-
Notifications
You must be signed in to change notification settings - Fork 68
/
Copy pathplot_ribbon.m
135 lines (113 loc) · 4.3 KB
/
plot_ribbon.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
%PLOT_RIBBON Draw a wide curved 3D arrow
%
% plot_ribbon() adds a 3D curved arrow "ribbon" to the current plot. The ribbon by
% default is about the z-axis at the origin.
%
% Options::
% 'radius',R radius of the ribbon (default 0.25)
% 'N',N number of points along the ribbon (default 100)
%
% 'd',D ratio of shaft length to total (default 0.9)
% 'w1',W width of shaft (default 0.2)
% 'w2',W width of head (default 0.4)
% 'phi',P length of ribbon as fraction of circle (default 0.8)
% 'phase',P rotate the arrow about its axis (radians, default 0)
%
% 'color',C color as MATLAB ColorSpec (default 'r')
% 'specular',S specularity of surface (default 0.2)
% 'diffuse',D diffusivity of surface (default 0.8)
%
% 'nice' adjust the phase for nicely phased arrow
%
% The parameters of the ribbon are:
%
% ^
% | | \
% | ^ +----------------------| \
% | | | .
% | v +----------------------| /
% | w1 | /
% v <---------- d --------->
% w2 <----------- phi ---------->
%
% Examples::
%
% To draw the ribbon at distance A along the X, Y, Z axes is:
% plot_ribbon2( SE3(A,0,0)*SE3.Ry(pi/2) )
% plot_ribbon2( SE3(0, A,0)*SE3.Rx(pi/2) )
% plot_ribbon2( SE3(0, 0, A) )
% shading interp
% camlight
%
% See also plot_arrow, plot.
% Copyright (C) 1993-2019 Peter I. Corke
%
% This file is part of The Spatial Math Toolbox for MATLAB (SMTB).
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, including without limitation the rights
% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
% of the Software, and to permit persons to whom the Software is furnished to do
% so, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in all
% copies or substantial portions of the Software.
%
% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
% FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
% COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
% IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
% CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
%
% https://github.com/petercorke/spatial-math
% clf
% trplot( SE3 )
function plot_ribbon2(pose, varargin)
opt.radius = 0.25;
opt.N = 100;
opt.d = 0.90;
opt.w1 = 0.2;
opt.w2 = 0.4;
opt.phi = 0.8;
opt.phase = 0;
opt.nice = false;
opt.color = 'r';
opt.specular = 0.2;
opt.diffuse = 0.8;
opt = tb_optparse(opt, varargin);
Nd = floor(opt.N*opt.d);
if opt.nice
% ensure that gap in the ribbon is towards the viewpoint
c = circle([0 0 0], opt.radius, 'n', opt.N);
p = get(gca, 'CameraPosition')';
[~,k] = min( colnorm( pose*c-p ) );
opt.phase = opt.phase + (k - 10) / opt.N * 2*pi;
end
% compute canonic arrow about the z-axis and centered at origin
theta = linspace(0, opt.phi*2*pi, opt.N) + opt.phase + opt.phi*2*pi/2;
% replicate the Nd'th point, this means that
% x(Nd) = x(Nd+1)
% y(Nd) = y(Nd+1)
% which makes the base of the arrowhead normal to the shaft
theta = [theta(1:Nd) theta(Nd) theta(Nd+1:end)];
x = opt.radius * cos(theta);
y = opt.radius * sin(theta);
% compute the width of the arrow, varies along length
T = [0 opt.w1/2; Nd-1 opt.w1/2; Nd opt.w2/2; opt.N-1 0];
z = interp1(T(:,1), T(:,2), [0:opt.N], 'linear');
% build the mesh matrices
X = [x; x];
Y = [y; y];
Z = [-z; z];
z1 = ones(size(Z));
C = cat(3, z1*1, z1*0, z1*0);
hg = hgtransform;
ish = ishold()
hold on
surf(X, Y, Z, C, 'Parent', hg, 'EdgeColor', 'None', 'FaceColor', opt.color, ...
'BackFaceLighting', 'reverselit', 'SpecularStrength', opt.specular, 'DiffuseStrength', opt.diffuse);
hold (ish)
hg.Matrix = pose.T;
end