-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdt_classification_RoBERTa_BERT_final_validation.py
121 lines (95 loc) · 3.97 KB
/
dt_classification_RoBERTa_BERT_final_validation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# Run this with python ./src/dt_classification_RoBERTa_BERT_final_validation.py
from simpletransformers.classification import ClassificationModel
import pandas as pd
import logging
logging.basicConfig(level=logging.INFO)
transformers_logger = logging.getLogger("transformers")
transformers_logger.setLevel(logging.WARNING)
# EXPERIMENT 2020-06-01 12:30
#
# Using RoBERTa-006 and BERT-002 trained models on large validation set:
#
# 10,000 new, unseen, hopefully, "correct" Dutch sentences from nl.wikipedia
#
# 100%|███████| 10000/10000 [00:01<00:00, 6828.97it/s]
# 100%|███████| 1250/1250 [04:35<00:00, 4.54it/s]
# {'mcc': 0.0, 'tp': 0, 'tn': 9998, 'fp': 2, 'fn': 0, 'eval_loss': 0.0010510552614927291}
# [[ 5.208954 -5.6316767]
# [ 4.8714986 -5.3723135]
# [ 5.1642437 -5.710761 ]
# ...
# [ 4.9983373 -5.526781 ]
# [ 5.0196595 -5.548851 ]
# [ 4.6084604 -5.089196 ]]
#
# # Toen De Ruyter uitvoer, was Rupert eerst zeer verheugd.
# 0
# Het is een bundel met documentaire-achtige verhalen over muzikanten en belangrijke Groningse muziekplekken zoals Vera en Het Viadukt.
# 0
# with 100 sentences with on purpose incorrect "dt" mistakes in the trained verbs (worden, zenden, vinden)
#
# with 50 sentences with on purpose incorrect "dt" mistakes in non-trained verbs
#
# with 50 sentences with on purpose spelling mistakes in other words
# Preparing eval data
# Reference 10K sentences that are (hopefully) correct
correct_10K_sentences_file_name = "./data/correct-sentences-nlwiki-10K.txt"
incorrect_dt_on_trained_verbs_file_name = "./data/incorrect_dt_on_trained_verbs.txt"
incorrect_dt_on_untrained_verbs_file_name = "./data/incorrect_dt_on_untrained_verbs.txt"
incorrect_other_mistakes_file_name = "./data/incorrect_other_mistakes.txt"
CORRECT_LABEL = 0
INCORRECT_LABEL = 1
correct_data = []
with open(correct_10K_sentences_file_name, 'r') as sentences_file:
for line in sentences_file:
clean_line = line.rstrip()
correct_data.append([clean_line, CORRECT_LABEL])
print(correct_data[0])
print(correct_data[1])
incorrect_dt_on_trained_verbs = []
with open(incorrect_dt_on_trained_verbs_file_name, 'r') as sentences_file:
for line in sentences_file:
clean_line = line.rstrip()
incorrect_dt_on_trained_verbs.append([clean_line, INCORRECT_LABEL])
print(incorrect_dt_on_trained_verbs[0])
print(incorrect_dt_on_trained_verbs[1])
incorrect_dt_on_untrained_verbs = []
with open(incorrect_dt_on_untrained_verbs_file_name, 'r') as sentences_file:
for line in sentences_file:
clean_line = line.rstrip()
incorrect_dt_on_untrained_verbs.append([clean_line, INCORRECT_LABEL])
print(incorrect_dt_on_untrained_verbs[0])
print(incorrect_dt_on_untrained_verbs[1])
incorrect_other_mistakes = []
with open(incorrect_other_mistakes_file_name, 'r') as sentences_file:
for line in sentences_file:
clean_line = line.rstrip()
incorrect_other_mistakes.append([clean_line, INCORRECT_LABEL])
print(incorrect_other_mistakes[0])
print(incorrect_other_mistakes[1])
eval_data = correct_data + \
incorrect_dt_on_trained_verbs + \
incorrect_dt_on_untrained_verbs + \
incorrect_other_mistakes
eval_df = pd.DataFrame(eval_data)
eval_df.columns = ["text", "labels"]
# Optional model configuration
model_args = {
"overwrite_output_dir": 0, # we are moving the dir to a named dir now
"output_dir": "outputs/BERT",
"eval_batch_size": 100,
}
# Create a ClassificationModel
model = ClassificationModel(
"bert", "outputs/BERT-002", args=model_args, use_cuda=True,
# "roberta", "outputs/RoBERTa-006", args=model_args, use_cuda=True,
)
print(type(model))
# <class 'simpletransformers.classification.classification_model.ClassificationModel'>
# Evaluate the model
result, model_outputs, wrong_predictions = model.eval_model(eval_df)
print(model_outputs) # see above
# Print the incorrect predictions
for wrong_prediction in wrong_predictions:
print(wrong_prediction.text_a)
print(wrong_prediction.label)