-
Notifications
You must be signed in to change notification settings - Fork 68
/
Copy pathTwist.m
491 lines (445 loc) · 16.6 KB
/
Twist.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
%TWIST SE(2) and SE(3) Twist class
%
% A Twist class holds the parameters of a twist, a representation of a
% rigid body displacement in SE(2) or SE(3).
%
% Methods::
% S twist vector (1x3 or 1x6)
% se twist as (augmented) skew-symmetric matrix (3x3 or 4x4)
% T convert to homogeneous transformation (3x3 or 4x4)
% R convert rotational part to matrix (2x2 or 3x3)
% exp synonym for T
% ad logarithm of adjoint
% pitch pitch of the screw, SE(3) only
% pole a point on the line of the screw
% prod product of a vector of Twists
% theta rotation about the screw
% line Plucker line object representing line of the screw
% display print the Twist parameters in human readable form
% char convert to string
%
% Conversion methods::
% SE convert to SE2 or SE3 object
% double convert to real vector
%
% Overloaded operators::
% * compose two Twists
% * multiply Twist by a scalar
%
% Properties (read only)::
% v moment part of twist (2x1 or 3x1)
% w direction part of twist (1x1 or 3x1)
%
% References::
% - "Mechanics, planning and control"
% Park & Lynch, Cambridge, 2016.
%
% See also trexp, trexp2, trlog.
% Copyright (C) 1993-2019 Peter I. Corke
%
% This file is part of The Spatial Math Toolbox for MATLAB (SMTB).
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, including without limitation the rights
% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
% of the Software, and to permit persons to whom the Software is furnished to do
% so, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in all
% copies or substantial portions of the Software.
%
% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
% FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
% COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
% IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
% CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
%
% https://github.com/petercorke/spatial-math
classdef Twist
properties (SetAccess = protected)
v %axis direction (column vector)
w %moment (column vector)
end
methods
function tw = Twist(T, varargin)
%Twist.Twist Create Twist object
%
% TW = Twist(T) is a Twist object representing the SE(2) or SE(3)
% homogeneous transformation matrix T (3x3 or 4x4).
%
% TW = Twist(V) is a twist object where the vector is specified directly.
%
% 3D CASE::
%
% TW = Twist('R', A, Q) is a Twist object representing rotation about the
% axis of direction A (3x1) and passing through the point Q (3x1).
%
% TW = Twist('R', A, Q, P) as above but with a pitch of P (distance/angle).
%
% TW = Twist('T', A) is a Twist object representing translation in the
% direction of A (3x1).
%
% 2D CASE::
%
% TW = Twist('R', Q) is a Twist object representing rotation about the point Q (2x1).
%
% TW = Twist('T', A) is a Twist object representing translation in the
% direction of A (2x1).
%
% Notes::
% The argument 'P' for prismatic is synonymous with 'T'.
if ischar(T)
% 'P', dir
% 'R', dir, point 3D
% 'R', point 2D
switch upper(T)
case 'R'
if nargin == 2
% 2D case
point = varargin{1};
point = point(:);
v = -cross([0 0 1]', [point; 0]);
w = 1;
v = v(1:2);
else
% 3D case
dir = varargin{1};
if length(dir) < 3
error('SMTB:Twist:badarg', 'For 2d case can only specify position');
end
point = varargin{2};
w = unit(dir(:));
v = -cross(w, point(:));
if nargin >= 4
pitch = varargin{3};
v = v + pitch * w;
end
end
case {'P', 'T'}
dir = varargin{1};
if length(dir) == 2
w = 0;
else
w = [0 0 0]';
end
v = unit(dir(:));
end
if ~isa(v, 'sym')
v(abs(v)<eps) = 0;
end
if ~isa(w, 'sym')
w(abs(w)<eps) = 0;
end
tw.v = v;
tw.w = w;
elseif numrows(T) == numcols(T)
% it's a square matrix
if T(end,end) == 1
% its a homogeneous matrix, take the logarithm
if numcols(T) == 4
S = trlog(T); % use closed form for SE(3)
else
S = logm(T);
end
[skw,v] = tr2rt(S);
tw.v = v;
tw.w = vex(skw);
else
% it's an augmented skew matrix, unpack it
[skw,v] = tr2rt(T);
tw.v = v;
tw.w = vex(skw);
end
elseif isvector(T)
% its a row vector form of twist, unpack it
switch length(T)
case 3
tw.v = T(1:2)'; tw.w = T(3);
case 6
tw.v = T(1:3)'; tw.w = T(4:6)';
otherwise
error('SMTB:Twist:badarg', '3 or 6 element vector expected');
end
end
end
function Su = unit(S)
%Twist.unit Return a unit twist
%
% TW.unit() is a Twist object representing a unit aligned with the Twist
% TW.
if abs(S.w) > 10*eps
% rotational twist
Su = Twist( double(S) / norm(S.w) );
else
% prismatic twist
Su = Twist( [unit(S.v); 0; 0; 0] );
end
end
function x = S(tw)
%Twist.S Return the twist vector
%
% TW.S is the twist vector in se(2) or se(3) as a vector (3x1 or 6x1).
%
% Notes::
% - Sometimes referred to as the twist coordinate vector.
x = [tw.v; tw.w];
end
function x = double(tw)
%Twist.double Return the twist vector
%
% double(TW) is the twist vector in se(2) or se(3) as a vector (3x1 or
% 6x1). If TW is a vector (1xN) of Twists the result is a matrix (6xN) with
% one column per twist.
%
% Notes::
% - Sometimes referred to as the twist coordinate vector.
x = [tw.v; tw.w];
end
function x = se(tw)
%Twist.se Return the twist matrix
%
% TW.se is the twist matrix in se(2) or se(3) which is an augmented
% skew-symmetric matrix (3x3 or 4x4).
%
x = skewa(tw.S);
end
function c = mtimes(a, b)
%Twist.mtimes Multiply twist by twist or scalar
%
% TW1 * TW2 is a new Twist representing the composition of twists TW1 and
% TW2.
%
% TW * T is an SE2 or SE3 that is the composition of the twist TW and the
% homogeneous transformation object T.
%
% TW * S with its twist coordinates scaled by scalar S.
%
% TW * T compounds a twist with an SE2/3 transformation
%
if isa(a, 'Twist')
if isa(b, 'Twist')
% twist composition
c = Twist( a.exp * b.exp);
elseif length(a.v) == 2 && ishomog2(b)
% compose a twist with SE2, result is an SE3
c = SE2(a.T * double(b));
elseif length(a.v) == 3 && ishomog(b)
% compose a twist with SE2, result is an SE3
c = SE3(a.T * double(b));
elseif isa(b, 'SpatialVelocity')
c = SpatialVelocity(a.Ad * b.vw);
elseif isa(b, 'SpatialAcceleration')
c = SpatialAcceleration(a.Ad * b.vw);
elseif isa(b, 'SpatialForce')
c = SpatialForce(a.Ad' * b.vw);
else
error('SMTB:Twist', 'twist * SEn, operands don''t conform');
end
elseif isreal(a) && isa(b, 'Twist')
c = Twist(a * b.S);
elseif isa(a, 'Twist') && isreal(b)
c = Twist(a.S * b);
else
error('SMTB:Twist: incorrect operand types for * operator')
end
end
function x = exp(tw, varargin)
%Twist.exp Convert twist to homogeneous transformation
%
% TW.exp is the homogeneous transformation equivalent to the twist (SE2 or SE3).
%
% TW.exp(THETA) as above but with a rotation of THETA about the twist.
%
% Notes::
% - For the second form the twist must, if rotational, have a unit rotational component.
%
% See also Twist.T, trexp, trexp2.
opt.deg = false;
[opt,args] = tb_optparse(opt, varargin);
if opt.deg && all(tw.w == 0)
warning('Twist: using degree mode for a prismatic twist');
end
if length(args) > 0
theta = args{1};
if opt.deg
theta = theta * pi/180;
end
else
theta = 1;
end
ntheta = length(theta);
assert(length(tw) == ntheta || length(tw) == 1, 'Twist:exp:badarg', 'length of twist vector must be 1 or length of theta vector')
if length(tw(1).v) == 2
x(ntheta) = SE2;
if length(tw) == ntheta
for i=1:ntheta
x(i) = trexp2( tw(i).S * theta(i) );
end
else
for i=1:ntheta
x(i) = trexp2( tw.S * theta(i) );
end
end
else
x(ntheta) = SE3;
if length(tw) == ntheta
for i=1:ntheta
x(i) = trexp( tw(i).S * theta(i) );
end
else
for i=1:ntheta
x(i) = trexp( tw.S * theta(i) );
end
end
end
end
function x = ad(tw)
%Twist.ad Logarithm of adjoint
%
% TW.ad is the logarithm of the adjoint matrix of the corresponding
% homogeneous transformation.
%
% See also SE3.Ad.
x = [ skew(tw.w) skew(tw.v); zeros(3,3) skew(tw.w) ];
end
function x = Ad(tw)
%Twist.Ad Adjoint
%
% TW.Ad is the adjoint matrix of the corresponding
% homogeneous transformation.
%
% See also SE3.Ad.
x = tw.SE.Ad;
end
function out = SE(tw)
%Twist.SE Convert twist to SE2 or SE3 object
%
% TW.SE is an SE2 or SE3 object representing the homogeneous transformation equivalent to the twist.
%
% See also Twist.T, SE2, SE3.
if length(tw.v) == 2
out = SE2( tw.T );
else
out = SE3( tw.T );
end
end
function x = T(tw, varargin)
%Twist.T Convert twist to homogeneous transformation
%
% TW.T is the homogeneous transformation equivalent to the twist (3x3 or 4x4).
%
% TW.T(THETA) as above but with a rotation of THETA about the twist.
%
% Notes::
% - For the second form the twist must, if rotational, have a unit rotational component.
%
% See also Twist.exp, trexp, trexp2, trinterp, trinterp2.
x = double( tw.exp(varargin{:}) );
end
function p = pitch(tw)
%Twist.pitch Pitch of the twist
%
% TW.pitch is the pitch of the Twist as a scalar in units of distance per radian.
%
% Notes::
% - For 3D case only.
if length(tw.v) == 2
p = 0;
else
p = tw.w' * tw.v;
end
end
function L = line(tw)
%Twist.line Line of twist axis in Plucker form
%
% TW.line is a Plucker object representing the line of the twist axis.
%
% Notes::
% - For 3D case only.
%
% See also Plucker.
% V = -tw.v - tw.pitch * tw.w;
for i=1:length(tw)
L(i) = Plucker([ -tw(i).v - tw(i).pitch * tw(i).w; tw(i).w] );
end
end
function out = prod(obj)
%Twist.prod Compound array of twists
%
% TW.prod is a twist representing the product (composition) of the
% successive elements of TW (1xN), an array of Twists.
%
%
% See also RTBPose.prod, Twist.mtimes.
out = obj(1);
for i=2:length(obj)
out = out * obj(i);
end
end
function p = pole(tw)
%Twist.pole Point on the twist axis
%
% TW.pole is a point on the twist axis (2x1 or 3x1).
%
% Notes::
% - For pure translation this point is at infinity.
if length(tw.v) == 2
v = [tw.v; 0];
w = [0 0 tw.w]';
p = cross(w, v) / tw.theta();
p = p(1:2);
else
p = cross(tw.w, tw.v) / tw.theta();
end
end
function th = theta(tw)
%Twist.theta Twist rotation
%
% TW.theta is the rotation (1x1) about the twist axis in radians.
%
th = norm(tw.w);
end
function s = char(tw)
%Twist.char Convert to string
%
% s = TW.char() is a string showing Twist parameters in a compact single line format.
% If TW is a vector of Twist objects return a string with one line per Twist.
%
% See also Twist.display.
s = '';
for i=1:length(tw)
ps = '( ';
ps = [ ps, sprintf('%0.5g ', tw(i).v) ];
ps = [ ps(1:end-2), '; '];
ps = [ ps, sprintf('%0.5g ', tw(i).w) ];
ps = [ ps(1:end-2), ' )'];
if isempty(s)
s = ps;
else
s = char(s, ps);
end
end
end
function display(tw)
%Twist.display Display parameters
%
% L.display() displays the twist parameters in compact single line format. If L is a
% vector of Twist objects displays one line per element.
%
% Notes::
% - This method is invoked implicitly at the command line when the result
% of an expression is a Twist object and the command has no trailing
% semicolon.
%
% See also Twist.char.
loose = strcmp( get(0, 'FormatSpacing'), 'loose');
if loose
disp(' ');
end
disp([inputname(1), ' = '])
disp( char(tw) );
end % display()
end
end