-
Notifications
You must be signed in to change notification settings - Fork 68
/
Quaternion.m
764 lines (670 loc) · 28.3 KB
/
Quaternion.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
%Quaternion Quaternion class
%
% A quaternion is 4-element mathematical object comprising a scalar s, and
% a vector v which can be considered as a pair (s,v). In the Toolbox it is
% denoted by q = s <<vx, vy, vz>>.
%
% A quaternion of unit length can be used to represent 3D orientation and
% is implemented by the subclass UnitQuaternion.
%
% Constructors::
% Quaternion general constructor
% Quaternion.pure pure quaternion
%
% Display and print methods::
% display print in human readable form
%
% Group operations::
% * quaternion (Hamilton) product or elementwise multiplication by scalar
% / multiply by inverse or elementwise division by scalar
% ^ exponentiate (integer only)
% + elementwise sum of quaternion elements
% - elementwise difference of quaternion elements
% conj conjugate
% exp exponential
% log logarithm
% inv inverse
% prod product of elements
% unit unitized quaternion
%
% Methods::
% inner inner product
% isequal test for non-equality
% norm norm, or length
%
% Conversion methods::
% char convert to string
% double quaternion elements as 4-vector
% matrix quaternion as a 4x4 matrix
%
% Overloaded operators::
% == test for quaternion equality
% ~= test for quaternion inequality
%
% Properties (read only)::
% s real part
% v vector part
%
% Notes::
% - This is reference (handle) class object
% - Quaternion objects can be used in vectors and arrays.
%
% References::
% - Animating rotation with quaternion curves, K. Shoemake,
% in Proceedings of ACM SIGGRAPH, (San Fran cisco), pp. 245-254, 1985.
% - On homogeneous transforms, quaternions, and computational efficiency,
% J. Funda, R. Taylor, and R. Paul,
% IEEE Transactions on Robotics and Automation, vol. 6, pp. 382-388, June 1990.
% - Quaternions for Computer Graphics, J. Vince, Springer 2011.
% - Robotics, Vision & Control: Second Edition, P. Corke, Springer 2016; p44-45.
%
% See also UnitQuaternion.
% Copyright (C) 1993-2019 Peter I. Corke
%
% This file is part of The Spatial Math Toolbox for MATLAB (SMTB).
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, including without limitation the rights
% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
% of the Software, and to permit persons to whom the Software is furnished to do
% so, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in all
% copies or substantial portions of the Software.
%
% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
% FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
% COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
% IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
% CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
%
% https://github.com/petercorke/spatial-math
% TODO
% constructor handles R, T trajectory and returns vector
% .r, .t on a quaternion vector??
classdef Quaternion
properties (SetAccess = protected, GetAccess=public)
s % scalar part
v % vector part
end
methods
function q = Quaternion(s, v)
%Quaternion.Quaternion Construct a quaternion object
%
% Q = Quaternion(S, V) is a Quaternion formed from the scalar S and vector
% part V (1x3).
%
% Q = Quaternion([S V1 V2 V3]) is a Quaternion formed by specifying directly its 4 elements.
%
% Q = Quaternion() is a zero Quaternion, all its elements are zero.
%
% Notes::
% - The constructor is not vectorized, it cannot create a vector of Quaternions.
if nargin == 0
q.v = [0,0,0];
q.s = 0;
elseif isa(s, 'Quaternion')
q.s = s.s;
q.v = s.v;
elseif nargin == 2 && isscalar(s) && isvec(v,3)
q.s = s;
q.v = v(:).';
elseif nargin == 1 && isvec(s,4)
s = s(:).';
q.s = s(1);
q.v = s(2:4);
elseif isrot(s) || isa(s, 'SO3')
error('SMTB:Quaternion:badarg', 'regular Quaternion is not equivalent to a rotation, use UnitQuaternion instead')
else
error ('SMTB:Quaternion:badarg', 'bad argument to quaternion constructor');
end
end
function qo = set.s(q, s)
%Quaternion.set.s Set scalar component
%
% Q.s = S sets the scalar part of the Quaternion object to S.
assert(isa(s, 'sym') || ( isreal(s) && isscalar(s) ), 'SMTB:Quaternion:badarg', 's must be real scalar');
qo = q;
qo.s = s;
end
function qo = set.v(q, v)
%Quaternion.set.v Set vector component
%
% Q.v = V sets the vector part of the Quaternion object to V (1x3).
qo = q;
if isa(v, 'symfun')
qo.v = v;
else
assert(isvec(v,3), 'SMTB:Quaternion:badarg', 'v must be a real 3-vector');
qo.v = v(:).';
end
end
% function s = get.s(q)
% s = [q.s]';
% end
%
% function v = get.v(q)
% [q.v]
% v = reshape([q.v]', 3, [])';
% end
function display(q)
%Quaternion.display Display quaternion
%
% Q.display() displays a compact string representation of the Quaternion's value
% as a 4-tuple. If Q is a vector then S has one line per element.
%
% Notes::
% - This method is invoked implicitly at the command line when the result
% of an expression is a Quaternion object and the command has no trailing
% semicolon.
% - The vector part is displayed with double brackets << 1, 0, 0 >> to
% distinguish it from a UnitQuaternion which displays as < 1, 0, 0 >
% - If Q is a vector of Quaternion objects the elements are displayed on
% consecutive lines.
%
% See also Quaternion.char.
loose = strcmp( get(0, 'FormatSpacing'), 'loose');
if loose
disp(' ');
end
disp([inputname(1), ' = '])
if loose
disp(' ');
end
disp(char(q))
if loose
disp(' ');
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% QUATERNION FUNCTIONS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function c = conj(q)
%Quaternion.conj Conjugate of a quaternion
%
% Q.conj() is a Quaternion object representing the conjugate of Q.
%
% Notes::
% - Conjugatation is the negation of the vector component.
%
% See also Quaternion.inv.
c = q.new(q.s, -q.v);
end
function qi = inv(q)
%Quaternion.inv Invert a quaternion
%
% Q.inv() is a Quaternion object representing the inverse of Q.
%
% Notes::
% - If Q is a vector then an equal length vector of Quaternion objects
% is computed representing the elementwise inverse of Q.
%
% See also Quaternion.conj.
for i=1:length(q)
n2 = sum( q(i).double.^2 );
qi(i) = Quaternion([q(i).s -q(i).v]/ n2);
end
end
function qu = unit(q)
%Quaternion.unit Unitize a quaternion
%
% QU = Q.unit() is a Quaternion with a norm of 1. If Q is a vector (1xN) then
% QU is also a vector (1xN).
%
% Notes::
% - This is Quaternion of unit norm, not a UnitQuaternion object.
%
% See also Quaternion.norm, UnitQuaternion.
for i=1:length(q)
qu(i) = Quaternion( q(i).double / norm(q(i)) );
end
end
function n = norm(q)
%Quaternion.norm Quaternion magnitude
%
% Q.norm(Q) is the scalar norm or magnitude of the Quaternion Q.
%
% Notes::
% - This is the Euclidean norm of the Quaternion written as a 4-vector.
% - A unit-quaternion has a norm of one and is represented by the
% UnitQuaternion class.
%
% See also Quaternion.inner, Quaternion.unit, UnitQuaternion.
n = colnorm(double(q)')';
end
function m = matrix(q)
%Quaternion.matrix Matrix representation of Quaternion
%
% Q.matrix() is a matrix (4x4) representation of the Quaternion Q.
%
% Quaternion, or Hamilton, multiplication can be implemented as a
% matrix-vector product, where the column-vector is the elements of a
% second quaternion:
%
% matrix(Q1) * double(Q2)'
%
% Notes::
% - This matrix is not unique, other matrices will serve the purpose for
% multiplication, see https://en.wikipedia.org/wiki/Quaternion#Matrix_representations
% - The determinant of the matrix is the norm of the Quaternion to the fourth power.
%
% See also Quaternion.double, Quaternion.mtimes.
m = [q.s -q.v(1) -q.v(2) -q.v(3)
q.v(1) q.s -q.v(3) q.v(2)
q.v(2) q.v(3) q.s -q.v(1)
q.v(3) -q.v(2) q.v(1) q.s];
end
function n = inner(q1, q2)
%Quaternion.inner Quaternion inner product
%
% V = Q1.inner(Q2) is the inner (dot) product of two vectors (1x4),
% comprising the elements of Q1 and Q2 respectively.
%
% Notes::
% - Q1.inner(Q1) is the same as Q1.norm().
%
% See also Quaternion.norm.
n = double(q1)*double(q2)';
end
function out = log(q)
%Quaternion.log Logarithm of quaternion
%
% Q.log() is the logarithm of the Quaternion Q.
%
% See also Quaternion.exp.
assert(norm(q.v) > 20*eps, 'SMTB:Quaternion:log:badarg', 'Can''t compute log of Quaternion with zero length vector component');
out = Quaternion( log(norm(q)), unit(q.v) * acos(q.s/norm(q)) );
end
function out = exp(q)
%Quaternion.log Exponential of quaternion
%
% Q.log() is the logarithm of the Quaternion Q.
%
% See also Quaternion.exp.
assert(norm(q.v) > 20*eps, 'SMTB:Quaternion:exp:badarg', 'Can''t compute exp of Quaternion with zero length vector component');
out = exp(q.s) * Quaternion( cos(norm(q.v)), unit(q.v)*sin(norm(q.v)) );
end
function out = prod(q)
%Quaternion.prod Product of quaternions
%
% prod(Q) is the product of the elements of the vector of Quaternion objects Q.
%
% See also Quaternion.mtimes, RTBPose.prod.
out = q(1);
for qq = q(2:end)
out = out * qq;
end
end
function out = spositive(q)
out = q;
if q.s < 0
out.s = -out.s;
out.v = -out.v;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% ARITHMETIC OPERATORS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function qp = mtimes(q1, q2)
%Quaternion.mtimes Multiply a quaternion object
%
% Q1*Q2 is a Quaternion formed by the Hamilton product of two Quaternions.
% Q*S is the element-wise multiplication of Quaternion elements by the scalar S.
% S*Q is the element-wise multiplication of Quaternion elements by the scalar S.
%
% Notes::
% - Overloaded operator '*'.
% - If either, or both, of Q1 or Q2 are vectors, then the result is a vector.
% - if Q1 is a vector (1xN) then R is a vector (1xN) such that R(i) = Q1(i)*Q2.
% - if Q2 is a vector (1xN) then R is a vector (1xN) such that R(i) = Q1*Q2(i).
% - if both Q1 and Q2 are vectors (1xN) then R is a vector (1xN) such
% that R(i) = Q1(i)*Q2(i).
%
% See also Quaternion.mrdivide, Quaternion.mpower.
if isa(q1, 'Quaternion') && isa(q2, 'Quaternion')
%QQMUL Multiply quaternion by quaternion
%
% QQ = qqmul(Q1, Q2) is the product of two quaternions.
if isa(q1, 'UnitQuaternion') && isa(q2, 'UnitQuaternion')
new = @UnitQuaternion.new;
newclass = 'UnitQuaternion';
else
new = @Quaternion.new;
newclass = 'Quaternion';
end
if all(size(q1) == size(q2))
for i=1:length(q1)
% decompose into scalar and vector components
s1 = q1(i).s; v1 = q1(i).v;
s2 = q2(i).s; v2 = q2(i).v;
% form the product
qp(i) = new([s1*s2-v1*v2.' s1*v2+s2*v1+cross(v1,v2)]);
end
elseif isscalar(q1)
s1 = q1.s; v1 = q1.v;
for i=1:length(q2)
% decompose into scalar and vector components
s2 = q2(i).s; v2 = q2(i).v;
% form the product
qp(i) = new([s1*s2-v1*v2.' s1*v2+s2*v1+cross(v1,v2)]);
end
elseif isscalar(q2)
s2 = q2.s; v2 = q2.v;
for i=1:length(q1)
% decompose into scalar and vector components
s1 = q1(i).s; v1 = q1(i).v;
% form the product
qp(i) = new([s1*s2-v1*v2.' s1*v2+s2*v1+cross(v1,v2)]);
end
else
error('SMTB:Quaternion:badarg', '* operand length/size mismatch');
end
elseif isa(q1, 'Quaternion') && isa(q2, 'double')
%QSMUL Multiply quaternion
%
% Q = qsmul(Q, S) multiply quaternion by real scalar.
%
assert(isscalar(q2), 'SMTB:Quaternion:badarg', 'quaternion-double product: must be a scalar');
for i=1:length(q1)
qp(i) = Quaternion( double(q1(i))*q2);
end
elseif isa(q1, 'double') && isa(q2, 'Quaternion')
%QSMUL Multiply quaternion
%
% Q = qsmul(Q, S) multiply quaternion by real scalar.
%
assert(isscalar(q1), 'SMTB:Quaternion:badarg', 'quaternion-double product: must be a scalar');
for i=1:length(q2)
qp(i) = Quaternion( double(q2(i))*q1);
end
else
error('SMTB:Quaternion:badarg', 'quaternion product: incorrect right hand operand');
end
end
function qq = mrdivide(q1, q2)
%Quaternion.mrdivide Quaternion quotient.
%
% R = Q1/Q2 is a Quaternion formed by Hamilton product of Q1 and inv(Q2).
% R = Q/S is the element-wise division of Quaternion elements by the scalar S.
%
% Notes::
% - Overloaded operator '/'.
% - If either, or both, of Q1 or Q2 are vectors, then the result is a vector.
% - if Q1 is a vector (1xN) then R is a vector (1xN) such that R(i) = Q1(i)./Q2.
% - if Q2 is a vector (1xN) then R is a vector (1xN) such that R(i) = Q1./Q2(i).
% - if both Q1 and Q2 are vectors (1xN) then R is a vector (1xN) such
% that R(i) = Q1(i)./Q2(i).
%
% See also Quaternion.mtimes, Quaternion.mpower, Quaternion.plus, Quaternion.minus.
if isa(q1, 'Quaternion') && isa(q2, 'Quaternion')
%QQDIV Divide quaternion by quaternion
%
% QQ = qqdiv(Q1, Q2) is the quotient of two quaternions.
if length(q1) == length(q2)
for i=1:length(q1)
% form the quotient
qq(i) = q1(i) * inv(q2(i));
end
elseif isscalar(q1)
for i=1:length(q2)
% form the quotient
qq(i) = q1 * inv(q2(i));
end
elseif isscalar(q2)
for i=1:length(q1)
% form the quotient
qq(i) = q1(i) * inv(q2);
end
else
error('SMTB:Quaternion:badarg', '/ operand length mismatch');
end
elseif isa(q1, 'Quaternion') && isa(q2, 'double')
%QSDIV Divide quaternion by scalar
%
% Q = qsdiv(Q, S) divide quaternion by real scalar.
%
assert(isscalar(q2), 'SMTB:Quaternion:badarg', 'quaternion-double quotient: must be a scalar');
for i=1:length(q1)
qq(i) = Quaternion( double(q1(i))/q2);
end
else
error('SMTB:Quaternion:badarg', 'quaternion quotient: incorrect right hand operand');
end
end
function qp = mpower(q, p)
%Quaternion.mpower Raise quaternion to integer power
%
% Q^N is the Quaternion Q raised to the integer power N.
%
% Notes::
% - Overloaded operator '^'.
% - N must be an integer, computed by repeated multiplication.
%
% See also Quaternion.mtimes.
% check that exponent is an integer
assert(p - floor(p) == 0, 'SMTB:Quaternion:badarg', 'quaternion exponent must be integer');
if p == 0
qp = q.new([1 0 0 0]);
else
qp = q;
% multiply by itself so many times
for i = 2:abs(p)
qp = qp * q;
end
% if exponent was negative, invert it
if p<0
qp = inv(qp);
end
end
end
function qp = plus(q1, q2)
%PLUS Add quaternions
%
% Q1+Q2 is a Quaternion formed from the element-wise sum of Quaternion elements.
%
% Q1+V is a Quaternion formed from the element-wise sum of Q1 and the
% vector V (1x4).
%
% Notes::
% - Overloaded operator '+'.
% - Effectively V is promoted to a Quaternion.
%
% See also Quaternion.minus.
if isa(q2, 'Quaternion')
qp = Quaternion(double(q1) + double(q2));
elseif isvec(q2, 4)
qp = Quaternion(q1);
q2 = q2(:)';
qp.s = qp.s + q2(1);
qp.v = qp.v + q2(2:4);
end
end
function qp = minus(q1, q2)
%Quaternion.minus Subtract quaternions
%
% Q1-Q2 is a Quaternion formed from the element-wise difference of Quaternion elements.
%
% Q1-V is a Quaternion formed from the element-wise difference of Q1 and the
% vector V (1x4).
%
% Notes::
% - Overloaded operator '-'.
% - Effectively V is promoted to a Quaternion.
%
% See also Quaternion.plus.
if isa(q2, 'Quaternion')
qp = Quaternion(double(q1) - double(q2));
elseif isvec(q2, 4)
qp = Quaternion(q1);
q2 = q2(:)';
qp.s = qp.s - q2(1);
qp.v = qp.v - q2(2:4);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% RELATIONAL OPERATORS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function e = isequal(q1, q2)
%ISEQUAL Test quaternion element equality
%
% ISEQUAL(Q1,Q2) is true if the Quaternions Q1 and Q2 are equal.
%
% Notes::
% - Used by test suite verifyEqual() in addition to eq().
% - Invokes eq() so respects double mapping for UnitQuaternion.
%
% See also Quaternion.eq.
e = eq(q1, q2);
end
function e = eq(q1, q2)
%EQ Test quaternion equality
%
% Q1 == Q2 is true if the Quaternions Q1 and Q2 are equal.
%
% Notes::
% - Overloaded operator '=='.
% - Equality means elementwise equality of Quaternion elements.
% - If either, or both, of Q1 or Q2 are vectors, then the result is a vector.
% - if Q1 is a vector (1xN) then R is a vector (1xN) such that R(i) = Q1(i)==Q2.
% - if Q2 is a vector (1xN) then R is a vector (1xN) such that R(i) = Q1==Q2(i).
% - if both Q1 and Q2 are vectors (1xN) then R is a vector (1xN) such
% that R(i) = Q1(i)==Q2(i).
%
% See also Quaternion.ne.
if (numel(q1) == 1) && (numel(q2) == 1)
e = sum(abs(q1.double - q2.double)) < 100*eps;
elseif (numel(q1) > 1) && (numel(q2) == 1)
e = zeros(1, numel(q1));
for i=1:numel(q1)
e(i) = q1(i) == q2;
end
elseif (numel(q1) == 1) && (numel(q2) > 1)
e = zeros(1, numel(q2));
for i=1:numel(q2)
e(i) = q2(i) == q1;
end
elseif numel(q1) == numel(q2)
e = zeros(1, numel(q1));
for i=1:numel(q1)
e(i) = q1(i) == q2(i);
end
else
error('SMTB:Quaternion:badarg', 'vectors not of same length');
end
end
function e = ne(q1, q2)
%NE Test quaternion inequality
%
% Q1 ~= Q2 is true if the Quaternions Q1 and Q2 are not equal.
%
% Notes::
% - Overloaded operator '~='.
% - If either, or both, of Q1 or Q2 are vectors, then the result is a vector.
% - if Q1 is a vector (1xN) then R is a vector (1xN) such that R(i) = Q1(i)~=Q2.
% - if Q2 is a vector (1xN) then R is a vector (1xN) such that R(i) = Q1~=Q2(i).
% - if both Q1 and Q2 are vectors (1xN) then R is a vector (1xN) such
% that R(i) = Q1(i)~=Q2(i).
%
% See also Quaternion.eq.
if (numel(q1) == 1) && (numel(q2) == 1)
e = all( ne(q1.double, q2.double) );
elseif (numel(q1) > 1) && (numel(q2) == 1)
e = zeros(1, numel(q1));
for i=1:numel(q1)
e(i) = q1(i) ~= q2;
end
elseif (numel(q1) == 1) && (numel(q2) > 1)
e = zeros(1, numel(q2));
for i=1:numel(q2)
e(i) = q2(i) ~= q1;
end
elseif numel(q1) == numel(q2)
e = zeros(1, numel(q1));
for i=1:numel(q1)
e(i) = q1(i) ~= q2(i);
end
else
error('SMTB:Quaternion:badarg','vectors not of same length');
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% TYPE CONVERSION METHODS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function s = char(q)
%Quaternion.char Convert to string
%
% S = Q.char() is a compact string representation of the Quaternion's value
% as a 4-tuple. If Q is a vector then S has one line per element.
%
% Notes::
% - The vector part is delimited by double angle brackets, to differentiate
% from a UnitQuaternion which is delimited by single angle brackets.
%
% See also UnitQuaternion.char.
if length(q) > 1
s = [];
for qq = q;
if isempty(s)
s = char(qq);
else
s = char(s, char(qq));
end
end
return
end
function s = render(x)
if isnumeric(x)
s = num2str(x);
elseif isa(x, 'sym')
s = char(x);
end
end
s = [render(q.s), ' << ' ...
render(q.v(1)) ', ' render(q.v(2)) ', ' render(q.v(3)) ' >>'];
end
function v = double(q)
%Quaternion.double Convert a quaternion to a 4-element vector
%
% V = Q.double() is a row vector (1x4) comprising the Quaternion elements,
% scalar then vector, ie. V = [s vx vy vz]. If Q is a vector (1xN) of
% Quaternion objects then V is a matrix (Nx4) with rows corresponding to
% the quaternion elements.
%
for i=1:length(q)
v(i,:) = [q(i).s q(i).v];
end
end
end % methods
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% STATIC FACTORY METHODS, ALTERNATIVE CONSTRUCTORS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
methods(Static)
function uq = new(varargin)
%Quaternion.new Construct a new quaternion
%
% QN = Q.new() constructs a new Quaternion object.
%
% QN = Q.new([S, V1, V2, V3]) as above but specified directly by its 4 elements.
%
% QN = Q.new(S, V) as above but specified directly by the scalar S and vector
% part V (1x3)
%
% Notes::
% - Polymorphic with UnitQuaternion and RTBPose derived classes.
uq = Quaternion(varargin{:});
end
function q = pure(v)
%Quaternion.pure Construct a pure quaternion
%
% Q = Quaternion.pure(V) is a pure Quaternion formed from the vector V (1x3) and has
% a zero scalar part.
%
if ~isvec(v)
error('SMTB:Quaternion:badarg', 'must be a 3-vector');
end
q = Quaternion(0, v(:));
end
end % static methods
end