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m var_gen \u001b[38;5;241m=\u001b[39m SVGVariationsGenerator(shape\u001b[38;5;241m=\u001b[39mshape_orig, semantics\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtext area\u001b[39m\u001b[38;5;124m\"\u001b[39m, model\u001b[38;5;241m=\u001b[39mRegisteredLLM\u001b[38;5;241m.\u001b[39mCLAUDE_3_5_SONNET)\n\u001b[0;32m----> 3\u001b[0m variations \u001b[38;5;241m=\u001b[39m \u001b[43mvar_gen\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcreate_variations_from_example\u001b[49m\u001b[43m(\u001b[49m\u001b[43mexample_variations\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 4\u001b[0m HTML(variations\u001b[38;5;241m.\u001b[39mto_html())\n", - "File \u001b[0;32m~/projects/penai/src/penai/variations/svg_variations.py:721\u001b[0m, in \u001b[0;36mSVGVariationsGenerator.create_variations_from_example\u001b[0;34m(self, example_variations, colors)\u001b[0m\n\u001b[1;32m 714\u001b[0m conversation \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_create_refactoring_conversation(system_prompt\u001b[38;5;241m=\u001b[39msystem_prompt)\n\u001b[1;32m 715\u001b[0m prompt \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 716\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mHere is the example pair (original and variation):\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 717\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThis is the original design:\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m```\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mexample_variations\u001b[38;5;241m.\u001b[39moriginal_svg\u001b[38;5;241m.\u001b[39mto_string()\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m```\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 718\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThis is the variation \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mname\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m:\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m```\u001b[39m\u001b[38;5;132;01m{\u001b[39;00msvg_text\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m```\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 719\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mBased on this example, apply the same type of variation to this design:\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m```\u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msvg\u001b[38;5;241m.\u001b[39mto_string()\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m```\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 720\u001b[0m )\n\u001b[0;32m--> 721\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[43mconversation\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mquery\u001b[49m\u001b[43m(\u001b[49m\u001b[43mprompt\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 722\u001b[0m code_snippets \u001b[38;5;241m=\u001b[39m response\u001b[38;5;241m.\u001b[39mget_code_snippets()\n\u001b[1;32m 723\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(code_snippets) \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m:\n", - "File \u001b[0;32m~/projects/penai/src/penai/llm/conversation.py:166\u001b[0m, in \u001b[0;36mConversation.query\u001b[0;34m(self, query)\u001b[0m\n\u001b[1;32m 165\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mquery\u001b[39m(\u001b[38;5;28mself\u001b[39m, query: QueryType) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m TResponse:\n\u001b[0;32m--> 166\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mresponse_factory(\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mquery_text\u001b[49m\u001b[43m(\u001b[49m\u001b[43mquery\u001b[49m\u001b[43m)\u001b[49m)\n", - "File \u001b[0;32m~/projects/penai/src/penai/llm/conversation.py:158\u001b[0m, in \u001b[0;36mConversation.query_text\u001b[0;34m(self, query)\u001b[0m\n\u001b[1;32m 152\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Issues the given query and returns the model's text response.\u001b[39;00m\n\u001b[1;32m 153\u001b[0m \n\u001b[1;32m 154\u001b[0m \u001b[38;5;124;03m:param query: the query\u001b[39;00m\n\u001b[1;32m 155\u001b[0m \u001b[38;5;124;03m:return: the response text\u001b[39;00m\n\u001b[1;32m 156\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 157\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmemory\u001b[38;5;241m.\u001b[39mchat_memory\u001b[38;5;241m.\u001b[39madd_user_message(query)\n\u001b[0;32m--> 158\u001b[0m ai_message \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mllm\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmemory\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mchat_memory\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmessages\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 159\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmemory\u001b[38;5;241m.\u001b[39mchat_memory\u001b[38;5;241m.\u001b[39madd_ai_message(ai_message)\n\u001b[1;32m 160\u001b[0m response_text \u001b[38;5;241m=\u001b[39m ai_message\u001b[38;5;241m.\u001b[39mcontent\n", - "File \u001b[0;32m~/projects/penai/.venv/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py:170\u001b[0m, in \u001b[0;36mBaseChatModel.invoke\u001b[0;34m(self, input, config, stop, **kwargs)\u001b[0m\n\u001b[1;32m 159\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21minvoke\u001b[39m(\n\u001b[1;32m 160\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 161\u001b[0m \u001b[38;5;28minput\u001b[39m: LanguageModelInput,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 165\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any,\n\u001b[1;32m 166\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m BaseMessage:\n\u001b[1;32m 167\u001b[0m config \u001b[38;5;241m=\u001b[39m ensure_config(config)\n\u001b[1;32m 168\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m cast(\n\u001b[1;32m 169\u001b[0m ChatGeneration,\n\u001b[0;32m--> 170\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgenerate_prompt\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 171\u001b[0m \u001b[43m \u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_convert_input\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 172\u001b[0m \u001b[43m \u001b[49m\u001b[43mstop\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstop\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 173\u001b[0m \u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcallbacks\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 174\u001b[0m \u001b[43m \u001b[49m\u001b[43mtags\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtags\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 175\u001b[0m \u001b[43m \u001b[49m\u001b[43mmetadata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmetadata\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 176\u001b[0m \u001b[43m \u001b[49m\u001b[43mrun_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mrun_name\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 177\u001b[0m \u001b[43m \u001b[49m\u001b[43mrun_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpop\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mrun_id\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 178\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 179\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mgenerations[\u001b[38;5;241m0\u001b[39m][\u001b[38;5;241m0\u001b[39m],\n\u001b[1;32m 180\u001b[0m )\u001b[38;5;241m.\u001b[39mmessage\n", - "File \u001b[0;32m~/projects/penai/.venv/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py:599\u001b[0m, in \u001b[0;36mBaseChatModel.generate_prompt\u001b[0;34m(self, prompts, stop, callbacks, **kwargs)\u001b[0m\n\u001b[1;32m 591\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mgenerate_prompt\u001b[39m(\n\u001b[1;32m 592\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 593\u001b[0m prompts: List[PromptValue],\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 596\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any,\n\u001b[1;32m 597\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m LLMResult:\n\u001b[1;32m 598\u001b[0m prompt_messages \u001b[38;5;241m=\u001b[39m [p\u001b[38;5;241m.\u001b[39mto_messages() \u001b[38;5;28;01mfor\u001b[39;00m p \u001b[38;5;129;01min\u001b[39;00m prompts]\n\u001b[0;32m--> 599\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgenerate\u001b[49m\u001b[43m(\u001b[49m\u001b[43mprompt_messages\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstop\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstop\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcallbacks\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/projects/penai/.venv/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py:456\u001b[0m, in \u001b[0;36mBaseChatModel.generate\u001b[0;34m(self, messages, stop, callbacks, tags, metadata, run_name, run_id, **kwargs)\u001b[0m\n\u001b[1;32m 454\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m run_managers:\n\u001b[1;32m 455\u001b[0m run_managers[i]\u001b[38;5;241m.\u001b[39mon_llm_error(e, response\u001b[38;5;241m=\u001b[39mLLMResult(generations\u001b[38;5;241m=\u001b[39m[]))\n\u001b[0;32m--> 456\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 457\u001b[0m flattened_outputs \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 458\u001b[0m LLMResult(generations\u001b[38;5;241m=\u001b[39m[res\u001b[38;5;241m.\u001b[39mgenerations], llm_output\u001b[38;5;241m=\u001b[39mres\u001b[38;5;241m.\u001b[39mllm_output) \u001b[38;5;66;03m# type: ignore[list-item]\u001b[39;00m\n\u001b[1;32m 459\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m res \u001b[38;5;129;01min\u001b[39;00m results\n\u001b[1;32m 460\u001b[0m ]\n\u001b[1;32m 461\u001b[0m llm_output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_combine_llm_outputs([res\u001b[38;5;241m.\u001b[39mllm_output \u001b[38;5;28;01mfor\u001b[39;00m res \u001b[38;5;129;01min\u001b[39;00m results])\n", - "File \u001b[0;32m~/projects/penai/.venv/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py:446\u001b[0m, in \u001b[0;36mBaseChatModel.generate\u001b[0;34m(self, messages, stop, callbacks, tags, metadata, run_name, run_id, **kwargs)\u001b[0m\n\u001b[1;32m 443\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i, m \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(messages):\n\u001b[1;32m 444\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 445\u001b[0m results\u001b[38;5;241m.\u001b[39mappend(\n\u001b[0;32m--> 446\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_generate_with_cache\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 447\u001b[0m \u001b[43m \u001b[49m\u001b[43mm\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 448\u001b[0m \u001b[43m \u001b[49m\u001b[43mstop\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstop\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 449\u001b[0m \u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_managers\u001b[49m\u001b[43m[\u001b[49m\u001b[43mi\u001b[49m\u001b[43m]\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mrun_managers\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 450\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 451\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 452\u001b[0m )\n\u001b[1;32m 453\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 454\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m run_managers:\n", - "File \u001b[0;32m~/projects/penai/.venv/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py:671\u001b[0m, in \u001b[0;36mBaseChatModel._generate_with_cache\u001b[0;34m(self, messages, stop, run_manager, **kwargs)\u001b[0m\n\u001b[1;32m 669\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 670\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m inspect\u001b[38;5;241m.\u001b[39msignature(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_generate)\u001b[38;5;241m.\u001b[39mparameters\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrun_manager\u001b[39m\u001b[38;5;124m\"\u001b[39m):\n\u001b[0;32m--> 671\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_generate\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 672\u001b[0m \u001b[43m \u001b[49m\u001b[43mmessages\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstop\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstop\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\n\u001b[1;32m 673\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 674\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 675\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_generate(messages, stop\u001b[38;5;241m=\u001b[39mstop, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n", - "File \u001b[0;32m~/projects/penai/.venv/lib/python3.11/site-packages/langchain_anthropic/chat_models.py:525\u001b[0m, in \u001b[0;36mChatAnthropic._generate\u001b[0;34m(self, messages, stop, run_manager, **kwargs)\u001b[0m\n\u001b[1;32m 521\u001b[0m stream_iter \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_stream(\n\u001b[1;32m 522\u001b[0m messages, stop\u001b[38;5;241m=\u001b[39mstop, run_manager\u001b[38;5;241m=\u001b[39mrun_manager, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs\n\u001b[1;32m 523\u001b[0m )\n\u001b[1;32m 524\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m generate_from_stream(stream_iter)\n\u001b[0;32m--> 525\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_client\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmessages\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcreate\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mparams\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 526\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_format_output(data, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n", - "File \u001b[0;32m~/projects/penai/.venv/lib/python3.11/site-packages/anthropic/_utils/_utils.py:277\u001b[0m, in \u001b[0;36mrequired_args..inner..wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 275\u001b[0m msg \u001b[38;5;241m=\u001b[39m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mMissing required argument: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mquote(missing[\u001b[38;5;241m0\u001b[39m])\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 276\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(msg)\n\u001b[0;32m--> 277\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/projects/penai/.venv/lib/python3.11/site-packages/anthropic/resources/messages.py:904\u001b[0m, in \u001b[0;36mMessages.create\u001b[0;34m(self, max_tokens, messages, model, metadata, stop_sequences, stream, system, temperature, tool_choice, tools, top_k, top_p, extra_headers, extra_query, extra_body, timeout)\u001b[0m\n\u001b[1;32m 870\u001b[0m \u001b[38;5;129m@required_args\u001b[39m([\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmax_tokens\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmessages\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmodel\u001b[39m\u001b[38;5;124m\"\u001b[39m], [\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmax_tokens\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmessages\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmodel\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstream\u001b[39m\u001b[38;5;124m\"\u001b[39m])\n\u001b[1;32m 871\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcreate\u001b[39m(\n\u001b[1;32m 872\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 902\u001b[0m timeout: \u001b[38;5;28mfloat\u001b[39m \u001b[38;5;241m|\u001b[39m httpx\u001b[38;5;241m.\u001b[39mTimeout \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m|\u001b[39m NotGiven \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m600\u001b[39m,\n\u001b[1;32m 903\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Message \u001b[38;5;241m|\u001b[39m Stream[RawMessageStreamEvent]:\n\u001b[0;32m--> 904\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_post\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 905\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m/v1/messages\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 906\u001b[0m \u001b[43m \u001b[49m\u001b[43mbody\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmaybe_transform\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 907\u001b[0m \u001b[43m \u001b[49m\u001b[43m{\u001b[49m\n\u001b[1;32m 908\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmax_tokens\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmax_tokens\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 909\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmessages\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmessages\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 910\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmodel\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 911\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmetadata\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmetadata\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 912\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstop_sequences\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mstop_sequences\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 913\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstream\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 914\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43msystem\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43msystem\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 915\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtemperature\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtemperature\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 916\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtool_choice\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtool_choice\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 917\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtools\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtools\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 918\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtop_k\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtop_k\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 919\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtop_p\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtop_p\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 920\u001b[0m \u001b[43m \u001b[49m\u001b[43m}\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 921\u001b[0m \u001b[43m \u001b[49m\u001b[43mmessage_create_params\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mMessageCreateParams\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 922\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 923\u001b[0m \u001b[43m \u001b[49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmake_request_options\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 924\u001b[0m \u001b[43m \u001b[49m\u001b[43mextra_headers\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mextra_headers\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mextra_query\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mextra_query\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mextra_body\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mextra_body\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtimeout\u001b[49m\n\u001b[1;32m 925\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 926\u001b[0m \u001b[43m \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mMessage\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 927\u001b[0m \u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 928\u001b[0m \u001b[43m \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mStream\u001b[49m\u001b[43m[\u001b[49m\u001b[43mRawMessageStreamEvent\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 929\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/projects/penai/.venv/lib/python3.11/site-packages/anthropic/_base_client.py:1249\u001b[0m, in \u001b[0;36mSyncAPIClient.post\u001b[0;34m(self, path, cast_to, body, options, files, stream, stream_cls)\u001b[0m\n\u001b[1;32m 1235\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mpost\u001b[39m(\n\u001b[1;32m 1236\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 1237\u001b[0m path: \u001b[38;5;28mstr\u001b[39m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1244\u001b[0m stream_cls: \u001b[38;5;28mtype\u001b[39m[_StreamT] \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 1245\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m ResponseT \u001b[38;5;241m|\u001b[39m _StreamT:\n\u001b[1;32m 1246\u001b[0m opts \u001b[38;5;241m=\u001b[39m FinalRequestOptions\u001b[38;5;241m.\u001b[39mconstruct(\n\u001b[1;32m 1247\u001b[0m method\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpost\u001b[39m\u001b[38;5;124m\"\u001b[39m, url\u001b[38;5;241m=\u001b[39mpath, json_data\u001b[38;5;241m=\u001b[39mbody, files\u001b[38;5;241m=\u001b[39mto_httpx_files(files), \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39moptions\n\u001b[1;32m 1248\u001b[0m )\n\u001b[0;32m-> 1249\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m cast(ResponseT, \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mopts\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream_cls\u001b[49m\u001b[43m)\u001b[49m)\n", - "File \u001b[0;32m~/projects/penai/.venv/lib/python3.11/site-packages/anthropic/_base_client.py:931\u001b[0m, in \u001b[0;36mSyncAPIClient.request\u001b[0;34m(self, cast_to, options, remaining_retries, stream, stream_cls)\u001b[0m\n\u001b[1;32m 922\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mrequest\u001b[39m(\n\u001b[1;32m 923\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 924\u001b[0m cast_to: Type[ResponseT],\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 929\u001b[0m stream_cls: \u001b[38;5;28mtype\u001b[39m[_StreamT] \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 930\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m ResponseT \u001b[38;5;241m|\u001b[39m _StreamT:\n\u001b[0;32m--> 931\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_request\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 932\u001b[0m \u001b[43m \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 933\u001b[0m \u001b[43m \u001b[49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 934\u001b[0m \u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 935\u001b[0m \u001b[43m \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream_cls\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 936\u001b[0m \u001b[43m \u001b[49m\u001b[43mremaining_retries\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mremaining_retries\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 937\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/projects/penai/.venv/lib/python3.11/site-packages/anthropic/_base_client.py:1029\u001b[0m, in \u001b[0;36mSyncAPIClient._request\u001b[0;34m(self, cast_to, options, remaining_retries, stream, stream_cls)\u001b[0m\n\u001b[1;32m 1026\u001b[0m err\u001b[38;5;241m.\u001b[39mresponse\u001b[38;5;241m.\u001b[39mread()\n\u001b[1;32m 1028\u001b[0m log\u001b[38;5;241m.\u001b[39mdebug(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRe-raising status error\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m-> 1029\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_make_status_error_from_response(err\u001b[38;5;241m.\u001b[39mresponse) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 1031\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_process_response(\n\u001b[1;32m 1032\u001b[0m cast_to\u001b[38;5;241m=\u001b[39mcast_to,\n\u001b[1;32m 1033\u001b[0m options\u001b[38;5;241m=\u001b[39moptions,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1036\u001b[0m stream_cls\u001b[38;5;241m=\u001b[39mstream_cls,\n\u001b[1;32m 1037\u001b[0m )\n", - "\u001b[0;31mBadRequestError\u001b[0m: Error code: 400 - {'type': 'error', 'error': {'type': 'invalid_request_error', 'message': 'Your credit balance is too low to access the Claude API. Please go to Plans & Billing to upgrade or purchase credits.'}}" - ] - } - ], + "outputs": [], "source": [ "var_gen = SVGVariationsGenerator(\n", - " shape=shape_orig, semantics=\"text area\", model=RegisteredLLM.CLAUDE_3_5_SONNET\n", + " shape=shape_orig, semantics=\"text area\", model=RegisteredLLM.GPT4O\n", ")\n", "\n", "variations = var_gen.create_variations_from_example(example_variations)\n", diff --git a/notebooks/svg_variations_icon.ipynb b/notebooks/svg_variations_icon.ipynb index da386b7..6f39e48 100644 --- a/notebooks/svg_variations_icon.ipynb +++ b/notebooks/svg_variations_icon.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 3, "id": "bd811f91206293e6", "metadata": { "ExecuteTime": { @@ -10,7 +10,16 @@ "start_time": "2024-07-09T14:31:27.959924700Z" } }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The autoreload extension is already loaded. To reload it, use:\n", + " %reload_ext autoreload\n" + ] + } + ], "source": [ "%load_ext autoreload\n", "%autoreload 2" @@ -18,7 +27,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 4, "id": "793ea6ad30db8951", "metadata": { "ExecuteTime": { @@ -37,7 +46,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "id": "3b32aa5c9df0a768", "metadata": { "ExecuteTime": { @@ -51,9 +60,9 @@ "name": "stderr", "output_type": "stream", "text": [ - "Scanning remote paths in penpot/data/raw/designs/Interactive music app: 100%|██████████| 23/23 [00:00<00:00, 1655.15it/s]\n", - "force pulling (bytes): 0it [00:00, ?it/s]\n", - "Setting view boxes: 100%|██████████| 397/397 [00:02<00:00, 157.97it/s]\n" + "Scanning remote paths in penpot/data/raw/designs/Interactive music app: 100%|██████████| 23/23 [00:00<00:00, 7646.56it/s]\n", + "force pulling (bytes): 100%|██████████| 2665402/2665402 [00:01<00:00, 1432942.48it/s]\n", + "Setting view boxes: 100%|██████████| 397/397 [00:02<00:00, 172.32it/s]\n" ] } ], @@ -63,7 +72,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "id": "569165abe387197f", "metadata": { "ExecuteTime": { @@ -79,7 +88,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 7, "id": "451bf67f87f40e4f", "metadata": { "ExecuteTime": { @@ -89,6 +98,14 @@ "collapsed": false }, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Scanning remote paths in penpot/data/cache/llm_responses_cache.sqlite: 100%|██████████| 1/1 [00:00<00:00, 165.04it/s]\n", + "force pulling (bytes): 100%|██████████| 2465792/2465792 [00:00<00:00, 13718427.38it/s]\n" + ] + }, { "name": "stdout", "output_type": "stream", @@ -96,145 +113,112 @@ "### Explanation of Changes\n", "\n", "1. **Background Color Identification**: The background color is identified as `#E8E9EA` from the `style=\"background:#E8E9EA\"` attribute in the `` tag.\n", - "2. **Remove Unnecessary Groups**: The `` elements with ids `3` and `4` and the class `fills` are unnecessary and have no attributes that affect the visual appearance. These groups are removed.\n", - "3. **Consolidate Attributes**: The `style` attributes are consolidated into direct attributes for the `` element.\n", - "4. **Semantic IDs**: Added semantic ids to the path elements.\n", + "2. **Remove Unnecessary Groups**: The groups with ids `3` and `4` are unnecessary and have no attributes that affect the visual appearance. These groups are removed.\n", + "3. **Consolidate Attributes**: The `style` attributes are consolidated into direct attributes in the tags.\n", + "4. **Semantic IDs**: Added semantic ids to the path elements to improve readability and maintainability.\n", "\n", "### Identified Path Elements\n", - "- **Main Circle Path**: Not a cutout.\n", - "- **Equalizer Bars**: Not cutouts.\n", + "- **Path 1**: Main circle and bars (not a cutout)\n", "\n", "### Refactored SVG\n", "```svg\n", "\n", - " \n", - " \n", - " \n", - " \n", + " \n", "\n", "```\n", "\n", - "This refactored SVG maintains the exact visual appearance of the original SVG while simplifying its structure and adding semantic meaning to the elements.\n", + "This refactored SVG maintains the exact visual appearance of the original while simplifying the structure and adding semantic meaning.\n", "Understood. I will wait for your instructions before creating any variations of the SVG. Please let me know how you would like to proceed.\n", "Sure, here are five variations of the SVG:\n", "\n", - "## Variation 1: Gradient Background\n", + "## Variation 1: Mirrored Horizontally\n", "```svg\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\n", + " \n", + " \n", + " \n", "\n", "```\n", "\n", - "## Variation 2: Mirrored Equalizer Bars\n", + "## Variation 2: Rotated 90 Degrees\n", "```svg\n", - "\n", - " \n", - " \n", - " \n", - " \n", + "\n", + " \n", + " \n", + " \n", "\n", "```\n", "\n", - "## Variation 3: Rotated 45 Degrees\n", + "## Variation 3: Gradient Fill\n", "```svg\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", "\n", "```\n", "\n", - "## Variation 4: Outlined Circle\n", + "## Variation 4: Outlined\n", "```svg\n", - "\n", - " \n", - " \n", - " \n", - " \n", + "\n", + " \n", "\n", "```\n", "\n", - "## Variation 5: Scaled Equalizer Bars\n", + "## Variation 5: Background Color Change\n", "```svg\n", - "\n", - " \n", - " \n", - " \n", - " \n", + "\n", + " \n", "\n", "```\n", "\n", - "These variations maintain the original semantics of the equalizer design while introducing different visual styles and transformations.\n" + "These variations maintain the original design's semantics while introducing different visual styles and transformations.\n" ] }, { "data": { "text/html": [ - "

Original

\n", + "

Original

\n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", "

Refactored: 1

\n", - " \n", - " \n", - " \n", - " \n", + " \n", + "\n", + "

Variations

Variation 1: Mirrored Horizontally

\n", + " \n", + " \n", + " \n", "\n", - "

Variations

Variation 1: Gradient Background

\n", + "

Variation 2: Rotated 90 Degrees

\n", + " \n", + " \n", + " \n", + "\n", + "

Variation 3: Gradient Fill

\n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "

Variation 2: Mirrored Equalizer Bars

\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "

Variation 3: Rotated 45 Degrees

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", "\n", - "

Variation 4: Outlined Circle

\n", - " \n", - " \n", - " \n", - " \n", + "

Variation 4: Outlined

\n", + " \n", "\n", - "

Variation 5: Scaled Equalizer Bars

\n", - " \n", - " \n", - " \n", - " \n", + "

Variation 5: Background Color Change

\n", + " \n", "\n", "
" ], @@ -242,7 +226,7 @@ "" ] }, - "execution_count": 9, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -255,7 +239,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 8, "id": "74170dfb4dbc2dc9", "metadata": { "ExecuteTime": { @@ -271,65 +255,52 @@ "text": [ "Sure, here are the revised variations with shape changes:\n", "\n", - "## Variation 1: Gradient Background with Rounded Equalizer Bars\n", + "## Variation 1: Mirrored Horizontally with Shape Changes\n", "```svg\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\n", + " \n", + " \n", + " \n", "\n", "```\n", "\n", - "## Variation 2: Mirrored Equalizer Bars with Triangular Shapes\n", + "## Variation 2: Rotated 90 Degrees with Shape Changes\n", "```svg\n", - "\n", - " \n", - " \n", - " \n", - " \n", + "\n", + " \n", + " \n", + " \n", "\n", "```\n", "\n", - "## Variation 3: Rotated 45 Degrees with Elliptical Equalizer Bars\n", + "## Variation 3: Gradient Fill with Shape Changes\n", "```svg\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", "\n", "```\n", "\n", - "## Variation 4: Outlined Circle with Diamond Equalizer Bars\n", + "## Variation 4: Outlined with Shape Changes\n", "```svg\n", - "\n", - " \n", - " \n", - " \n", - " \n", + "\n", + " \n", "\n", "```\n", "\n", - "## Variation 5: Scaled Equalizer Bars with Hexagonal Shapes\n", + "## Variation 5: Background Color Change with Shape Changes\n", "```svg\n", - "\n", - " \n", - " \n", - " \n", - " \n", + "\n", + " \n", "\n", "```\n", "\n", - "These revised variations incorporate shape changes while maintaining the original semantics of the equalizer design.\n" + "These variations now include shape changes while maintaining the original design's semantics.\n" ] } ], @@ -339,7 +310,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 9, "id": "9b886fc4c8ff14af", "metadata": { "ExecuteTime": { @@ -352,53 +323,40 @@ { "data": { "text/html": [ - "

Original

\n", + "

Original

\n", " \n", - " \n", + " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - "

Variations

Variation 1: Gradient Background with Rounded Equalizer Bars

\n", + "

Variations

Variation 1: Mirrored Horizontally with Shape Changes

\n", + " \n", + " \n", + " \n", + "\n", + "

Variation 2: Rotated 90 Degrees with Shape Changes

\n", + " \n", + " \n", + " \n", + "\n", + "

Variation 3: Gradient Fill with Shape Changes

\n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - "

Variation 2: Mirrored Equalizer Bars with Triangular Shapes

\n", - " \n", - " \n", - " \n", - " \n", - "\n", - "

Variation 3: Rotated 45 Degrees with Elliptical Equalizer Bars

\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", "\n", - "

Variation 4: Outlined Circle with Diamond Equalizer Bars

\n", - " \n", - " \n", - " \n", - " \n", + "

Variation 4: Outlined with Shape Changes

\n", + " \n", "\n", - "

Variation 5: Scaled Equalizer Bars with Hexagonal Shapes

\n", - " \n", - " \n", - " \n", - " \n", + "

Variation 5: Background Color Change with Shape Changes

\n", + " \n", "\n", "
" ], @@ -413,20 +371,6 @@ "source": [ "display(HTML(add_variations.to_html()))" ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "a4d58b706981f28c", - "metadata": { - "ExecuteTime": { - "end_time": "2024-07-09T14:32:29.566882900Z", - "start_time": "2024-07-09T14:32:29.559912800Z" - }, - "collapsed": false - }, - "outputs": [], - "source": [] } ], "metadata": { diff --git a/notebooks/svg_variations_ui_widget.ipynb b/notebooks/svg_variations_ui_widget.ipynb index e7e7132..e14dcb2 100644 --- a/notebooks/svg_variations_ui_widget.ipynb +++ b/notebooks/svg_variations_ui_widget.ipynb @@ -41,23 +41,31 @@ }, { "cell_type": "markdown", - "source": [ - "# Variations of an Input Field" - ], + "id": "507b8a0dc6422eea", "metadata": { "collapsed": false }, - "id": "507b8a0dc6422eea", - "execution_count": 1 + "source": [ + "# Variations of an Input Field" + ] }, { "cell_type": "code", + "execution_count": 3, + "id": "7f41585019d4f27d", + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-25T08:25:39.956471100Z", + "start_time": "2024-06-25T08:25:38.821166400Z" + }, + "collapsed": false + }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "Scanning remote paths in penpot/data/raw/designs/Generative variations: 100%|██████████| 4/4 [00:00<00:00, 999.89it/s]\n", + "Scanning remote paths in penpot/data/raw/designs/Generative variations: 100%|██████████| 4/4 [00:00<00:00, 547.42it/s]\n", "force pulling (bytes): 0it [00:00, ?it/s]\n" ] } @@ -67,368 +75,208 @@ "project = saved_project.load(pull=True)\n", "main_file = project.get_main_file()\n", "page_svg = saved_project.load_page_svg_with_viewboxes(\"examples\")" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-06-25T08:25:39.956471100Z", - "start_time": "2024-06-25T08:25:38.821166400Z" - } - }, - "id": "7f41585019d4f27d", - "execution_count": 3 + ] }, { "cell_type": "markdown", - "source": [ - "## Generating Variations Depending on UI States (GPT-4o)" - ], + "id": "ea8bb1f54f860125", "metadata": { "collapsed": false }, - "id": "ea8bb1f54f860125", - "execution_count": 1 + "source": [ + "## Generating Variations Depending on UI States (GPT-4o)" + ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 4, "id": "451bf67f87f40e4f", "metadata": { - "collapsed": false, "ExecuteTime": { "end_time": "2024-06-18T15:23:35.980586600Z", "start_time": "2024-06-18T15:21:49.765466800Z" - } + }, + "collapsed": false }, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Scanning remote paths in penpot/data/cache/llm_responses_cache.sqlite: 100%|██████████| 1/1 [00:00<00:00, 218.97it/s]\n", + "force pulling (bytes): 0it [00:00, ?it/s]\n" + ] + }, { "name": "stdout", "output_type": "stream", "text": [ - "Certainly! Below is the refactored SVG code with explicit shape tags (`rect`, `path`, etc.) and appropriate masks to maintain the cutouts.\n", + "To refactor the SVG while maintaining its visual appearance, I followed these steps:\n", "\n", - "```xml\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " Label\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "1. **Identify the Background Color**: The background color is defined in the `style` attribute of the `` tag as `background:#E8E9EA`.\n", + "2. **Remove Unnecessary Groups**: Removed groups that do not serve a purpose and have no attributes.\n", + "3. **Consolidate Attributes**: Merged attributes defined through `style` and directly in the tag.\n", + "4. **Preserve Text Attributes**: Ensured that no attributes or styles of `` tags were changed.\n", + "5. **Handle Paths**: Ensured paths were not merged and handled enclosed shapes appropriately.\n", + "6. **Add Semantic IDs**: Added semantic IDs to the tags where appropriate.\n", + "\n", + "### Identified Path Elements:\n", + "- Path `d=\"M971,2914.000000000001 h16 a0,0 0 0 1 0,0 v16 a0,0 0 0 1 0,0 h-16 a0,0 0 0 1 0,0 v-16 a0,0 0 0 1 0,0 z\"`: Not a cutout.\n", + "- Path `d=\"M979.000,2914.670C979.000,2918.718,977.050,2922.000,973.000,2922.000C977.050,2922.000,979.000,2925.282,979.000,2929.330C979.000,2925.282,980.950,2922.000,985.000,2922.000C980.950,2922.000,979.000,2918.718,979.000,2914.670ZZ\"`: Not a cutout.\n", + "\n", + "### Refactored SVG:\n", + "```svg\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " Label\n", " \n", "\n", "```\n", "\n", - "In this refactored SVG:\n", - "- The `rect` elements are used to define rectangular shapes.\n", - "- The `path` element is used to define the custom shape with the specific path data.\n", - "- The `text` element is used to define the text label within the input field.\n", - "\n", - "This should maintain the visual structure and semantics of the original SVG while making the shapes explicit.\n", + "### Explanation of Changes:\n", + "1. **Background Color**: Identified as `#E8E9EA` and retained in the `style` attribute of the `` tag.\n", + "2. **Removed Unnecessary Groups**: Removed groups that were not contributing to the structure or styling.\n", + "3. **Consolidated Attributes**: Merged `style` attributes directly into the tags.\n", + "4. **Preserved Text Attributes**: Ensured no changes to the `` tag attributes or styles.\n", + "5. **Handled Paths**: Ensured paths were not merged and handled enclosed shapes appropriately.\n", + "6. **Added Semantic IDs**: Added semantic IDs to the tags for better readability and maintainability.\n", "## Adapted for UI State 'Active'\n", "\n", - "```xml\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " Label\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "```svg\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", "\n", "```\n", - "\n", - "In this variation:\n", - "- The background color of the input field is changed to a darker shade (`#2A2D2F`).\n", - "- A border is added around the input field with a color of `#00A3FF` to indicate the active state.\n", - "- The custom shape's stroke color is also changed to `#00A3FF` to match the active state indication.\n", "## Adapted for UI State 'Disabled'\n", "\n", - "```xml\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " Label\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "```svg\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", "\n", "```\n", - "\n", - "In this variation:\n", - "- The background color of the input field is changed to a lighter gray (`#B0B3B5`) to indicate a disabled state.\n", - "- A border is added around the input field with a color of `#D3D6D8` to further indicate the disabled state.\n", - "- The custom shape's stroke color is changed to `#A0A4A7` to match the disabled state indication.\n", - "- The text color is changed to `#D3D6D8` to indicate that the input field is not active and cannot be interacted with.\n", "## Adapted for UI State 'Error'\n", "\n", - "```xml\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " Label\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "```svg\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", "\n", - "```\n", - "\n", - "In this variation:\n", - "- The background color of the input field is changed to a darker shade (`#2A2D2F`) to maintain consistency with the active state.\n", - "- A border is added around the input field with a color of `#FF4C4C` to indicate the error state.\n", - "- The custom shape's stroke color is also changed to `#FF4C4C` to match the error state indication.\n", - "- The text color remains white to ensure readability against the dark background.\n" + "```\n" ] }, { "data": { - "text/plain": "", - "text/html": "

Original

\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n Label\n \n \n \n \n \n \n \n \n \n \n

Variations

Adapted for UI State 'Active'

\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n Label\n \n \n \n \n \n \n \n \n \n

Adapted for UI State 'Disabled'

\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n Label\n \n \n \n \n \n \n \n \n \n

Adapted for UI State 'Error'

\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n Label\n \n \n \n \n \n \n \n \n \n
" + "text/html": [ + "

Original

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " Label\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "

Refactored: 1

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " Label\n", + " \n", + "\n", + "

Variations

" + ], + "text/plain": [ + "" + ] }, - "execution_count": 12, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -445,379 +293,247 @@ }, { "cell_type": "markdown", - "source": [ - "## Providing Context on Color Palette" - ], + "id": "e067c526e558256", "metadata": { "collapsed": false }, - "id": "e067c526e558256", - "execution_count": 1 + "source": [ + "## Providing Context on Color Palette" + ] }, { "cell_type": "code", + "execution_count": 5, + "id": "2cce49b6fda27790", + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-20T12:06:18.281604300Z", + "start_time": "2024-06-20T12:06:18.209290100Z" + }, + "collapsed": false + }, "outputs": [ { "data": { - "text/plain": "[PenpotColor(id='542a8be7-f427-80a2-8004-872ecc9580ab', name='foreground', color='#8f9da3', opacity=1.0, path=''),\n PenpotColor(id='542a8be7-f427-80a2-8004-872fca9949f0', name='background-primary', color='#18181a', opacity=1.0, path=''),\n PenpotColor(id='542a8be7-f427-80a2-8004-872f492b92b4', name='accent-secondary', color='#00d1b8', opacity=1.0, path=''),\n PenpotColor(id='542a8be7-f427-80a2-8004-87287dcf48de', name='secondary-blue', color='#40a9ff', opacity=1.0, path='Basics'),\n PenpotColor(id='542a8be7-f427-80a2-8004-8729e89f2565', name='gray', color='#dbdbdb', opacity=1.0, path='Basics'),\n PenpotColor(id='542a8be7-f427-80a2-8004-872f7ce0f6f4', name='error', color='#ff3277', opacity=1.0, path=''),\n PenpotColor(id='542a8be7-f427-80a2-8004-8729d5faddb4', name='black', color='#000000', opacity=1.0, path='Basics'),\n PenpotColor(id='542a8be7-f427-80a2-8004-872c0120f650', name='primary-red', color='#f5222d', opacity=1.0, path='Basics'),\n PenpotColor(id='542a8be7-f427-80a2-8004-872f317a8d30', name='background-tertiary', color='#2e3434', opacity=1.0, path=''),\n PenpotColor(id='542a8be7-f427-80a2-8004-8729ceedaef8', name='white', color='#ffffff', opacity=1.0, path='Basics'),\n PenpotColor(id='542a8be7-f427-80a2-8004-872c0b629972', name='secondary-red', color='#ff4d4f', opacity=1.0, path='Basics'),\n PenpotColor(id='542a8be7-f427-80a2-8004-872f15157857', name='accent-primary', color='#7efff5', opacity=1.0, path=''),\n PenpotColor(id='542a8be7-f427-80a2-8004-872869a74f12', name='primary-blue', color='#1890ff', opacity=1.0, path='Basics'),\n PenpotColor(id='542a8be7-f427-80a2-8004-872fdaadf94f', name='background-secondary', color='#212426', opacity=1.0, path='')]" + "text/plain": [ + "[PenpotColor(id='542a8be7-f427-80a2-8004-872ecc9580ab', name='foreground', color='#8f9da3', opacity=1.0, path=''),\n", + " PenpotColor(id='542a8be7-f427-80a2-8004-872fca9949f0', name='background-primary', color='#18181a', opacity=1.0, path=''),\n", + " PenpotColor(id='542a8be7-f427-80a2-8004-872f492b92b4', name='accent-secondary', color='#00d1b8', opacity=1.0, path=''),\n", + " PenpotColor(id='542a8be7-f427-80a2-8004-87287dcf48de', name='secondary-blue', color='#40a9ff', opacity=1.0, path='Basics'),\n", + " PenpotColor(id='542a8be7-f427-80a2-8004-8729e89f2565', name='gray', color='#dbdbdb', opacity=1.0, path='Basics'),\n", + " PenpotColor(id='542a8be7-f427-80a2-8004-872f7ce0f6f4', name='error', color='#ff3277', opacity=1.0, path=''),\n", + " PenpotColor(id='542a8be7-f427-80a2-8004-8729d5faddb4', name='black', color='#000000', opacity=1.0, path='Basics'),\n", + " PenpotColor(id='542a8be7-f427-80a2-8004-872c0120f650', name='primary-red', color='#f5222d', opacity=1.0, path='Basics'),\n", + " PenpotColor(id='542a8be7-f427-80a2-8004-872f317a8d30', name='background-tertiary', color='#2e3434', opacity=1.0, path=''),\n", + " PenpotColor(id='542a8be7-f427-80a2-8004-8729ceedaef8', name='white', color='#ffffff', opacity=1.0, path='Basics'),\n", + " PenpotColor(id='542a8be7-f427-80a2-8004-872c0b629972', name='secondary-red', color='#ff4d4f', opacity=1.0, path='Basics'),\n", + " PenpotColor(id='542a8be7-f427-80a2-8004-872f15157857', name='accent-primary', color='#7efff5', opacity=1.0, path=''),\n", + " PenpotColor(id='542a8be7-f427-80a2-8004-872869a74f12', name='primary-blue', color='#1890ff', opacity=1.0, path='Basics'),\n", + " PenpotColor(id='542a8be7-f427-80a2-8004-872fdaadf94f', name='background-secondary', color='#212426', opacity=1.0, path='')]" + ] }, - "execution_count": 21, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "main_file.colors.get_colors()" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-06-20T12:06:18.281604300Z", - "start_time": "2024-06-20T12:06:18.209290100Z" - } - }, - "id": "2cce49b6fda27790", - "execution_count": 21 + ] }, { "cell_type": "code", + "execution_count": 6, + "id": "23e0598fbebf65cc", + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-20T12:06:18.209290100Z", + "start_time": "2024-06-20T12:04:08.127061700Z" + }, + "collapsed": false + }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "INFO 2024-06-20 14:04:46,931 httpx:_send_single_request:1026 - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", - "To refactor the SVG and make the shapes explicit using the respective shape tags (`rect`, `circle`, `ellipse`, etc.), we need to replace the `path` elements with the appropriate shape elements. Additionally, we need to ensure that any cutouts or masks are preserved. Here is the refactored SVG:\n", + "To refactor the SVG while maintaining its visual appearance, I followed these steps:\n", "\n", - "```xml\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " Label\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "1. **Identify the Background Color**: The background color is defined in the `style` attribute of the `` tag as `background:#E8E9EA`.\n", + "2. **Remove Unnecessary Groups**: Removed groups that do not serve a purpose and have no attributes.\n", + "3. **Consolidate Attributes**: Merged attributes defined through `style` and directly in the tag.\n", + "4. **Preserve Text Attributes**: Ensured that no attributes or styles of `` tags were changed.\n", + "5. **Handle Paths**: Ensured paths were not merged and handled enclosed shapes appropriately.\n", + "6. **Add Semantic IDs**: Added semantic IDs to the tags where appropriate.\n", + "\n", + "### Identified Path Elements:\n", + "- Path `d=\"M971,2914.000000000001 h16 a0,0 0 0 1 0,0 v16 a0,0 0 0 1 0,0 h-16 a0,0 0 0 1 0,0 v-16 a0,0 0 0 1 0,0 z\"`: Not a cutout.\n", + "- Path `d=\"M979.000,2914.670C979.000,2918.718,977.050,2922.000,973.000,2922.000C977.050,2922.000,979.000,2925.282,979.000,2929.330C979.000,2925.282,980.950,2922.000,985.000,2922.000C980.950,2922.000,979.000,2918.718,979.000,2914.670ZZ\"`: Not a cutout.\n", + "\n", + "### Refactored SVG:\n", + "```svg\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " Label\n", " \n", "\n", "```\n", "\n", - "In this refactored SVG:\n", - "- The main rectangle for the input field is represented by a `rect` element with rounded corners.\n", - "- The smaller rectangle inside the input field is also represented by a `rect` element.\n", - "- The complex path inside the smaller rectangle is left as a `path` element because it does not correspond to a simple shape like a `rect`, `circle`, or `ellipse`.\n", - "- The text element is preserved as it is, with the necessary attributes and styles.\n", - "\n", - "This refactoring makes the SVG more readable and semantically clear by using explicit shape tags where applicable.\n", - "INFO 2024-06-20 14:05:17,187 httpx:_send_single_request:1026 - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", + "### Explanation of Changes:\n", + "1. **Background Color**: Identified as `#E8E9EA` and retained in the `style` attribute of the `` tag.\n", + "2. **Removed Unnecessary Groups**: Removed groups that were not contributing to the structure or styling.\n", + "3. **Consolidated Attributes**: Merged `style` attributes directly into the tags.\n", + "4. **Preserved Text Attributes**: Ensured no changes to the `` tag attributes or styles.\n", + "5. **Handled Paths**: Ensured paths were not merged and handled enclosed shapes appropriately.\n", + "6. **Added Semantic IDs**: Added semantic IDs to the tags for better readability and maintainability.\n", "## Adapted for UI State 'Active'\n", "\n", - "```xml\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " Label\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "```svg\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", "\n", "```\n", - "\n", - "In this variation:\n", - "- The border color of the main rectangle is changed to `#00d1b8` to indicate the active state.\n", - "- The stroke width is increased to `2` to make the active state more prominent.\n", - "INFO 2024-06-20 14:05:47,361 httpx:_send_single_request:1026 - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", "## Adapted for UI State 'Disabled'\n", "\n", - "```xml\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " Label\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "```svg\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", "\n", "```\n", - "\n", - "In this variation:\n", - "- The background color of the main rectangle is changed to `#2e3434` to indicate the disabled state.\n", - "- The border color of the main rectangle is changed to `#dbdbdb`.\n", - "- The text color is changed to `#dbdbdb` to indicate that the text is disabled.\n", - "- The stroke width is kept at `1` to maintain a subtle appearance for the disabled state.\n", - "INFO 2024-06-20 14:06:18,194 httpx:_send_single_request:1026 - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n", "## Adapted for UI State 'Error'\n", "\n", - "```xml\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " Label\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + "```svg\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", "\n", - "```\n", - "\n", - "In this variation:\n", - "- The border color of the main rectangle is changed to `#ff3277` to indicate the error state.\n", - "- The stroke width is increased to `2` to make the error state more prominent.\n", - "- The background color remains the same to maintain consistency with the original design.\n", - "INFO 2024-06-20 14:06:18,198 sensai.util.io.ResultWriter:write_text_file:14 - Saving full conversation to C:\\Users\\DominikJain\\Dev\\penpot\\penai\\results\\svg_variations\\Dark Input Rest\\20240618-172150\\full_conversation.txt\n", - "INFO 2024-06-20 14:06:18,199 sensai.util.io.ResultWriter:write_text_file:14 - Saving variations response as HTML to C:\\Users\\DominikJain\\Dev\\penpot\\penai\\results\\svg_variations\\Dark Input Rest\\20240618-172150\\variations.html\n", - "INFO 2024-06-20 14:06:18,200 sensai.util.io.ResultWriter:write_text_file:14 - Saving variation 'Adapted for UI State 'Active'' as SVG to C:\\Users\\DominikJain\\Dev\\penpot\\penai\\results\\svg_variations\\Dark Input Rest\\20240618-172150\\variation_1.svg\n", - "INFO 2024-06-20 14:06:18,202 sensai.util.io.ResultWriter:write_text_file:14 - Saving variation 'Adapted for UI State 'Disabled'' as SVG to C:\\Users\\DominikJain\\Dev\\penpot\\penai\\results\\svg_variations\\Dark Input Rest\\20240618-172150\\variation_2.svg\n", - "INFO 2024-06-20 14:06:18,203 sensai.util.io.ResultWriter:write_text_file:14 - Saving variation 'Adapted for UI State 'Error'' as SVG to C:\\Users\\DominikJain\\Dev\\penpot\\penai\\results\\svg_variations\\Dark Input Rest\\20240618-172150\\variation_3.svg\n" + "```\n" ] }, { "data": { - "text/plain": "", - "text/html": "

Original

\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n Label\n \n \n \n \n \n \n \n \n \n \n

Variations

Adapted for UI State 'Active'

\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n Label\n \n \n \n \n \n \n \n \n \n

Adapted for UI State 'Disabled'

\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n Label\n \n \n \n \n \n \n \n \n \n

Adapted for UI State 'Error'

\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n Label\n \n \n \n \n \n \n \n \n \n
" + "text/html": [ + "

Original

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " Label\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "

Refactored: 1

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " Label\n", + " \n", + "\n", + "

Variations

" + ], + "text/plain": [ + "" + ] }, - "execution_count": 20, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -828,30 +544,29 @@ " variation_description_sequence=VariationDescriptionSequence.UI_ELEMENT_STATES,\n", " colors=main_file.colors)\n", "HTML(variations_col.to_html())" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-06-20T12:06:18.209290100Z", - "start_time": "2024-06-20T12:04:08.127061700Z" - } - }, - "id": "23e0598fbebf65cc", - "execution_count": 20 + ] }, { "cell_type": "markdown", - "source": [ - "## Applying the Same Variations with a Different Model (Claude 3.5 Sonnet)" - ], + "id": "2f5d3c1a3f30167f", "metadata": { "collapsed": false }, - "id": "2f5d3c1a3f30167f", - "execution_count": 1 + "source": [ + "## Applying the Same Variations with a Different Model (Claude 3.5 Sonnet)" + ] }, { "cell_type": "code", + "execution_count": 6, + "id": "ac8b96ae520d9a22", + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-25T09:21:50.194108100Z", + "start_time": "2024-06-25T09:21:48.343816700Z" + }, + "collapsed": false + }, "outputs": [ { "name": "stderr", @@ -1022,8 +737,134 @@ }, { "data": { - "text/plain": "", - "text/html": "

Original

\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n Label\n \n \n \n \n \n \n \n \n \n \n

Variations

Active State Variation

\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n Label\n \n \n

Disabled State Variation

\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n Label\n \n \n

Error State Variation

\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n Label\n \n \n
" + "text/html": [ + "

Original

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " Label\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "

Variations

Active State Variation

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " Label\n", + " \n", + " \n", + "

Disabled State Variation

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " Label\n", + " \n", + " \n", + "

Error State Variation

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " Label\n", + " \n", + " \n", + "
" + ], + "text/plain": [ + "" + ] }, "execution_count": 6, "metadata": {}, @@ -1038,19 +879,19 @@ " variation_scope=VariationInstructionSnippet.SPECIFIC_COLORS_SHAPES,\n", " variation_description_sequence=VariationDescriptionSequence.UI_ELEMENT_STATES)\n", "HTML(variations.to_html())" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-06-25T09:21:50.194108100Z", - "start_time": "2024-06-25T09:21:48.343816700Z" - } - }, - "id": "ac8b96ae520d9a22", - "execution_count": 6 + ] }, { "cell_type": "code", + "execution_count": 7, + "id": "3a22abc776189d48", + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-25T09:21:53.883154800Z", + "start_time": "2024-06-25T09:21:53.354415300Z" + }, + "collapsed": false + }, "outputs": [ { "name": "stdout", @@ -1206,8 +1047,137 @@ }, { "data": { - "text/plain": "", - "text/html": "

Original

\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n Label\n \n \n \n \n \n \n \n \n \n \n

Variations

Active Input Field Variation

\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n Label\n \n \n

Disabled Input Field Variation

\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n Label\n \n \n

Error Input Field Variation

\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n Label\n \n \n \n !\n \n
" + "text/html": [ + "

Original

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " Label\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "

Variations

Active Input Field Variation

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " Label\n", + " \n", + " \n", + "

Disabled Input Field Variation

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " Label\n", + " \n", + " \n", + "

Error Input Field Variation

\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " Label\n", + " \n", + " \n", + " \n", + " !\n", + " \n", + "
" + ], + "text/plain": [ + "" + ] }, "execution_count": 7, "metadata": {}, @@ -1220,26 +1190,17 @@ " variation_description_sequence=VariationDescriptionSequence.UI_ELEMENT_STATES,\n", " colors=main_file.colors)\n", "HTML(variations.to_html())" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-06-25T09:21:53.883154800Z", - "start_time": "2024-06-25T09:21:53.354415300Z" - } - }, - "id": "3a22abc776189d48", - "execution_count": 7 + ] }, { "cell_type": "code", - "outputs": [], - "source": [], + "execution_count": 1, + "id": "407a20e11a411be6", "metadata": { "collapsed": false }, - "id": "407a20e11a411be6", - "execution_count": 1 + "outputs": [], + "source": [] } ], "metadata": { @@ -1263,4 +1224,4 @@ }, "nbformat": 4, "nbformat_minor": 5 -} \ No newline at end of file +}