- #3447: Remove unused FuzzyTM dependency, handle ImportError, by @mpenkov
- #3441: Fix changed calculation of cosine distance in Annoy wrapper, by @monash849
- #3443: Sanity check for
hs
andnegative
in Word2Vec, by @gau-nernst
- Added support for Python 3.11 and drop support for Python 3.7 (acul3, #3402)
- Added a new model: Flsamodel (ERijck, #3398)
- Fixed bug in loss computation for Word2Vec with hierarchical softmax (TalIfargan, #3397)
- Patch Coherence Model to correctly handle empty documents (PrimozGodec, #3406)
- Fixed bug that prevents loading old models (funasshi, #3359)
- Fixed deprecation warning from pytest (martino-vic, #3354)
- Fixed FastTextKeyedVectors handling in add_vector (globba, #3389)
- Fixed typo in word2vec and KeyedVectors docstrings (dymil, #3365)
- Fix backwards compatibility bug in Word2Vec, (@mpenkov, #3415)
- Fix numpy hack in setup.py, by (@mpenkov, #3416)
- Clarified runtime expectations (gojomo, #3381)
- Copyedit and fix outdated statements in translation matrix tutorial (dymil, #3375)
- Disabled the Gensim 3=>4 warning in docs (piskvorky, #3346)
- Fixed the broken link in readme.md (aswin2108, #3409)
- Giving missing credit in EnsembleLDA to Alex in docs (sezanzeb, #3393)
- Switched to Cython language level 3 (pabs3, #3344)
- Declare variables prior to for loop in fastss.pyx for ANSI C compatibility (hstk30, #3378)
- Implement numpy hack in setup.py to enable install under Poetry (jaymegordo, #3363)
- Replaceed np.multiply with np.square and copyedit in translation_matrix.py (dymil, #3374)
- Clean up references to
Morfessor
,tox
andgensim.models.wrappers
(pabs3, #3345) - Pinned sphinx versions, add explicit gallery_top label (mpenkov, #3383)
- Updated Python module MANIFEST (pabs3, #3343)
- Refactored wheel building and testing workflow (mpenkov, #3410)
- #3188: Add get_sentence_vector() to FastText and get_mean_vector() to KeyedVectors, by @rock420
- #3194: Added random_seed parameter to make LsiModel reproducible, by @parashardhapola
- #3247: Sparse2Corpus: update getitem to work on slices, lists and ellipsis, by @PrimozGodec
- #3264: Detect when a fasttext executable is available in PATH, by @pabs3
- #3271: Added new ValueError in place of assertion error for no model data provided in lsi model, by @mark-todd
- #3299: Enable test_word2vec_stand_alone_script by using sys.executable for python, by @pabs3
- #3317: Added
encoding
parameter to TextDirectoryCorpus, by @Sandman-Ren - #2656: Streamlining most_similar_cosmul and evaluate_word_analogies, by @n3hrox
- #3227: Fix FastText doc-comment example for
build_vocab
andtrain
to use correct argument names, by @HLasse - #3235: Fix TFIDF docs, by @piskvorky
- #3257: Dictionary doc: ref FAQ entry about filter_extremes corpus migration, by @zacchiro
- #3279: Add the FastSS and Levenshtein modules to docs, by @piskvorky
- #3284: Documentation fixes + added CITATION.cff, by @piskvorky
- #3289: Typos, text and code fix in LDA tutorial, by @davebulaval
- #3301: Remove unused Jupyter screenshots, by @pabs3
- #3307: Documentation fixes, by @piskvorky
- #3339: Fix parsing error in FastText docs, by @MattYoon
- #3251: Apply new convention of delimiting instance params in str function, by @menshikh-iv
- #3117: Ensure next_index available when loading old stored KeyedVectors models, by @gojomo
- #3182: Fix error message when Doc2Vec does not receive corpus_file or corpus iterable, by @blainedietrich
- #3190: Fix broken external link for LDA implementation, by @ahaya3776
- #3197: Fix computation of topic coherence, by @silviatti
- #3250: Make negative ns_exponent work correctly, by @menshikh-iv
- #3282: Fix
str()
method in WmdSimilarity, by @DingQK - #3286: Fixes 'not enough arguments for format string' error, by @gilbertfrancois
- #3309: Respect encoding when reading binary keyed vectors, by @alhoo
- #3332: Missing
f
prefix on f-strings fix, by @code-review-doctor
- #3230: Adding lifecycle configuration, by @mpenkov
- #3252: Add Codecov to gensim repo, by @menshikh-iv
- #3255: Move windows tests from azure to github actions, by @menshikh-iv
- #3263: Remove commented out pytest-rerunfailures test dependency, by @pabs3
- #3274: Migrate setup.py from distutils to setuptools, by @geojacobm6
- #3298: test and build wheels for Py3.{7,8,9,10}, by @mpenkov
- #3300: Fix code formatting for FT_CMD definition, by @pabs3
- #3303: add GitHub URL for PyPi, by @andriyor
- #3308: get rid of tox, build things via github actions directly, by @mpenkov
- #3318: Clean up evaluate_word_pairs code, by @piskvorky
- #3329: Check gallery up to date as part of CI, by @mpenkov
- #3254: Skip blinking test
test_translate_gc
on OSX + py3.9, by @menshikh-iv - #3258: Adding another check to _check_corpus_sanity for compressed files, adding test, by @dchaplinsky
- #3278: Tighten test_parallel bound, by @austereantelope
- #3280: tighten test_topic_word, by @austereantelope
- #3281: adjust test_parallel bound, by @austereantelope
- #3297: Use gensim.test.utils datapath() to construct paths to the test data, by @pabs3
This is a bugfix release that addresses left over compatibility issues with older versions of numpy and MacOS.
This is a bugfix release that addresses compatibility issues with older versions of numpy.
Gensim 4.1 brings two major new functionalities:
- Ensemble LDA for robust training, selection and comparison of LDA models.
- FastSS module for super fast Levenshtein "fuzzy search" queries. Used e.g. for "soft term similarity" calculations.
There are several minor changes that are not backwards compatible with previous versions of Gensim. The affected functionality is relatively less used, so it is unlikely to affect most users, so we have opted to not require a major version bump. Nevertheless, we describe them below.
We now handle both positive
and negative
keyword parameters consistently.
They may now be either:
- A string, in which case the value is reinterpreted as a list of one element (the string value)
- A vector, in which case the value is reinterpreted as a list of one element (the vector)
- A list of strings
- A list of vectors
So you can now simply do:
model.most_similar(positive='war', negative='peace')
instead of the slightly more involved
model.most_similar(positive=['war'], negative=['peace'])
Both invocations remain correct, so you can use whichever is most convenient. If you were somehow expecting gensim to interpret the strings as a list of characters, e.g.
model.most_similar(positive=['w', 'a', 'r'], negative=['p', 'e', 'a', 'c', 'e'])
then you will need to specify the lists explicitly in gensim 4.1.
With the newer version, do this:
model.infer_vector(..., epochs=123)
instead of this:
model.infer_vector(..., steps=123)
Plus a large number of smaller improvements and fixes, as usual.
- #3169: Implement
shrink_windows
argument for Word2Vec, by @M-Demay - #3163: Optimize word mover distance (WMD) computation, by @flowlight0
- #3157: New KeyedVectors.vectors_for_all method for vectorizing all words in a dictionary, by @Witiko
- #3153: Vectorize word2vec.predict_output_word for speed, by @M-Demay
- #3146: Use FastSS for fast kNN over Levenshtein distance, by @Witiko
- #3128: Materialize and copy the corpus passed to SoftCosineSimilarity, by @Witiko
- #3115: Make LSI dispatcher CLI param for number of jobs optional, by @robguinness
- #3091: LsiModel: Only log top words that actually exist in the dictionary, by @kmurphy4
- #2980: Added EnsembleLda for stable LDA topics, by @sezanzeb
- #2978: Optimize performance of Author-Topic model, by @horpto
- #3000: Tidy up KeyedVectors.most_similar() API, by @simonwiles
- #3155: Correct parameter name in documentation of fasttext.py, by @bizzyvinci
- #3148: Fix broken link to mycorpus.txt in documentation, by @rohit901
- #3142: Use more permanent pdf link and update code link, by @dymil
- #3141: Update link for online LDA paper, by @dymil
- #3133: Update link to Hoffman paper (online VB LDA), by @jonaschn
- #3129: Add bronze sponsor: TechTarget, by @piskvorky
- #3126: Fix typos in make_wiki_online.py and make_wikicorpus.py, by @nicolasassi
- #3125: Improve & unify docs for dirichlet priors, by @jonaschn
- #3123: Fix hyperlink for doc2vec tutorial, by @AdityaSoni19031997
- #3121: Add bronze sponsor: eaccidents.com, by @piskvorky
- #3120: Fix URL for ldamodel.py, by @jonaschn
- #3118: Fix URL in doc string, by @jonaschn
- #3107: Draw attention to sponsoring in README, by @piskvorky
- #3105: Fix documentation links: Travis to Github Actions, by @piskvorky
- #3057: Clarify doc comment in LdaModel.inference(), by @yocen
- #2964: Document that preprocessing.strip_punctuation is limited to ASCII, by @sciatro
- #3178: Fix Unicode string incompatibility in gensim.similarities.fastss.editdist, by @Witiko
- #3174: Fix loading Phraser models stored in Gensim 3.x into Gensim 4.0, by @emgucv
- #3136: Fix indexing error in word2vec_inner.pyx, by @bluekura
- #3131: Add missing import to NMF docs and models/init.py, by @properGrammar
- #3116: Fix bug where saved Phrases model did not load its connector_words, by @aloknayak29
- #2830: Fixed KeyError in coherence model, by @pietrotrope
- #3176: Eliminate obsolete step parameter from doc2vec infer_vector and similarity_unseen_docs, by @rock420
- #2965: Remove strip_punctuation2 alias of strip_punctuation, by @sciatro
- #3180: Move preprocessing functions from gensim.corpora.textcorpus and gensim.corpora.lowcorpus to gensim.parsing.preprocessing, by @rock420
- #3156: Update Numpy minimum version to 1.17.0, by @PrimozGodec
- #3143: replace _mul function with explicit casts, by @mpenkov
- #2952: Allow newer versions of the Morfessor module for the tests, by @pabs3
- #2965: Remove strip_punctuation2 alias of strip_punctuation, by @sciatro
Bugfix release to address issues with Wheels on Windows:
Gensim 4.0 is a major release with lots of performance & robustness improvements, and a new website.
-
Massively optimized popular algorithms the community has grown to love: fastText, word2vec, doc2vec, phrases:
a. Efficiency
model 3.8.3: wall time / peak RAM / throughput 4.0.0: wall time / peak RAM / throughput fastText 2.9h / 4.11 GB / 822k words/s 2.3h / 1.26 GB / 914k words/s word2vec 1.7h / 0.36 GB / 1685k words/s 1.2h / 0.33 GB / 1762k words/s In other words, fastText now needs 3x less RAM (and is faster); word2vec has 2x faster init (and needs less RAM, and is faster); detecting collocation phrases is 2x faster. (4.0 benchmarks)
b. Robustness. We fixed a bunch of long-standing bugs by refactoring the internal code structure (see 🔴 Bug fixes below)
c. Simplified OOP model for easier model exports and integration with TensorFlow, PyTorch &co.
These improvements come to you transparently aka "for free", but see Migration guide for some changes that break the old Gensim 3.x API. Update your code accordingly.
-
Dropped a bunch of externally contributed modules and wrappers: summarization, pivoted TFIDF, Mallet…
-
Code quality was not up to our standards. Also there was no one to maintain these modules, answer user questions, support them.
So rather than let them rot, we took the hard decision of removing these contributed modules from Gensim. If anyone's interested in maintaining them, please fork & publish into your own repo. They can live happily outside of Gensim.
-
-
Dropped Python 2. Gensim 4.0 is Py3.6+. Read our Python version support policy.
- If you still need Python 2 for some reason, stay at Gensim 3.8.3.
-
A new Gensim website – finally! 🙃
So, a major clean-up release overall. We're happy with this tighter, leaner and faster Gensim.
This is the direction we'll keep going forward: less kitchen-sink of "latest academic algorithms", more focus on robust engineering, targetting concrete NLP & document similarity use-cases.
- #2947: Bump minimum Python version to 3.6, by @gojomo
- #2300: Use less RAM in LdaMulticore, by @horpto
- #2698: Streamline KeyedVectors & X2Vec API, by @gojomo
- #2864: Speed up random number generation in word2vec, by @zygm0nt
- #2976: Speed up phrase (collocation) detection, by @piskvorky
- #2979: Allow skipping common English words in multi-word phrases, by @piskvorky
- #2867: Expose
max_final_vocab
parameter in fastText constructor, by @mpenkov - #2931: Clear up job queue parameters in word2vec, by @lunastera
- #2939: X2Vec SaveLoad improvements, by @piskvorky
- #3060: Record lifecycle events in Gensim models, by @piskvorky
- #3073: Make WMD normalization optional, by @piskvorky
- #3065: Default to pickle protocol 4 when saving models, by @piskvorky
- #3069: Add Github sponsor + donation nags, by @piskvorky
- #3082: Make LDA tutorial read NIPS data on the fly, by @jonaschn
- #2954: New theme for the Gensin website, by @dvorakvaclav
- #2960: Added Gensim and Compatibility Wiki page, by @piskvorky
- #2960: Reworked & simplified the Developer Wiki page, by @piskvorky
- #2968: Migrate tutorials & how-tos to 4.0.0, by @piskvorky
- #2899: Clean up of language and formatting of docstrings, by @piskvorky
- #2899: Added documentation for NMSLIB indexer, by @piskvorky
- #2832: Clear up LdaModel documentation, by @FyzHsn
- #2871: Clarify that license is LGPL-2.1, by @pombredanne
- #2896: Make docs clearer on
alpha
parameter in LDA model, by @xh2 - #2897: Update Hoffman paper link for Online LDA, by @xh2
- #2910: Refresh docs for run_annoy tutorial, by @piskvorky
- #2935: Fix "generator" language in word2vec docs, by @polm
- #3077: Fix various documentation warnings, by @mpenkov
- #2991: Fix broken link in run_doc How-To, by @sezanzeb
- #3003: Point WordEmbeddingSimilarityIndex documentation to gensim.similarities, by @Witiko
- #2996: Make the website link to the old Gensim 3.8.3 documentation dynamic, by @Witiko
- #3063: Update link to papers in LSI model, by @jonaschn
- #3080: Fix some of the warnings/deprecated functions, by @FredHappyface)
- #2891: Fix fastText word-vectors with ngrams off, by @gojomo
- #2907: Fix doc2vec crash for large sets of doc-vectors, by @gojomo
- #2899: Fix similarity bug in NMSLIB indexer, by @piskvorky
- #2899: Fix deprecation warnings in Annoy integration, by @piskvorky
- #2901: Fix inheritance of WikiCorpus from TextCorpus, by @jenishah
- #2940: Fix deprecations in SoftCosineSimilarity, by @Witiko
- #2944: Fix
save_facebook_model
failure after update-vocab & other initialization streamlining, by @gojomo - #2846: Fix for Python 3.9/3.10: remove
xml.etree.cElementTree
, by @hugovk - #2973: phrases.export_phrases() doesn't yield all bigrams, by @piskvorky
- #2942: Segfault when training doc2vec, by @gojomo
- #3041: Fix RuntimeError in export_phrases (change defaultdict to dict), by @thalishsajeed
- #3059: Fix race condition in FastText tests, by @sleepy-owl
- Removed all code, methods, attributes and functions marked as deprecated in Gensim 3.8.3.
- #6: No more binary wheels for x32 platforms, by @menshikh-iv
- #2899: Renamed overly broad
similarities.index
to the more appropriatesimilarities.annoy
, by @piskvorky - #2958: Remove gensim.summarization subpackage, docs and test data, by @mpenkov
- #2926: Rename
num_words
totopn
in dtm_coherence, by @MeganStodel - #2937: Remove Keras dependency, by @piskvorky
- #3078: Remove
on_batch_begin
andon_batch_end
callbacks, by @mpenkov - #3012: Remove
pattern
dependency, by @mpenkov - #3055: Remove
gensim.viz
subpackage, by @mpenkov
- #2939 + #2984: Code style & py3 migration clean up, by @piskvorky
- #3058: Add py39 wheels to Travis/Azure, by @FredHappyface
- #3035: Update repos before trying to install gdb, by @janaknat
- #3026: Move x86 tests from Travis to GHA, add aarch64 wheel build to Travis, by @janaknat
- #3033: Transformed camelCase to snake_case test names, by @sezanzeb
- #3024: Add Github Actions x86 and mac jobs to build python wheels, by @janaknat
Gensim 4.0 is a major release with lots of performance & robustness improvements and a new website.
-
Massively optimized popular algorithms the community has grown to love: fastText, word2vec, doc2vec, phrases:
a. Efficiency
model 3.8.3: wall time / peak RAM / throughput 4.0.0: wall time / peak RAM / throughput fastText 2.9h / 4.11 GB / 822k words/s 2.3h / 1.26 GB / 914k words/s word2vec 1.7h / 0.36 GB / 1685k words/s 1.2h / 0.33 GB / 1762k words/s In other words, fastText now needs 3x less RAM (and is faster); word2vec has 2x faster init (and needs less RAM, and is faster); detecting collocation phrases is 2x faster. (4.0 benchmarks)
b. Robustness. We fixed a bunch of long-standing bugs by refactoring the internal code structure (see 🔴 Bug fixes below)
c. Simplified OOP model for easier model exports and integration with TensorFlow, PyTorch &co.
These improvements come to you transparently aka "for free", but see Migration guide for some changes that break the old Gensim 3.x API. Update your code accordingly.
-
Dropped a bunch of externally contributed modules: summarization, pivoted TFIDF normalization, FIXME.
-
Code quality was not up to our standards. Also there was no one to maintain them, answer user questions, support these modules.
So rather than let them rot, we took the hard decision of removing these contributed modules from Gensim. If anyone's interested in maintaining them please fork into your own repo, they can live happily outside of Gensim.
-
-
Dropped Python 2. Gensim 4.0 is Py3.6+. Read our Python version support policy.
- If you still need Python 2 for some reason, stay at Gensim 3.8.3.
-
A new Gensim website – finally! 🙃
So, a major clean-up release overall. We're happy with this tighter, leaner and faster Gensim.
This is the direction we'll keep going forward: less kitchen-sink of "latest academic algorithms", more focus on robust engineering, targetting common concrete NLP & document similarity use-cases.
- Default to pickle protocol 4 when saving models (piskvorky, #3065)
- Record lifecycle events in Gensim models (piskvorky, #3060)
- Make WMD normalization optional (piskvorky, #3073)
- fix RuntimeError in export_phrases (change defaultdict to dict) (thalishsajeed, #3041)
- fix various documentation warnings (mpenkov, #3077)
- Fix broken link in run_doc how-to (sezanzeb, #2991)
- Point WordEmbeddingSimilarityIndex documentation to gensim.similarities (Witiko, #3003)
- Make the link to the Gensim 3.8.3 documentation dynamic (Witiko, #2996)
- remove on_batch_begin and on_batch_end callbacks (mpenkov, #3078)
- remove pattern dependency (mpenkov, #3012)
- rm gensim.viz submodule (mpenkov, #3055)
- [MRG] Add Github sponsor + donation nags (piskvorky, #3069)
- Update URLs (jonaschn, #3063)
- Fix race condition in FastText tests (sleepy-owl, #3059)
- Add py39 wheels to travis/azure (FredHappyface, #3058)
- Update repos before trying to install gdb (janaknat, #3035)
- transformed camelCase to snake_case test names (sezanzeb, #3033)
- move x86 tests from Travis to GHA, add aarch64 wheel build to Travis (janaknat, #3026)
- Add Github Actions x86 and mac jobs to build python wheels (janaknat, #3024)
Gensim 4.0 is a major release with lots of performance & robustness improvements and a new website.
-
Massively optimized popular algorithms the community has grown to love: fastText, word2vec, doc2vec, phrases:
a. Efficiency
model 3.8.3: wall time / peak RAM / throughput 4.0.0: wall time / peak RAM / throughput fastText 2.9h / 4.11 GB / 822k words/s 2.3h / 1.26 GB / 914k words/s word2vec 1.7h / 0.36 GB / 1685k words/s 1.2h / 0.33 GB / 1762k words/s In other words, fastText now needs 3x less RAM (and is faster); word2vec has 2x faster init (and needs less RAM, and is faster); detecting collocation phrases is 2x faster. (4.0 benchmarks)
b. Robustness. We fixed a bunch of long-standing bugs by refactoring the internal code structure (see 🔴 Bug fixes below)
c. Simplified OOP model for easier model exports and integration with TensorFlow, PyTorch &co.
These improvements come to you transparently aka "for free", but see Migration guide for some changes that break the old Gensim 3.x API. Update your code accordingly.
-
Dropped a bunch of externally contributed modules: summarization, pivoted TFIDF normalization, FIXME.
-
Code quality was not up to our standards. Also there was no one to maintain them, answer user questions, support these modules.
So rather than let them rot, we took the hard decision of removing these contributed modules from Gensim. If anyone's interested in maintaining them please fork into your own repo, they can live happily outside of Gensim.
-
-
Dropped Python 2. Gensim 4.0 is Py3.6+. Read our Python version support policy.
- If you still need Python 2 for some reason, stay at Gensim 3.8.3.
-
A new Gensim website – finally! 🙃
So, a major clean-up release overall. We're happy with this tighter, leaner and faster Gensim.
This is the direction we'll keep going forward: less kitchen-sink of "latest academic algorithms", more focus on robust engineering, targetting common concrete NLP & document similarity use-cases.
This 4.0.0beta pre-release is for users who want the cutting edge performance and bug fixes. Plus users who want to help out, by testing and providing feedback: code, documentation, workflows… Please let us know on the mailing list!
Install the pre-release with:
pip install --pre --upgrade gensim
Production stability is important to Gensim, so we're improving the process of upgrading already-trained saved models. There'll be an explicit model upgrade script between each 4.n
to 4.(n+1)
Gensim release. Check progress here.
- #2947: Bump minimum Python version to 3.6, by @gojomo
- #2939 + #2984: Code style & py3 migration clean up, by @piskvorky
- #2300: Use less RAM in LdaMulticore, by @horpto
- #2698: Streamline KeyedVectors & X2Vec API, by @gojomo
- #2864: Speed up random number generation in word2vec, by @zygm0nt
- #2976: Speed up phrase (collocation) detection, by @piskvorky
- #2979: Allow skipping common English words in multi-word phrases, by @piskvorky
- #2867: Expose
max_final_vocab
parameter in fastText constructor, by @mpenkov - #2931: Clear up job queue parameters in word2vec, by @lunastera
- #2939: X2Vec SaveLoad improvements, by @piskvorky
- #2954: New theme for the Gensin website, @dvorakvaclav
- #2960: Added Gensim and Compatibility Wiki page, by @piskvorky
- #2960: Reworked & simplified the Developer Wiki page, by @piskvorky
- #2968: Migrate tutorials & how-tos to 4.0.0, by @piskvorky
- #2899: Clean up of language and formatting of docstrings, by @piskvorky
- #2899: Added documentation for NMSLIB indexer, by @piskvorky
- #2832: Clear up LdaModel documentation by @FyzHsn
- #2871: Clarify that license is LGPL-2.1, by @pombredanne
- #2896: Make docs clearer on
alpha
parameter in LDA model, by @xh2 - #2897: Update Hoffman paper link for Online LDA, by @xh2
- #2910: Refresh docs for run_annoy tutorial, by @piskvorky
- #2935: Fix "generator" language in word2vec docs, by @polm
- #2891: Fix fastText word-vectors with ngrams off, by @gojomo
- #2907: Fix doc2vec crash for large sets of doc-vectors, by @gojomo
- #2899: Fix similarity bug in NMSLIB indexer, by @piskvorky
- #2899: Fix deprecation warnings in Annoy integration, by @piskvorky
- #2901: Fix inheritance of WikiCorpus from TextCorpus, by @jenishah
- #2940; Fix deprecations in SoftCosineSimilarity, by @Witiko
- #2944: Fix
save_facebook_model
failure after update-vocab & other initialization streamlining, by @gojomo - #2846: Fix for Python 3.9/3.10: remove
xml.etree.cElementTree
, by @hugovk - #2973: phrases.export_phrases() doesn't yield all bigrams
- #2942: Segfault when training doc2vec
- #6: No more binary wheels for x32 platforms, by menshikh-iv
- #2899: Renamed overly broad
similarities.index
to the more appropriatesimilarities.annoy
, by @piskvorky - #2958: Remove gensim.summarization subpackage, docs and test data, by @mpenkov
- #2926: Rename
num_words
totopn
in dtm_coherence, by @MeganStodel - #2937: Remove Keras dependency, by @piskvorky
- Removed all code, methods, attributes and functions marked as deprecated in Gensim 3.8.3.
- Removed pattern dependency (PR #3012, @mpenkov). If you need to lemmatize, do it prior to passing the corpus to gensim.
This is primarily a bugfix release to bring back Py2.7 compatibility to gensim 3.8.
- Bring back Py27 support (PR #2812, @mpenkov)
- Fix wrong version reported by setup.py (Issue #2796)
- Fix missing C extensions (Issues #2794 and #2802)
- Wheels for Python 3.8 (@menshikh-iv)
- Prepare for removal of deprecated
lxml.etree.cElementTree
(PR #2777, @tirkarthi)
- Update test instructions in README (PR #2814, @piskvorky)
-
Remove
gensim.models.FastText.load_fasttext_format
: use load_facebook_vectors to load embeddings only (faster, less CPU/memory usage, does not support training continuation) and load_facebook_model to load full model (slower, more CPU/memory intensive, supports training continuation)gensim.models.wrappers.fasttext
(obsoleted by the new nativegensim.models.fasttext
implementation)gensim.examples
gensim.nosy
gensim.scripts.word2vec_standalone
gensim.scripts.make_wiki_lemma
gensim.scripts.make_wiki_online
gensim.scripts.make_wiki_online_lemma
gensim.scripts.make_wiki_online_nodebug
gensim.scripts.make_wiki
(all of these obsoleted by the new nativegensim.scripts.segment_wiki
implementation)- "deprecated" functions and attributes
-
Move
gensim.scripts.make_wikicorpus
➡gensim.scripts.make_wiki.py
gensim.summarization
➡gensim.models.summarization
gensim.topic_coherence
➡gensim.models._coherence
gensim.utils
➡gensim.utils.utils
(old imports will continue to work)gensim.parsing.*
➡gensim.utils.text_utils
- Pin
smart_open
version for compatibility with Py2.7
-
Remove
gensim.models.FastText.load_fasttext_format
: use load_facebook_vectors to load embeddings only (faster, less CPU/memory usage, does not support training continuation) and load_facebook_model to load full model (slower, more CPU/memory intensive, supports training continuation)gensim.models.wrappers.fasttext
(obsoleted by the new nativegensim.models.fasttext
implementation)gensim.examples
gensim.nosy
gensim.scripts.word2vec_standalone
gensim.scripts.make_wiki_lemma
gensim.scripts.make_wiki_online
gensim.scripts.make_wiki_online_lemma
gensim.scripts.make_wiki_online_nodebug
gensim.scripts.make_wiki
(all of these obsoleted by the new nativegensim.scripts.segment_wiki
implementation)- "deprecated" functions and attributes
-
Move
gensim.scripts.make_wikicorpus
➡gensim.scripts.make_wiki.py
gensim.summarization
➡gensim.models.summarization
gensim.topic_coherence
➡gensim.models._coherence
gensim.utils
➡gensim.utils.utils
(old imports will continue to work)gensim.parsing.*
➡gensim.utils.text_utils
- Fix usage of base_dir instead of BASE_DIR in _load_info in downloader. (movb, #2605)
- Update the version of smart_open in the setup.py file (AMR-KELEG, #2582)
- Properly handle unicode_errors arg parameter when loading a vocab file (wmtzk, #2570)
- Catch loading older TfidfModels without smartirs (bnomis, #2559)
- Fix bug where a module import set up logging, pin doctools for Py2 (piskvorky, #2552)
-
Remove
gensim.models.FastText.load_fasttext_format
: use load_facebook_vectors to load embeddings only (faster, less CPU/memory usage, does not support training continuation) and load_facebook_model to load full model (slower, more CPU/memory intensive, supports training continuation)gensim.models.wrappers.fasttext
(obsoleted by the new nativegensim.models.fasttext
implementation)gensim.examples
gensim.nosy
gensim.scripts.word2vec_standalone
gensim.scripts.make_wiki_lemma
gensim.scripts.make_wiki_online
gensim.scripts.make_wiki_online_lemma
gensim.scripts.make_wiki_online_nodebug
gensim.scripts.make_wiki
(all of these obsoleted by the new nativegensim.scripts.segment_wiki
implementation)- "deprecated" functions and attributes
-
Move
gensim.scripts.make_wikicorpus
➡gensim.scripts.make_wiki.py
gensim.summarization
➡gensim.models.summarization
gensim.topic_coherence
➡gensim.models._coherence
gensim.utils
➡gensim.utils.utils
(old imports will continue to work)gensim.parsing.*
➡gensim.utils.text_utils
- Enable online training of Poincare models (koiizukag, #2505)
- Make BM25 more scalable by adding support for generator inputs (saraswatmks, #2479)
- Allow the Gensim dataset / pre-trained model downloader
gensim.downloader
to run offline, by introducing a local file cache (mpenkov, #2545) - Make the
gensim.downloader
target directory configurable (mpenkov, #2456) - Add
nmslib
indexer (masa3141, #2417)
- Fix
smart_open
deprecation warning globally (itayB, #2530) - Fix AppVeyor issues with Windows and Py2 (mpenkov, #2546)
- Fix
topn=0
versustopn=None
bug inmost_similar
, accepttopn
of any integer type (Witiko, #2497) - Fix Python version check (charsyam, #2547)
- Fix typo in FastText documentation (Guitaricet, #2518)
- Fix "Market Matrix" to "Matrix Market" typo. (Shooter23, #2513)
- Fix auto-generated hyperlinks in
CHANGELOG.md
(mpenkov, #2482)
- Generate documentation for the
gensim.similarities.termsim
module (Witiko, #2485) - Simplify the
Support
section in README (piskvorky, #2542)
-
Remove
gensim.models.FastText.load_fasttext_format
: use load_facebook_vectors to load embeddings only (faster, less CPU/memory usage, does not support training continuation) and load_facebook_model to load full model (slower, more CPU/memory intensive, supports training continuation)gensim.models.wrappers.fasttext
(obsoleted by the new nativegensim.models.fasttext
implementation)gensim.examples
gensim.nosy
gensim.scripts.word2vec_standalone
gensim.scripts.make_wiki_lemma
gensim.scripts.make_wiki_online
gensim.scripts.make_wiki_online_lemma
gensim.scripts.make_wiki_online_nodebug
gensim.scripts.make_wiki
(all of these obsoleted by the new nativegensim.scripts.segment_wiki
implementation)- "deprecated" functions and attributes
-
Move
gensim.scripts.make_wikicorpus
➡gensim.scripts.make_wiki.py
gensim.summarization
➡gensim.models.summarization
gensim.topic_coherence
➡gensim.models._coherence
gensim.utils
➡gensim.utils.utils
(old imports will continue to work)gensim.parsing.*
➡gensim.utils.text_utils
- Fix fasttext model loading from gzip files (mpenkov, #2476)
- Fix misleading
Doc2Vec.docvecs
comment (gojomo, #2472) - NMF bugfix (mpenkov, #2466)
- Fix
WordEmbeddingsKeyedVectors.most_similar
(Witiko, #2461) - Fix LdaSequence model by updating to num_documents (Bharat123rox, #2410)
- Make termsim matrix positive definite even with negative similarities (Witiko, #2397)
- Fix the off-by-one bug in the TFIDF model. (AMR-KELEG, #2392)
- Update legacy model loading (mpenkov, #2454, #2457)
- Make
matutils.unitvec
always return float norm when requested (Witiko, #2419)
- Adding type check for corpus_file argument (saraswatmks, #2469)
- Clean up FastText Cython code, fix division by zero (mpenkov, #2382)
-
Remove
gensim.models.FastText.load_fasttext_format
: use load_facebook_vectors to load embeddings only (faster, less CPU/memory usage, does not support training continuation) and load_facebook_model to load full model (slower, more CPU/memory intensive, supports training continuation)gensim.models.wrappers.fasttext
(obsoleted by the new nativegensim.models.fasttext
implementation)gensim.examples
gensim.nosy
gensim.scripts.word2vec_standalone
gensim.scripts.make_wiki_lemma
gensim.scripts.make_wiki_online
gensim.scripts.make_wiki_online_lemma
gensim.scripts.make_wiki_online_nodebug
gensim.scripts.make_wiki
(all of these obsoleted by the new nativegensim.scripts.segment_wiki
implementation)- "deprecated" functions and attributes
-
Move
gensim.scripts.make_wikicorpus
➡gensim.scripts.make_wiki.py
gensim.summarization
➡gensim.models.summarization
gensim.topic_coherence
➡gensim.models._coherence
gensim.utils
➡gensim.utils.utils
(old imports will continue to work)gensim.parsing.*
➡gensim.utils.text_utils
gensim.models.fasttext.load_facebook_model
function: load full model (slower, more CPU/memory intensive, supports training continuation)gensim.models.fasttext.load_facebook_vectors
function: load embeddings only (faster, less CPU/memory usage, does not support training continuation)
- Fix unicode error when loading FastText vocabulary (@mpenkov, #2390)
- Avoid division by zero in fasttext_inner.pyx (@mpenkov, #2404)
- Avoid incorrect filename inference when loading model (@mpenkov, #2408)
- Handle invalid unicode when loading native FastText models (@mpenkov, #2411)
- Avoid divide by zero when calculating vectors for terms with no ngrams (@mpenkov, #2411)
- Add link to bindr (rogueleaderr, #2387)
To achieve consistency with the reference implementation from Facebook,
a FastText
model will now always report any word, out-of-vocabulary or
not, as being in the model, and always return some vector for any word
looked-up. Specifically:
'any_word' in ft_model
will always returnTrue
. Previously, it returnedTrue
only if the full word was in the vocabulary. (To test if a full word is in the known vocabulary, you can consult thewv.vocab
property:'any_word' in ft_model.wv.vocab
will returnFalse
if the full word wasn't learned during model training.)ft_model['any_word']
will always return a vector. Previously, it raisedKeyError
for OOV words when the model had no vectors for any ngrams of the word.- If no ngrams from the term are present in the model, or when no ngrams could be extracted from the term, a vector pointing to the origin will be returned. Previously, a vector of NaN (not a number) was returned as a consequence of a divide-by-zero problem.
- Models may use more more memory, or take longer for word-vector lookup, especially after training on smaller corpuses where the previous non-compliant behavior discarded some ngrams from consideration.
The gensim.models.FastText.load_fasttext_format
function (deprecated) now loads the entire model contained in the .bin file, including the shallow neural network that enables training continuation.
Loading this NN requires more CPU and RAM than previously required.
Since this function is deprecated, consider using one of its alternatives (see below).
Furthermore, you must now pass the full path to the file to load, including the file extension. Previously, if you specified a model path that ends with anything other than .bin, the code automatically appended .bin to the path before loading the model. This behavior was confusing, so we removed it.
Remove:
gensim.models.FastText.load_fasttext_format
: use load_facebook_vectors to load embeddings only (faster, less CPU/memory usage, does not support training continuation) and load_facebook_model to load full model (slower, more CPU/memory intensive, supports training continuation)
- NMF optimization & documentation (@anotherbugmaster, #2361)
- Optimize
FastText.load_fasttext_model
(@mpenkov, #2340) - Add warning when string is used as argument to
Doc2Vec.infer_vector
(@tobycheese, #2347) - Fix light linting issues in
LdaSeqModel
(@horpto, #2360) - Move out
process_result_queue
from cycle inLdaMulticore
(@horpto, #2358)
- Fix infinite diff in
LdaModel.do_mstep
(@horpto, #2344) - Fix backward compatibility issue: loading
FastTextKeyedVectors
usingKeyedVectors
(missing attributecompatible_hash
) (@menshikh-iv, #2349) - Fix logging issue (conda-forge related) (@menshikh-iv, #2339)
- Fix
WordEmbeddingsKeyedVectors.most_similar
(@Witiko, #2356) - Fix issues of
flake8==3.7.1
(@horpto, #2365)
- Improve
FastText
documentation (@mpenkov, #2353) - Minor corrections and improvements in
Any*Vec
docstrings (@tobycheese, #2345) - Fix the example code for SparseTermSimilarityMatrix (@Witiko, #2359)
- Update
poincare
documentation to indicate the relation format (@AMR-KELEG, #2357)
-
Remove
gensim.models.wrappers.fasttext
(obsoleted by the new nativegensim.models.fasttext
implementation)gensim.examples
gensim.nosy
gensim.scripts.word2vec_standalone
gensim.scripts.make_wiki_lemma
gensim.scripts.make_wiki_online
gensim.scripts.make_wiki_online_lemma
gensim.scripts.make_wiki_online_nodebug
gensim.scripts.make_wiki
(all of these obsoleted by the new nativegensim.scripts.segment_wiki
implementation)- "deprecated" functions and attributes
-
Move
gensim.scripts.make_wikicorpus
➡gensim.scripts.make_wiki.py
gensim.summarization
➡gensim.models.summarization
gensim.topic_coherence
➡gensim.models._coherence
gensim.utils
➡gensim.utils.utils
(old imports will continue to work)gensim.parsing.*
➡gensim.utils.text_utils
-
Fast Online NMF (@anotherbugmaster, #2007)
-
Benchmark
wiki-english-20171001
Model Perplexity Coherence L2 norm Train time (minutes) LDA 4727.07 -2.514 7.372 138 NMF 975.74 -2.814 7.265 73 NMF (with regularization) 985.57 -2.436 7.269 441 -
Simple to use (same interface as
LdaModel
)from gensim.models.nmf import Nmf from gensim.corpora import Dictionary import gensim.downloader as api text8 = api.load('text8') dictionary = Dictionary(text8) dictionary.filter_extremes() corpus = [ dictionary.doc2bow(doc) for doc in text8 ] nmf = Nmf( corpus=corpus, num_topics=5, id2word=dictionary, chunksize=2000, passes=5, random_state=42, ) nmf.show_topics() """ [(0, '0.007*"km" + 0.006*"est" + 0.006*"islands" + 0.004*"league" + 0.004*"rate" + 0.004*"female" + 0.004*"economy" + 0.003*"male" + 0.003*"team" + 0.003*"elections"'), (1, '0.006*"actor" + 0.006*"player" + 0.004*"bwv" + 0.004*"writer" + 0.004*"actress" + 0.004*"singer" + 0.003*"emperor" + 0.003*"jewish" + 0.003*"italian" + 0.003*"prize"'), (2, '0.036*"college" + 0.007*"institute" + 0.004*"jewish" + 0.004*"universidad" + 0.003*"engineering" + 0.003*"colleges" + 0.003*"connecticut" + 0.003*"technical" + 0.003*"jews" + 0.003*"universities"'), (3, '0.016*"import" + 0.008*"insubstantial" + 0.007*"y" + 0.006*"soviet" + 0.004*"energy" + 0.004*"info" + 0.003*"duplicate" + 0.003*"function" + 0.003*"z" + 0.003*"jargon"'), (4, '0.005*"software" + 0.004*"games" + 0.004*"windows" + 0.003*"microsoft" + 0.003*"films" + 0.003*"apple" + 0.003*"video" + 0.002*"album" + 0.002*"fiction" + 0.002*"characters"')] """
-
See also:
-
-
Massive improvement
FastText
compatibilities (@mpenkov, #2313)from gensim.models import FastText # 'cc.ru.300.bin' - Russian Facebook FT model trained on Common Crawl # Can be downloaded from https://s3-us-west-1.amazonaws.com/fasttext-vectors/word-vectors-v2/cc.ru.300.bin.gz model = FastText.load_fasttext_format("cc.ru.300.bin") # Fixed hash-function allow to produce same output as FB FastText & works correctly for non-latin languages (for example, Russian) assert "мяу" in m.wv.vocab # 'мяу' - vocab word model.wv.most_similar("мяу") """ [('Мяу', 0.6820122003555298), ('МЯУ', 0.6373013257980347), ('мяу-мяу', 0.593108594417572), ('кис-кис', 0.5899622440338135), ('гав', 0.5866007804870605), ('Кис-кис', 0.5798211097717285), ('Кис-кис-кис', 0.5742273330688477), ('Мяу-мяу', 0.5699705481529236), ('хрю-хрю', 0.5508339405059814), ('ав-ав', 0.5479759573936462)] """ assert "котогород" not in m.wv.vocab # 'котогород' - out-of-vocab word model.wv.most_similar("котогород", topn=3) """ [('автогород', 0.5463314652442932), ('ТагилНовокузнецкНовомосковскНовороссийскНовосибирскНовотроицкНовочеркасскНовошахтинскНовый', 0.5423436164855957), ('областьНовосибирскБарабинскБердскБолотноеИскитимКарасукКаргатКуйбышевКупиноОбьТатарскТогучинЧерепаново', 0.5377570390701294)] """ # Now we load full model, for this reason, we can continue an training from gensim.test.utils import datapath from smart_open import smart_open with smart_open(datapath("crime-and-punishment.txt"), encoding="utf-8") as infile: # russian text corpus = [line.strip().split() for line in infile] model.train(corpus, total_examples=len(corpus), epochs=5)
-
Similarity search improvements (@Witiko, #2016)
-
Add similarity search using the Levenshtein distance in
gensim.similarities.LevenshteinSimilarityIndex
-
Performance optimizations to
gensim.similarities.SoftCosineSimilarity
(full benchmark)dictionary size corpus size speed 1000 100 1.0× 1000 1000 53.4× 1000 100000 156784.8× 100000 100 3.8× 100000 1000 405.8× 100000 100000 66262.0× -
See updated soft-cosine tutorial for more information and usage examples
-
-
Add
python3.7
support (@menshikh-iv, #2211)- Wheels for Window, OSX and Linux platforms (@menshikh-iv, MacPython/gensim-wheels/#12)
- Faster installation
- Reduce
Phraser
memory usage (drop frequencies) (@jenishah, #2208) - Reduce memory consumption of summarizer (@horpto, #2298)
- Replace inline slow equivalent of mean_absolute_difference with fast (@horpto, #2284)
- Reuse precalculated updated prior in
ldamodel.update_dir_prior
(@horpto, #2274) - Improve
KeyedVector.wmdistance
(@horpto, #2326) - Optimize
remove_unreachable_nodes
ingensim.summarization
(@horpto, #2263) - Optimize
mz_entropy
fromgensim.summarization
(@horpto, #2267) - Improve
filter_extremes
methods inDictionary
andHashDictionary
(@horpto, #2303)
- Add
KeyedVectors.relative_cosine_similarity
(@rsdel2007, #2307) - Add
random_seed
toLdaMallet
(@Zohaggie & @menshikh-iv, #2153) - Add
common_terms
parameter tosklearn_api.PhrasesTransformer
(@pmlk, #2074) - Add method for patch
corpora.Dictionary
based on special tokens (@Froskekongen, #2200)
- Improve
six
usage (xrange
,map
,zip
) (@horpto, #2264) - Refactor
line2doc
methods ofLowCorpus
andMalletCorpus
(@horpto, #2269) - Get rid most of warnings in testing (@menshikh-iv, #2191)
- Fix non-deterministic test failures (pin
PYTHONHASHSEED
) (@menshikh-iv, #2196) - Fix "aliasing chunkize to chunkize_serial" warning on Windows (@aquatiko, #2202)
- Remove
getitem
code duplication ingensim.models.phrases
(@jenishah, #2206) - Add
flake8-rst
for docstring code examples (@kataev, #2192) - Get rid
py26
stuff (@menshikh-iv, #2214) - Use
itertools.chain
instead ofsum
to concatenate lists (@Stigjb, #2212) - Fix flake8 warnings W605, W504 (@horpto, #2256)
- Remove unnecessary creations of lists at all (@horpto, #2261)
- Fix extra list creation in
utils.get_max_id
(@horpto, #2254) - Fix deprecation warning
np.sum(generator)
(@rsdel2007, #2296) - Refactor
BM25
(@horpto, #2275) - Fix pyemd import (@ramprakash-94, #2240)
- Set
metadata=True
formake_wikicorpus
script by default (@Xinyi2016, #2245) - Remove unimportant warning from
Phrases
(@rsdel2007, #2331) - Replace
open()
bysmart_open()
ingensim.models.fasttext._load_fasttext_format
(@rsdel2007, #2335)
- Fix overflow error for
*Vec
corpusfile-based training (@bm371613, #2239) - Fix
malletmodel2ldamodel
conversion (@horpto, #2288) - Replace custom epsilons with numpy equivalent in
LdaModel
(@horpto, #2308) - Add missing content to tarball (@menshikh-iv, #2194)
- Fixes divided by zero when w_star_count==0 (@allenyllee, #2259)
- Fix check for callbacks (@allenyllee, #2251)
- Fix
SvmLightCorpus.serialize
iflabels
instance of numpy.ndarray (@aquatiko, #2243) - Fix poincate viz incompatibility with
plotly>=3.0.0
(@jenishah, #2226) - Fix
keep_n
behavior forDictionary.filter_extremes
(@johann-petrak, #2232) - Fix for
sphinx==1.8.1
(last r (@menshikh-iv, #None) - Fix
np.issubdtype
warnings (@marioyc, #2210) - Drop wrong key
-c
fromgensim.downloader
description (@horpto, #2262) - Fix gensim build (docs & pyemd issues) (@menshikh-iv, #2318)
- Limit visdom version (avoid py2 issue from the latest visdom release) (@menshikh-iv, #2334)
- Fix visdom integration (using
viz.line()
instead ofviz.updatetrace()
) (@allenyllee, #2252)
- Add gensim-data repo to
gensim.downloader
& fix rendering of code examples (@menshikh-iv, #2327) - Fix typos in
gensim.models
(@rsdel2007, #2323) - Fixed typos in notebooks (@rsdel2007, #2322)
- Update
Doc2Vec
documentation: how tags are assigned incorpus_file
mode (@persiyanov, #2320) - Fix typos in
gensim/models/keyedvectors.py
(@rsdel2007, #2290) - Add documentation about ranges to scoring functions for
Phrases
(@jenishah, #2242) - Update return sections for
KeyedVectors.evaluate_word_*
(@Stigjb, #2205) - Fix return type in
KeyedVector.evaluate_word_analogies
(@Stigjb, #2207) - Fix
WmdSimilarity
documentation (@jagmoreira, #2217) - Replace
fify -> fifty
ingensim.parsing.preprocessing.STOPWORDS
(@coderwassananmol, #2220) - Remove
alpha="auto"
fromLdaMulticore
(not supported yet) (@johann-petrak, #2225) - Update Adopters in README (@piskvorky, #2234)
- Fix broken link in
tutorials.md
(@rsdel2007, #2302)
-
Remove
gensim.models.wrappers.fasttext
(obsoleted by the new nativegensim.models.fasttext
implementation)gensim.examples
gensim.nosy
gensim.scripts.word2vec_standalone
gensim.scripts.make_wiki_lemma
gensim.scripts.make_wiki_online
gensim.scripts.make_wiki_online_lemma
gensim.scripts.make_wiki_online_nodebug
gensim.scripts.make_wiki
(all of these obsoleted by the new nativegensim.scripts.segment_wiki
implementation)- "deprecated" functions and attributes
-
Move
gensim.scripts.make_wikicorpus
➡gensim.scripts.make_wiki.py
gensim.summarization
➡gensim.models.summarization
gensim.topic_coherence
➡gensim.models._coherence
gensim.utils
➡gensim.utils.utils
(old imports will continue to work)gensim.parsing.*
➡gensim.utils.text_utils
-
File-based training for
*2Vec
models (@persiyanov, #2127 & #2078 & #2048)New training mode for
*2Vec
models (word2vec, doc2vec, fasttext) that allows model training to scale linearly with the number of cores (full GIL elimination). The result of our Google Summer of Code 2018 project by Dmitry Persiyanov.Benchmark
- Dataset:
full English Wikipedia
- Cloud:
GCE
- CPU:
Intel(R) Xeon(R) CPU @ 2.30GHz 32 cores
- BLAS:
MKL
Model Queue-based version [sec] File-based version [sec] speed up Accuracy (queue-based) Accuracy (file-based) Word2Vec 9230 2437 3.79x 0.754 (± 0.003) 0.750 (± 0.001) Doc2Vec 18264 2889 6.32x 0.721 (± 0.002) 0.683 (± 0.003) FastText 16361 10625 1.54x 0.642 (± 0.002) 0.660 (± 0.001) Usage:
import gensim.downloader as api from multiprocessing import cpu_count from gensim.utils import save_as_line_sentence from gensim.test.utils import get_tmpfile from gensim.models import Word2Vec, Doc2Vec, FastText # Convert any corpus to the needed format: 1 document per line, words delimited by " " corpus = api.load("text8") corpus_fname = get_tmpfile("text8-file-sentence.txt") save_as_line_sentence(corpus, corpus_fname) # Choose num of cores that you want to use (let's use all, models scale linearly now!) num_cores = cpu_count() # Train models using all cores w2v_model = Word2Vec(corpus_file=corpus_fname, workers=num_cores) d2v_model = Doc2Vec(corpus_file=corpus_fname, workers=num_cores) ft_model = FastText(corpus_file=corpus_fname, workers=num_cores)
- Dataset:
- Add scikit-learn wrapper for
FastText
(@mcemilg, #2178) - Add multiprocessing support for
BM25
(@Shiki-H, #2146) - Add
name_only
option for downloader api (@aneesh-joshi, #2143) - Make
word2vec2tensor
script compatible withpython3
(@vsocrates, #2147) - Add custom filter for
Wikicorpus
(@mattilyra, #2089) - Make
similarity_matrix
support non-contiguous dictionaries (@Witiko, #2047)
- Fix memory consumption in
AuthorTopicModel
(@philipphager, #2122) - Correctly process empty documents in
AuthorTopicModel
(@probinso, #2133) - Fix ZeroDivisionError
keywords
issue with short input (@LShostenko, #2154) - Fix
min_count
handling in phrases detection usingnpmi_scorer
(@lopusz, #2072) - Remove duplicate count from
Phraser
log message (@robguinness, #2151) - Replace
np.integer
->np.int
inAuthorTopicModel
(@menshikh-iv, #2145)
- Update docstring with new analogy evaluation method (@akutuzov, #2130)
- Improve
prune_at
parameter description forgensim.corpora.Dictionary
(@yxonic, #2128) - Fix
default
->auto
prior parameter in documentation for lda-related models (@Laubeee, #2156) - Use heading instead of bold style in
gensim.models.translation_matrix
(@nzw0301, #2164) - Fix quote of vocabulary from
gensim.models.Word2Vec
(@nzw0301, #2161) - Replace deprecated parameters with new in docstring of
gensim.models.Doc2Vec
(@xuhdev, #2165) - Fix formula in Mallet documentation (@Laubeee, #2186)
- Fix minor semantic issue in docs for
Phrases
(@RunHorst, #2148) - Fix typo in documentation (@KenjiOhtsuka, #2157)
- Additional documentation fixes (@piskvorky, #2121)
-
Remove
gensim.models.wrappers.fasttext
(obsoleted by the new nativegensim.models.fasttext
implementation)gensim.examples
gensim.nosy
gensim.scripts.word2vec_standalone
gensim.scripts.make_wiki_lemma
gensim.scripts.make_wiki_online
gensim.scripts.make_wiki_online_lemma
gensim.scripts.make_wiki_online_nodebug
gensim.scripts.make_wiki
(all of these obsoleted by the new nativegensim.scripts.segment_wiki
implementation)- "deprecated" functions and attributes
-
Move
gensim.scripts.make_wikicorpus
➡gensim.scripts.make_wiki.py
gensim.summarization
➡gensim.models.summarization
gensim.topic_coherence
➡gensim.models._coherence
gensim.utils
➡gensim.utils.utils
(old imports will continue to work)gensim.parsing.*
➡gensim.utils.text_utils
This release comprises a glorious 38 pull requests from 28 contributors. Most of the effort went into improving the documentation—hence the release code name "Docs 💬"!
Apart from the massive overhaul of all Gensim documentation (including docstring style and examples—you asked for it), we also managed to sneak in some new functionality and a number of bug fixes. As usual, see the notes below for a complete list, with links to pull requests for more details.
Huge thanks to all contributors! Nobody loves working on documentation. 3.5.0 is a result of several months of laborious, unglamorous, and sometimes invisible work. Enjoy!
- Overhaul documentation for
*2vec
models (@steremma & @piskvorky & @menshikh-iv, #1944, #2087) - Fix documentation for LDA-related models (@steremma & @piskvorky & @menshikh-iv, #2026)
- Fix documentation for utils, corpora, inferfaces (@piskvorky & @menshikh-iv, #2096)
- Update non-API docs (about, intro, license etc) (@piskvorky & @menshikh-iv, #2101)
- Refactor documentation for
gensim.models.phrases
(@CLearERR & @menshikh-iv, #1950) - Fix HashDictionary documentation (@piskvorky, #2073)
- Fix docstrings for
gensim.models.AuthorTopicModel
(@souravsingh & @menshikh-iv, #1907) - Fix docstrings for HdpModel, lda_worker & lda_dispatcher (@gyanesh-m & @menshikh-iv, #1912)
- Fix format & links for
gensim.similarities.docsim
(@CLearERR & @menshikh-iv, #2030) - Remove duplication of class documentation for
IndexedCorpus
(@darindf, #2033) - Refactor documentation for
gensim.models.coherencemodel
(@CLearERR & @menshikh-iv, #1933) - Fix docstrings for
gensim.sklearn_api
(@steremma & @menshikh-iv, #1895) - Disable google-style docstring support (@menshikh-iv, #2106)
- Fix docstring of
gensim.models.KeyedVectors.similarity_matrix
(@Witiko, #1971) - Consistently use
smart_open()
instead ofopen()
in notebooks (@sharanry, #1812)
- Add
add_entity
method toKeyedVectors
to allow adding word vectors manually (@persiyanov, #1957) - Add inference for new unseen author to
AuthorTopicModel
(@Stamenov, #1766) - Add
evaluate_word_analogies
(will replaceaccuracy
) method toKeyedVectors
(@akutuzov, #1935) - Add Pivot Normalization to
TfidfModel
(@markroxor, #1780)
- Allow initialization with
max_final_vocab
in lieu ofmin_count
inWord2Vec
(@aneesh-joshi, #1915) - Add
dtype
argument forchunkize_serial
inLdaModel
(@darindf, #2027) - Increase performance in
Phrases.analyze_sentence
(@JonathanHourany, #2070) - Add
ns_exponent
parameter to control the negative sampling distribution for*2vec
models (@fernandocamargoti, #2093)
- Fix
Doc2Vec.infer_vector
+ notebook cleanup (@gojomo, #2103) - Fix linear decay for learning rate in
Doc2Vec.infer_vector
(@umangv, #2063) - Fix negative sampling floating-point error for `gensim.models.Poincare (@jayantj, #1959)
- Fix loading
word2vec
anddoc2vec
models saved using old Gensim versions (@manneshiva, #2012) - Fix
SoftCosineSimilarity.get_similarities
on corpora ssues/1955) (@Witiko, #1972) - Fix return dtype for
matutils.unitvec
according to input dtype (@o-P-o, #1992) - Fix passing empty dictionary to
gensim.corpora.WikiCorpus
(@steremma, #2042) - Fix bug in
Similarity.query_shards
in multiprocessing case (@bohea, #2044) - Fix SMART from TfidfModel for case when
df == "n"
(@PeteBleackley, #2021) - Fix OverflowError when loading a large term-document matrix in compiled MatrixMarket format (@arlenk, #2001)
- Update rules for removing table markup from Wikipedia dumps (@chaitaliSaini, #1954)
- Fix
_is_single
fromPhrases
for case when corpus is a NumPy array (@rmalouf, #1987) - Fix tests for
EuclideanKeyedVectors.similarity_matrix
(@Witiko, #1984) - Fix deprecated parameters in
D2VTransformer
andW2VTransformer
(@MritunjayMohitesh, #1945) - Fix
Doc2Vec.infer_vector
after loading oldDoc2Vec
(gensim<=3.2
)(@manneshiva, #1974) - Fix inheritance chain for
load_word2vec_format
(@DennisChen0307, #1968) - Update Keras version (avoid bug from
keras==2.1.5
) (@menshikh-iv, #1963)
-
Remove
gensim.models.wrappers.fasttext
(obsoleted by the new nativegensim.models.fasttext
implementation)gensim.examples
gensim.nosy
gensim.scripts.word2vec_standalone
gensim.scripts.make_wiki_lemma
gensim.scripts.make_wiki_online
gensim.scripts.make_wiki_online_lemma
gensim.scripts.make_wiki_online_nodebug
gensim.scripts.make_wiki
(all of these obsoleted by the new nativegensim.scripts.segment_wiki
implementation)- "deprecated" functions and attributes
-
Move
gensim.scripts.make_wikicorpus
➡gensim.scripts.make_wiki.py
gensim.summarization
➡gensim.models.summarization
gensim.topic_coherence
➡gensim.models._coherence
gensim.utils
➡gensim.utils.utils
(old imports will continue to work)gensim.parsing.*
➡gensim.utils.text_utils
-
Massive optimizations of
gensim.models.LdaModel
: much faster training, using Cython. (@arlenk, #1767)-
Training benchmark 💥
dataset old LDA [sec] optimized LDA [sec] speed up nytimes 3473 1975 1.76x enron 774 437 1.77x -
This change affects all models that depend on
LdaModel
, such asLdaMulticore
,LdaSeqModel
,AuthorTopicModel
.
-
-
Huge speed-ups to corpus I/O with
MmCorpus
(Cython) (@arlenk, #1825)-
File reading benchmark
dataset file compressed? old MmReader [sec] optimized MmReader [sec] speed up enron no 22.3 2.6 8.7x yes 37.3 14.4 2.6x nytimes no 419.3 49.2 8.5x yes 686.2 275.1 2.5x text8 no 25.4 2.5 10.1x yes 41.9 17.0 2.5x -
Overall, a 2.5x speedup for compressed
.mm.gz
input and 8.5x 🔥🔥🔥 for uncompressed plaintext.mm
.
-
-
Performance and memory optimization to
gensim.models.FastText
🚀 (@jbaiter, #1916)-
Benchmark (first 500,000 articles from English Wikipedia)
Metric old FastText optimized FastText improvement Training time (1 epoch) 4823.4s (80.38 minutes) 1873.6s (31.22 minutes) 2.57x Training time (full) 1h 26min 13s 36min 43s 2.35x Training words/sec 72,781 187,366 2.57x Training peak memory 5.2 GB 3.7 GB 1.4x -
Overall, a 2.5x speedup & memory usage reduced by 30%.
-
-
Implemented Soft Cosine Measure (@Witiko, #1827)
-
New method for assessing document similarity, a nice faster alternative to WMD, Word Mover's Distance
-
Benchmark
Technique MAP score Duration softcossim 45.99 1.24 sec wmd-relax 44.48 12.22 sec cossim 44.22 4.39 sec wmd-gensim 44.08 98.29 sec -
Soft Cosine notebook with detailed description, examples & benchmarks
-
Related papers:
-
- New method to show the Gensim installation parameters:
python -m gensim.scripts.package_info --info
. Use this when reporting problems, for easier debugging. Fix #1902 (@sharanry, #1903) - Added a flag to optionally skip network-related tests, to help maintainers avoid network issues with CI services (@menshikh-iv, #1930)
- Added
license
field tosetup.py
, allowing the use of tools likepip-licenses
(@nils-werner, #1909)
- Fix Python 3 compatibility for
gensim.corpora.UciCorpus.save_corpus
(@darindf, #1875) - Add
wv
property to KeyedVectors for backward compatibility. Fix #1882 (@manneshiva, #1884) - Fix deprecation warning from
inspect.getargspec
. Fix #1878 (@aneesh-joshi, #1887) - Add
LabeledSentence
togensim.models.doc2vec
for backward compatibility. Fix #1886 (@manneshiva, #1891) - Fix empty output bug in
Phrases
(when usingmodel[tokens]
twice). Fix #1401 (@sj29-innovate, #1853) - Fix type problems for
D2VTransformer.fit_transform
. Fix #1834 (@Utkarsh-Mishra-CIC, #1845) - Fix
datatype
parameter forKeyedVectors.load_word2vec_format
. Fix #1682 (@pushpankar, #1819) - Fix deprecated parameters in
doc2vec-lee
notebook (@TheFlash10, #1918) - Fix file-like closing bug in
gensim.corpora.MmCorpus
. Fix #1869 (@sj29-innovate, #1911) - Fix precision problem in
test_similarities.py
, no more FP fails. (@menshikh-iv, #1928) - Fix encoding in Lee corpus reader. (@menshikh-iv, #1931)
- Fix OOV pairs counter in
WordEmbeddingsKeyedVectors.evaluate_word_pairs
. (@akutuzov, #1934)
- Fix example block for
gensim.models.Word2Vec
(@nzw0301, #1870) - Fix
doc2vec-lee
notebook (@numericlee, #1870) - Store images from
README.md
directly in repository. Fix #1849 (@ibrahimsharaf, #1861) - Add windows venv activate command to
CONTRIBUTING.md
(@aneesh-joshi, #1880) - Add anaconda-cloud badge. Partial fix #1901 (@sharanry, #1905)
- Fix docstrings for lsi-related code (@steremma, #1892)
- Fix parameter description of
sg
parameter forgensim.models.word2vec
(@mdcclv, #1919) - Refactor documentation for
gensim.similarities.docsim
andMmCorpus-related
. (@CLearERR & @menshikh-iv, #1910) - Fix docstrings for
gensim.test.utils
(@yurkai & @menshikh-iv, #1904) - Refactor docstrings for
gensim.scripts
. Partial fix #1665 (@yurkai & @menshikh-iv, #1792) - Refactor API reference
gensim.corpora
. Partial fix #1671 (@CLearERR & @menshikh-iv, #1835) - Fix documentation for
gensim.models.wrappers
(@kakshay21 & @menshikh-iv, #1859) - Fix docstrings for
gensim.interfaces
(@yurkai & @menshikh-iv, #1913)
-
Remove
gensim.models.wrappers.fasttext
(obsoleted by the new nativegensim.models.fasttext
implementation)gensim.examples
gensim.nosy
gensim.scripts.word2vec_standalone
gensim.scripts.make_wiki_lemma
gensim.scripts.make_wiki_online
gensim.scripts.make_wiki_online_lemma
gensim.scripts.make_wiki_online_nodebug
gensim.scripts.make_wiki
(all of these obsoleted by the new nativegensim.scripts.segment_wiki
implementation)- "deprecated" functions and attributes
-
Move
gensim.scripts.make_wikicorpus
➡gensim.scripts.make_wiki.py
gensim.summarization
➡gensim.models.summarization
gensim.topic_coherence
➡gensim.models._coherence
gensim.utils
➡gensim.utils.utils
(old imports will continue to work)gensim.parsing.*
➡gensim.utils.text_utils
🌟 New features:
-
Re-designed all "*2vec" implementations (@manneshiva, #1777)
- Modular organization of
Word2Vec
,Doc2Vec
,FastText
, etc ..., making it easier to add new models in the future and re-use code - Fully backward compatible (even with loading models stored by a previous Gensim version)
- Detailed documentation for the *2vec refactoring project
- Modular organization of
-
Improve
gensim.scripts.segment_wiki
by retaining interwiki links. Fix #1712 (@steremma, PR #1839)-
Optionally extract interlinks from Wikipedia pages (use the
--include-interlinks
option). This will output one additional JSON dict for each article:{ "interlinks": { "article title 1": "interlink text 1", "article title 2": "interlink text 2", ... } }
-
Example: extract the Wikipedia graph with article links as edges, from a raw Wikipedia dump:
python -m gensim.scripts.segment_wiki --include-interlinks --file ~/Downloads/enwiki-latest-pages-articles.xml.bz2 --output ~/Desktop/enwiki-latest.jsonl.gz
- Read this field from the
segment_wiki
output:
import json from smart_open import smart_open with smart_open("enwiki-latest.jsonl.gz") as infile: for doc in infile: doc = json.loads(doc) src_node = doc['title'] dst_nodes = doc['interlinks'].keys() print(u"Source node: {}".format(src_node)) print(u"Destination nodes: {}".format(u", ".join(dst_nodes))) break """ OUTPUT: Source node: Anarchism Destination nodes: anarcha-feminist, Ivan Illich, Adolf Brand, Josiah Warren, will (philosophy), anarcha-feminism, Anarchism in Mexico, Lysander Spooner, English Civil War, G8, Sebastien Faure, Nihilist movement, Sébastien Faure, Left-wing politics, imamate, Pierre Joseph Proudhon, anarchist communism, Università popolare (Italian newspaper), 1848 Revolution, Synthesis anarchism, labour movement, anarchist communists, collectivist anarchism, polyamory, post-humanism, postcolonialism, anti war movement, State (polity), security culture, Catalan people, Stoicism, Progressive education, stateless society, Umberto I of Italy, German language, Anarchist schools of thought, NEFAC, Jacques Ellul, Spanish Communist Party, Crypto-anarchism, ruling class, non-violence, Platformist, The History of Sexuality, Revolutions of 1917–23, Federación Anarquista Ibérica, propaganda of the deed, William B. Greene, Platformism, mutually exclusive, Fraye Arbeter Shtime, Adolf Hitler, oxymoron, Paris Commune, Anarchism in Italy#Postwar years and today, Oranienburg, abstentionism, Free Society, Henry David Thoreau, privative alpha, George I of Greece, communards, Gustav Landauer, Lucifer the Lightbearer, Moses Harman, coercion, regicide, rationalist, Resistance during World War II, Christ (title), Bohemianism, individualism, Crass, black bloc, Spanish Revolution of 1936, Erich Mühsam, Empress Elisabeth of Austria, Free association (communism and anarchism), general strike, Francesc Ferrer i Guàrdia, Catalan anarchist pedagogue and free-thinker, veganarchism, Traditional knowledge, Japanese Anarchist Federation, Diogenes of Sinope, Hierarchy, sexual revolution, Naturism, Bavarian Soviet Republic, February Revolution, Eugene Varlin, Renaissance humanism, Mexican Liberal Party, Friedrich Engels, Fernando Tarrida del Mármol, Caliphate, Marxism, Jesus, John Cage, Umanita Nova, Anarcho-pacifism, Peter Kropotkin, Religious anarchism, Anselme Bellegarrigue, civilisation, moral obligation, hedonist, Free Territory (Ukraine), -ism, neo-liberalism, Austrian School, philosophy, freethought, Joseph Goebbels, Conservatism, anarchist economics, Cavalier, Maximilien de Robespierre, Comstockery, Dorothy Day, Anarchism in France, Fédération anarchiste, World Economic Forum, Amparo Poch y Gascón, Sex Pistols, women's rights, collectivisation, Taoism, common ownership, William Batchelder Greene, Collective farming, popular education, biphobia, targeted killings, Protestant Christianity, state socialism, Marie François Sadi Carnot, Stephen Pearl Andrews, World Trade Organization, Communist Party of Spain (main), Pluto Press, Levante, Spain, Alexander Berkman, Wilhelm Weitling, Kharijites, Bolshevik, Liberty (1881–1908), Anarchist Aragon, social democrats, Dielo Truda, Post-left anarchy, Age of Enlightenment, Blanquism, Walden, mutual aid (organization), Far-left politics, privative, revolutions of 1848, anarchism and nationalism, punk rock, Étienne de La Boétie, Max Stirner, Jacobin (politics), agriculture, anarchy, Confederacion General del Trabajo de España, toleration, reformism, International Anarchist Congress of Amsterdam, The Ego and Its Own, Ukraine, Civil Disobedience (Thoreau), Spanish Civil War, David Graeber, Anarchism and issues related to love and sex, James Guillaume, Insurrectionary anarchism, Political repression, International Workers' Association, Barcelona, Bulgaria, Voline, Zeno of Citium, anarcho-communists, organized religion, libertarianism, bisexuality, Ricardo Flores Magón, Henri Zisly, Eight-hour day, Freetown Christiania, heteronormativity, Mikhail Bakunin, Propagandaministerium, Ezra Heywood, individual reappropriation, Modern School (United States), archon, Confédération nationale du travail, socialist movement, History of Islam, Max Nettlau, Political Justice, Reichstag fire, Anti-Christianity, decentralised, Issues in anarchism#Communism, deschooling, Christian movement, squatter, Anarchism in Germany, Catalonia, Louise Michel, Solidarity Federation, What is Property?, European individualist anarchism, Pierre-Joseph Proudhon, Mexican Revolution, wikt:anarchism, Blackshirts, Jewish anarchism, Russian Civil War, property rights, anti-authoritarian, individual reclamation, propaganda by the deed, from each according to his ability, to each according to his need, Feminist movement, Confiscation, social anarchism, Anarchism in Russia, Daniel Guérin, Uruguayan Anarchist Federation, Anarcha-feminism, Enragés, Cynicism (philosophy), workers' council, The Word (free love), Allen Ginsberg, Campaign for Nuclear Disarmament, antimilitarism, Workers' self-management, Federación Obrera Regional Argentina, self-governance, free market, Carlos I of Portugal, Simon Critchley, Anti-clericalism, heterosexual, Layla AbdelRahim, Mexican Anarchist Federation, Anarchism and Marxism, October Revolution, Anti-nuclear movement, Joseph Déjacque, Bolsheviks, Luigi Fabbri, morality, Communist party, Sam Dolgoff, united front, Ammon Hennacy, social ecology, commune (intentional community), Oscar Wilde, French Revolution, egoist anarchism, Comintern, transphobia, anarchism without adjectives, social control, means of production, Michel Onfray, Anarchism in France#The Fourth Republic (1945–1958), syndicalism, Anarchism in Spain, Iberian Anarchist Federation, International of Anarchist Federations, Emma Goldman, Netherlands, anarchist free school, International Workingmen's Association, Queer anarchism, Cantonal Revolution, trade unionism, Karl Marx, LGBT community, humanism, Anti-fascism, Carrara, political philosophy, Anarcho-transhumanism, libertarian socialist, Russian Revolution (1917), Two Cheers for Anarchism: Six Easy Pieces on Autonomy, Dignity, and Meaningful Work and Play, Emile Armand, insurrectionary anarchism, individual, Zhuang Zhou, Free Territory, White movement, Greenwich Village, Virginia Bolten, transcendentalist, public choice theory, wikt:brigand, Issues in anarchism#Participation in statist democracy, free love, Mutualism (economic theory), Anarchist St. Imier International, censorship, federalist, 6 February 1934 crisis, biennio rosso, anti-clerical, centralism, Anarchism: A Documentary History of Libertarian Ideas, minarchism, James C. Scott, First International, homosexuality, political theology, spontaneous order, Oranienburg concentration camp, anarcho-communism, negative liberty, post-modernism, Anarchism in Italy, Leopold Kohr, union of egoists, counterculture, Miguel Gimenez Igualada, philosophical anarchism, International Libertarian Solidarity, homosexual, Counterculture of the 1960s, Errico Malatesta, strikebreaker, Workers' Party of Marxist Unification, Clifford Harper, Reification (fallacy), patriarchy, anarchist law, Apostle (Christian), market (economics), Summerhill School, positive liberty, socialism, feminism, Direct action, Melchor Rodríguez García, William Godwin, Nazi concentration camps, Synthesist anarchism, Margaret Anderson, Han Ryner, Federation of Organized Trades and Labor Unions, technology, Workers Solidarity Movement, Edmund Burke, Encyclopædia Britannica, state (polity), Herbert Read, Park Güell, utilitarian, far right leagues, Limited government, self-ownership, Pejorative, homophobia, Industrial Workers of the World, The Dispossessed, Hague Congress (1872), Stalinism, Reciprocity (cultural anthropology), Fernand Pelloutier, individualist anarchism in France, The False Principle of our Education, individualist anarchism, Pierre Monatte, Soviet Union, counter-economics, Rudolf Rocker, Anarchism and capitalism, Parma, Black Rose Books, lesbian, Arditi del Popolo, Emile Armand (1872–1962), who propounded the virtues of free love in the Parisian anarchist milieu of the early 20th century, collectivism, Development criticism, John Henry Mackay, Benoît Broutchoux, Illegalism, Laozi, feminist, Christiaan Cornelissen, Syndicalist Workers' Federation, anarcho-syndicalism, Andalusia, Renzo Novatore, trade union, autonomist marxism, dictatorship of the proletariat, Mujeres Libres, Voltairine de Cleyre, Post-anarchism, participatory economics, Confederación Nacional del Trabajo, Syncretic politics, direct democracy, Jean-Jacques Rousseau, Green anarchism, Surrealism, labour unions, A. S. Neill, christian anarchist, Bonnot Gang, Anti-capitalism, Anarchism in Brazil, simple living, enlightened self-interest, Confédération générale du travail, class conflict, International Workers' Day, Hébertists, Gerrard Winstanley, Francoism, anarcho-pacifist, Andrej Grubacic, individualist anarchist and social anarchist thinkers., April Carter, private property, penal colonies, Libertarian socialism, Camillo Berneri, Christian anarchism, transhumanism, Lucifer, the Light-Bearer, Edna St. Vincent Millay, unschooling, Leo Tolstoy, M. E. Lazarus, Spanish Anarchists, Buddhist anarchism, ideology, William McKinley, anarcho-primitivism, Francesc Pi i Margall, :Category:Anarchism by country, International Workers Association, Anarcho-capitalism, Lois Waisbrooker, wikt:Solidarity, Baja California, social revolution, Unione Sindacale Italiana, Lev Chernyi, Alex Comfort, Sonnenburg, Leon Czolgosz, Volin, utopian, Argentine Libertarian Federation, Nudism, Left-wing market anarchism, insurrection, definitional concerns in anarchist theory, infinitive, affinity group, World Trade Organization Ministerial Conference of 1999 protest activity, class struggle, nonviolence, John Zerzan, poststructuralist, Noam Chomsky, Second Fitna, Julian Beck, Philadelphes, League of Peace and Freedom, Fédération Anarchiste, Kronstadt rebellion, Cold War, André Breton, Silvio Gesell, libertarian anarchism, voluntary association, anti-globalisation movement, birth control, L. Susan Brown, anarcho-naturism, personal property, Roundhead, Harold Barclay, The Joy of Sex, Council communism, Lucía Sánchez Saornil, tyrannicide, Neopaganism, lois scélérates, Johann Most, Anarchist Catalonia, Albert Camus, Protests of 1968, Alexander II of Russia, Spain's economy, Federazione Anarchica Italiana, Cuba, German Revolution of 1918–1919, stirner, Property is theft, Situationist International, law and economics
- Read this field from the
-
-
Add support for SMART notation for
TfidfModel
. Fix #1785 (@markroxor, #1791)- Natural extension of
TfidfModel
to allow different weighting and normalization schemesfrom gensim.corpora import Dictionary from gensim.models import TfidfModel import gensim.downloader as api data = api.load("text8") dct = Dictionary(data) corpus = [dct.doc2bow(line) for line in data] # Train Tfidf model using the SMART notation, smartirs="ntc" where # 'n' - natural term frequency # 't' - idf document frequency # 'c' - cosine normalization # # More information about possible values available in documentation or https://nlp.stanford.edu/IR-book/html/htmledition/document-and-query-weighting-schemes-1.html model = TfidfModel(corpus, id2word=dct, smartirs="ntc") vectorized_corpus = list(model[corpus])
- SMART Information Retrieval System (wiki)
- Natural extension of
-
Add CircleCI for building Gensim documentation. Fix #1807 (@menshikh-iv, #1822)
- An easy way to preview the rendered documentation (especially, if don't use Linux)
- Go to "Details" link of CircleCI in your PR, click on the "Artifacts" tab, choose the HTML file that you want to view; a new tab will open with the rendered HTML page
- Integration with Github, to see the documentation directly from the pull request page
- Install a user-script plugin: greasemonkey (for firefox) or tampermonkey (for chrome)
- Add this user-script to the plugin
- Now you’ll see a new button "See CircleCI doc for this PR" in each PR in the Gensim repository. Click it to see the full rendered documentation.
- An easy way to preview the rendered documentation (especially, if don't use Linux)
🔴 Bug fixes:
- Fix import in
get_my_ip
. Fix #1771 (@darindf, #1772) - Fix tox.ini/setup.cfg configuration (@menshikh-iv, #1815)
- Fix formula in
gensim.summarization.bm25
. Fix #1828 (@sj29-innovate, #1833) - Fix the train method of
TranslationMatrix
(@robotcator, #1838) - Fix positional params used for
gensim.models.CoherenceModel
ingensim.models.callbacks
(@Alexjmsherman, #1823) - Fix parameter setting for
FastText.train
. Fix #1818 (@sj29-innovate, #1837) - Pin python2 explicitly for building documentation (@menshikh-iv, #1840)
- Remove dispatcher deadlock for distributed LDA (@darindf, #1817)
- Fix
score_function
fromLexicalEntailmentEvaluation
. Fix #1858 (@hachibaka, #1863) - Fix symmetrical case for hellinger distance. Fix #1854 (@caiyulun, #1860)
- Remove wrong logging at import. Fix #1706 (@menshikh-iv, #1871)
📚 Tutorial and doc improvements:
- Refactor documentation API Reference for
gensim.summarization
(@yurkai & @menshikh-iv, #1709) - Fix docstrings for
gensim.similarities.index
. Partial fix #1666 (@menshikh-iv, #1681) - Fix docstrings for
gensim.models.translation_matrix
(@KokuKUSIAKU & @menshikh-iv, #1806) - Fix docstrings for
gensim.models.rpmodel
(@jazzmuesli & @menshikh-iv, #1802) - Fix docstrings for
gensim.utils
(@kakshay21 & @menshikh-iv, #1797) - Fix docstrings for
gensim.matutils
(@Cheukting & @menshikh-iv, #1804) - Fix docstrings for
gensim.models.logentropy_model
(@minggli & @menshikh-iv, #1803) - Fix docstrings for
gensim.models.normmodel
(@AustenLamacraft & @menshikh-iv, #1805) - Refactor API reference
gensim.topic_coherence
. Fix #1669 (@CLearERR & @menshikh-iv, #1714) - Fix documentation for
gensim.corpora.dictionary
andgensim.corpora.hashdictionary
. Partial fix #1671 (@CLearERR & @menshikh-iv, #1814) - Fix documentation for
gensim.corpora
. Partial fix #1671 (@anotherbugmaster & @menshikh-iv, #1729) - Update banner in doc pages (@piskvorky, #1865)
- Fix errors in the doc2vec-lee notebook (@PeterHamilton, #1841)
- Add wordnet mammal train file for Poincare notebook (@jayantj, #1781)
- Update Poincare notebooks (#1774) (@jayantj, #1774)
- Update contributing guide. Fix #1786 (@menshikh-iv, #1793)
- Add
model_to_dict
one-liner to word2vec notebook. Fix #1269 (@kakshay21, #1776) - Add word embedding viz to word2vec notebook. Fix #1419 (@markroxor, #1800)
- Fix description of
sg
parameter forgensim.models.FastText
(@akutuzov, #1801) - Fix typo in
doc2vec-IMDB
. Fix #1788 (@apoorvaeternity, #1796) - Remove outdated bz2 examples from tutorials[2] (@menshikh-iv, #1868)
- Remove outdated
bz2
+MmCorpus
examples from tutorials (@menshikh-iv, #1867)
👍 Improvements:
-
Remove
gensim.models.wrappers.fasttext
(obsoleted by the new nativegensim.models.fasttext
implementation)gensim.examples
gensim.nosy
gensim.scripts.word2vec_standalone
gensim.scripts.make_wiki_lemma
gensim.scripts.make_wiki_online
gensim.scripts.make_wiki_online_lemma
gensim.scripts.make_wiki_online_nodebug
gensim.scripts.make_wiki
(all of these obsoleted by the new nativegensim.scripts.segment_wiki
implementation)- "deprecated" functions and attributes
-
Move
gensim.scripts.make_wikicorpus
➡gensim.scripts.make_wiki.py
gensim.summarization
➡gensim.models.summarization
gensim.topic_coherence
➡gensim.models._coherence
gensim.utils
➡gensim.utils.utils
(old imports will continue to work)gensim.parsing.*
➡gensim.utils.text_utils
🌟 New features:
-
New download API for corpora and pre-trained models (@chaitaliSaini & @menshikh-iv, #1705 & #1632 & #1492)
- Download large NLP datasets in one line of Python, then use with memory-efficient data streaming:
import gensim.downloader as api for article in api.load("wiki-english-20171001"): pass
- Don’t waste time searching for good word embeddings, use the curated ones we included:
import gensim.downloader as api model = api.load("glove-twitter-25") model.most_similar("engineer") # [('specialist', 0.957542896270752), # ('developer', 0.9548177123069763), # ('administrator', 0.9432312846183777), # ('consultant', 0.93915855884552), # ('technician', 0.9368376135826111), # ('analyst', 0.9342101216316223), # ('architect', 0.9257484674453735), # ('engineering', 0.9159940481185913), # ('systems', 0.9123805165290833), # ('consulting', 0.9112802147865295)]
- Blog post introducing the API and design decisions.
- Notebook with examples
- Download large NLP datasets in one line of Python, then use with memory-efficient data streaming:
-
New model: Poincaré embeddings (@jayantj, #1696 & #1700 & #1757 & #1734)
- Embed a graph (taxonomy) in the same way as word2vec embeds words:
from gensim.models.poincare import PoincareRelations, PoincareModel from gensim.test.utils import datapath data = PoincareRelations(datapath('poincare_hypernyms.tsv')) model = PoincareModel(data) model.kv.most_similar("cat.n.01") # [('kangaroo.n.01', 0.010581353439700418), # ('gib.n.02', 0.011171531439892076), # ('striped_skunk.n.01', 0.012025106076442395), # ('metatherian.n.01', 0.01246679759214648), # ('mammal.n.01', 0.013281303506525968), # ('marsupial.n.01', 0.013941330203709653)]
- Tutorial notebook on Poincaré embeddings
- Model introduction and the journey of its implementation
- Original paper on arXiv
- Embed a graph (taxonomy) in the same way as word2vec embeds words:
-
Optimized FastText (@manneshiva, #1742)
- New fast multithreaded implementation of FastText, natively in Python/Cython. Deprecates the existing wrapper for Facebook’s C++ implementation.
import gensim.downloader as api from gensim.models import FastText model = FastText(api.load("text8")) model.most_similar("cat") # [('catnip', 0.8538144826889038), # ('catwalk', 0.8136177062988281), # ('catchy', 0.7828493118286133), # ('caf', 0.7826495170593262), # ('bobcat', 0.7745151519775391), # ('tomcat', 0.7732658386230469), # ('moat', 0.7728310823440552), # ('caye', 0.7666271328926086), # ('catv', 0.7651021480560303), # ('caveat', 0.7643581628799438)]
- New fast multithreaded implementation of FastText, natively in Python/Cython. Deprecates the existing wrapper for Facebook’s C++ implementation.
-
Binary pre-compiled wheels for Windows, OSX and Linux (@menshikh-iv, MacPython/gensim-wheels/#7)
- Users no longer need to have a C compiler for using the fast (Cythonized) version of word2vec, doc2vec, etc.
- Faster Gensim pip installation
-
Added
DeprecationWarnings
to deprecated methods and parameters, with a clear schedule for removal.
👍 Improvements:
- Add Montemurro and Zanette's entropy based keyword extraction algorithm. Fix #665 (@PeteBleackley, #1738)
- Fix flake8 E731, E402, refactor tests & sklearn API code. Partial fix #1644 (@horpto, #1689)
- Reduce distribution size. Fix #1698 (@menshikh-iv, #1699)
- Improve
scan_vocab
speed,build_vocab_from_freq
method (@jodevak, #1695) - Improve
segment_wiki
script (@piskvorky, #1707) - Add custom
dtype
support forLdaModel
. Partially fix #1576 (@xelez, #1656) - Add
doc2idx
method forgensim.corpora.Dictionary
. Fix #1634 (@roopalgarg, #1720) - Add tox and pytest to gensim, integration with Travis and Appveyor. Fix #1613, #1644 (@menshikh-iv, #1721)
- Add flag for hiding outdated data for
gensim.downloader.info
(@menshikh-iv, #1736) - Add reproducible order between python versions for
gensim.corpora.Dictionary
(@formi23, #1715) - Update
tox.ini
,setup.cfg
,README.md
(@menshikh-iv, #1741) - Add custom
logsumexp
forLdaModel
(@arlenk, #1745)
🔴 Bug fixes:
- Fix ranking formula in
gensim.summarization.bm25
. Fix #1718 (@souravsingh, #1726) - Fixed incompatibility in persistence for
FastText
wrapper. Fix #1642 (@chinmayapancholi13, #1723) - Fix
gensim.sklearn_api
bug withdocuments_columns
parameter. Fix #1676 (@chinmayapancholi13, #1704) - Fix slowdown of CI, remove pytest-cov (@menshikh-iv, #1728)
- Replace outdated packages in Dockerfile (@rbahumi, #1730)
- Replace
num_words
totopn
inLdaMallet.show_topics
. Fix #1747 (@apoorvaeternity, #1749) - Fix
os.rename
fromgensim.downloader
when 'src' and 'dst' on different partitions (@anotherbugmaster, #1733) - Fix
DeprecationWarning
fromlogsumexp
(@dreamgonfly, #1703) - Fix backward compatibility problem in
Phrases.load
. Fix #1751 (@alexgarel, #1758) - Fix
load_word2vec_format
fromFastText
. Fix #1743 (@manneshiva, #1755) - Fix ipython kernel version in
Dockerfile
. Fix #1762 (@rbahumi, #1764) - Fix writing in
segment_wiki
(@horpto, #1763) - Fix write method of file requires byte-like object in
segment_wiki
(@horpto, #1750) - Fix incorrect vectors learned during online training for
FastText
. Fix #1752 (@manneshiva, #1756) - Fix
dtype
ofmodel.wv.syn0_vocab
on updatingvocab
forFastText
. Fix #1759 (@manneshiva, #1760) - Fix hashing-trick from
FastText.build_vocab
. Fix #1765 (@manneshiva, #1768) - Add explicit
DeprecationWarning
for all outdated stuff. Fix #1753 (@menshikh-iv, #1769) - Fix epsilon according to
dtype
inLdaModel
(@menshikh-iv, #1770)
📚 Tutorial and doc improvements:
- Update perf numbers of
segment_wiki
(@piskvorky, #1708) - Update docstring for
gensim.summarization.summarize
. Fix #1575 (@fbarrios, #1702) - Refactor API Reference for
gensim.parsing
. Fix #1664 (@CLearERR, #1684) - Fix typos in doc2vec-wikipedia notebook (@youqad, #1727)
- Fix PyPI long description rendering (@edigaryev, #1739)
- Fix twitter badge src (@menshikh-iv)
- Fix maillist badge color (@menshikh-iv)
-
Remove
gensim.examples
gensim.nosy
gensim.scripts.word2vec_standalone
gensim.scripts.make_wiki_lemma
gensim.scripts.make_wiki_online
gensim.scripts.make_wiki_online_lemma
gensim.scripts.make_wiki_online_nodebug
gensim.scripts.make_wiki
-
Move
gensim.scripts.make_wikicorpus
➡gensim.scripts.make_wiki.py
gensim.summarization
➡gensim.models.summarization
gensim.topic_coherence
➡gensim.models._coherence
gensim.utils
➡gensim.utils.utils
(old imports will continue to work)gensim.parsing.*
➡gensim.utils.text_utils
🌟 New features:
- Massive optimizations to LSI model training (@isamaru, #1620 & #1622)
- LSI model allows use of single precision (float32), to consume 40% less memory while being 40% faster.
- LSI model can now also accept CSC matrix as input, for further memory and speed boost.
- Overall, if your entire corpus fits in RAM: 3x faster LSI training (SVD) in 4x less memory!
# just an example; the corpus stream is up to you streaming_corpus = gensim.corpora.MmCorpus("my_tfidf_corpus.mm.gz") # convert your corpus to a CSC sparse matrix (assumes the entire corpus fits in RAM) in_memory_csc_matrix = gensim.matutils.corpus2csc(streaming_corpus, dtype=np.float32) # then pass the CSC to LsiModel directly model = LsiModel(corpus=in_memory_csc_matrix, num_topics=500, dtype=np.float32)
- Even if you continue to use streaming corpora (your training dataset is too large for RAM), you should see significantly faster processing times and a lower memory footprint. In our experiments with a very large LSI model, we saw a drop from 29 GB peak RAM and 38 minutes (before) to 19 GB peak RAM and 26 minutes (now):
model = LsiModel(corpus=streaming_corpus, num_topics=500, dtype=np.float32)
- Add common terms to Phrases. Fix #1258 (@alexgarel, #1568)
- Phrases allows to use common terms in bigrams. Before, if you are searching to reveal ngrams like
car_with_driver
andcar_without_driver
, you can either remove stop words before processing, but you will only findcar_driver
, or you won't find any of those forms (because they have three words, but also because high frequency of with will avoid them to be scored correctly), inspired by ES common grams token filter.phr_old = Phrases(corpus) phr_new = Phrases(corpus, common_terms=stopwords.words('en')) print(phr_old[["we", "provide", "car", "with", "driver"]]) # ["we", "provide", "car_with", "driver"] print(phr_new[["we", "provide", "car", "with", "driver"]]) # ["we", "provide", "car_with_driver"]
- Phrases allows to use common terms in bigrams. Before, if you are searching to reveal ngrams like
- New segment_wiki.py script (@menshikh-iv, #1483 & #1694)
-
CLI script for processing a raw Wikipedia dump (the xml.bz2 format provided by WikiMedia) to extract its articles in a plain text format. It extracts each article's title, section names and section content and saves them as json-line:
python -m gensim.scripts.segment_wiki -f enwiki-latest-pages-articles.xml.bz2 | gzip > enwiki-latest-pages-articles.json.gz
Processing the entire English Wikipedia dump (13.5 GB, link here) takes about 2.5 hours (i7-6700HQ, SSD).
The output format is one article per line, serialized into JSON:
for line in smart_open('enwiki-latest-pages-articles.json.gz'): # read the file we just created article = json.loads(line) print("Article title: %s" % article['title']) for section_title, section_text in zip(article['section_titles'], article['section_texts']): print("Section title: %s" % section_title) print("Section text: %s" % section_text) ```
-
👍 Improvements:
- Speedup FastText tests (@horpto, #1686)
- Add optimization for
SlicedCorpus.len
(@horpto, #1679) - Make
word_vec
return immutable vector. Fix #1651 (@CLearERR, #1662) - Drop Win x32 support & add rolling builds (@menshikh-iv, #1652)
- Fix scoring function in Phrases. Fix #1533, #1635 (@michaelwsherman, #1573)
- Add configuration for flake8 to setup.cfg (@mcobzarenco, #1636)
- Add
build_vocab_from_freq
to Word2Vec, speedup scan_vocab (@jodevak, #1599) - Add
most_similar_to_given
method for KeyedVectors (@TheMathMajor, #1582) - Add
getitem
method to Sparse2Corpus to allow direct queries (@isamaru, #1621)
🔴 Bug fixes:
- Add single core mode to CoherenceModel. Fix #1683 (@horpto, #1685)
- Fix ResourceWarnings in tests. Partially fix #1519 (@horpto, #1660)
- Fix DeprecationWarnings generated by deprecated assertEquals. Partial fix #1519 (@poornagurram, #1658)
- Fix DeprecationWarnings for regex string literals. Fix #1646 (@franklsf95, #1649)
- Fix pagerank algorithm. Fix #805 (@xelez, #1653)
- Fix FastText inconsistent dtype. Fix #1637 (@mcobzarenco, #1638)
- Fix
test_filename_filtering
test (@nehaljwani, #1647)
📚 Tutorial and doc improvements:
- Fix code/docstring style (@menshikh-iv, #1650)
- Update error message for supervised FastText. Fix #1498 (@ElSaico, #1645)
- Add "DOI badge" to README. Fix #1610 (@dphov, #1639)
- Remove duplicate annoy notebook. Fix #1415 (@Karamax, #1640)
- Fix duplication and wrong markup in docs (@horpto, #1633)
- Refactor dendrogram & topic network notebooks (@parulsethi, #1571)
- Fix release badge (@menshikh-iv, #1631)
-
Remove
gensim.examples
gensim.nosy
gensim.scripts.word2vec_standalone
gensim.scripts.make_wiki_lemma
gensim.scripts.make_wiki_online
gensim.scripts.make_wiki_online_lemma
gensim.scripts.make_wiki_online_nodebug
gensim.scripts.make_wiki
-
Move
gensim.scripts.make_wikicorpus
➡gensim.scripts.make_wiki.py
gensim.summarization
➡gensim.models.summarization
gensim.topic_coherence
➡gensim.models._coherence
gensim.utils
➡gensim.utils.utils
(old imports will continue to work)gensim.parsing.*
➡gensim.utils.text_utils
Also, we'll create experimental
subpackage for unstable models. Specific lists will be available in the next major release.
🔴 Bug fixes:
- Fix Keras import, speedup importing time. Fix #1614 (@menshikh-v, #1615)
- Fix Sphinx warnings and retreive all missing .rst (@anotherbugmaster and @menshikh-iv, #1612)
- Fix logger message in lsi_dispatcher (@lorosanu, #1603)
📚 Tutorial and doc improvements:
- Fix spelling (@jberkel, #1625)
-
Remove
gensim.examples
gensim.nosy
gensim.scripts.word2vec_standalone
gensim.scripts.make_wiki_lemma
gensim.scripts.make_wiki_online
gensim.scripts.make_wiki_online_lemma
gensim.scripts.make_wiki_online_nodebug
gensim.scripts.make_wiki
-
Move
gensim.scripts.make_wikicorpus
➡gensim.scripts.make_wiki.py
gensim.summarization
➡gensim.models.summarization
gensim.topic_coherence
➡gensim.models._coherence
gensim.utils
➡gensim.utils.utils
(old imports will continue to work)gensim.parsing.*
➡gensim.utils.text_utils
Also, we'll create experimental
subpackage for unstable models. Specific lists will be available in the next release.
🌟 New features:
- Add unsupervised FastText to Gensim (@chinmayapancholi13, #1525)
- Add sklearn API for gensim models (@chinmayapancholi13, #1462)
- Add callback metrics for LdaModel and integration with Visdom (@parulsethi, #1399)
- Add TranslationMatrix model (@robotcator, #1434)
- Add word2vec-based coherence. Fix #1380 (@macks22, #1530)
👍 Improvements:
- Add 'diagonal' parameter for LdaModel.diff (@parulsethi, #1448)
- Add 'score' function for SklLdaModel (@chinmayapancholi13, #1445)
- Update sklearn API for gensim models (@chinmayapancholi13, #1473) [:warning: breaks backward compatibility]
- Add CoherenceModel to LdaModel.top_topics. Fix #1128 (@macks22, #1427)
- Add dendrogram viz for topics and JS metric (@parulsethi, #1484)
- Add topic network viz (@parulsethi, #1536)
- Replace viewitems to iteritems. Fix #1495 (@HodorTheCoder, #1508)
- Fix Travis config and add style-checking for Ipython Notebooks. Fix #1518, #1520 (@menshikh-iv, #1522)
- Remove mutable args from definitions. Fix #1561 (@zsef123, #1562)
- Add Appveyour for all PRs. Fix #1565 (@menshikh-iv, #1565)
- Refactor code by PEP8. Partially fix #1521 (@zsef123, #1550)
- Refactor code by PEP8 with additional limitations. Fix #1521 (@menshikh-iv, #1569)
- Update FastTextKeyedVectors.__contains__ (@ELind77, #1499)
- Update WikiCorpus tokenization. Fix #1534 (@roopalgarg, #1537)
🔴 Bug fixes:
- Remove round in LdaSeqModel.print_topic. Fix #1480 (@menshikh-iv, #1547)
- Fix TextCorpus.samle_text (@menshikh-iv, #1548)
- Fix Mallet wrapper and tests for HDPTransform (@menshikh-iv, #1555)
- Fix incorrect initialization ShardedCorpus with a generator. Fix #1511 (@karkkainenk1, #1512)
- Add verification when summarize_corpus returns null. Fix #1531 (@fbarrios, #1570)
- Fix doctag unicode problem. Fix 1543 (@englhardt, #1544)
- Fix Translation Matrix (@robotcator, #1594)
- Add trainable flag to KeyedVectors.get_embedding_layer. Fix #1557 (@zsef123, #1558)
📚 Tutorial and doc improvements:
- Update exception text in TextCorpus.samle_text. Partial fix #308 (@vlejd, #1444)
- Remove extra filter_token from tutorial (@VorontsovIE, #1502)
- Update Doc2Vec-IMDB notebook (@pahdo, #1476)
- Add Google Tag Manager for site (@yardos, #1556)
- Update docstring explaining lack of multistream support in WikiCopus. Fix #1496 (@polm and @menshikh-iv, #1515)
- Fix PathLineSentences docstring (@gojomo)
- Fix typos from Translation Matrix notebook (@robotcator, #1598)
🌟 New features:
- Add Dockerfile for gensim with external wrappers (@parulsethi, #1368)
- Add sklearn wrapper for Word2Vec (@chinmayapancholi13, #1437)
- Add loss function for Word2Vec. Fix #999 (@chinmayapancholi13, #1201)
- Add sklearn wrapper for AuthorTopic model (@chinmayapancholi13, #1403)
👍 Improvements:
- Remove unittest2 (@souravsingh, #1490)
- Add multiple scoring methods for Phrases. Partial fix #1363 (@michaelwsherman, #1464)
- Add WordRank wrapper to Dockerfile (@parulsethi, #1460)
- Add PathLineSentences. Fix #1364 (@michaelwsherman, #1423)
- Add TextDirectoryCorpus and refactor TextCorpus. Fix #1387 (@macks22, #1459)
- Add sparse input support with topn parameter in any2sparse. Fix #1294 (@manneshiva, #1321)
- Add seed and length for sample_text. Partial fix #308 (@vlejd, #1422)
- Add word_ngram parameter to FastText (@fsonntag, #1432)
🔴 Bug fixes:
- Fix fastText loading from .bin file. Fix #1236 (@prakhar2b, #1341)
- Fix paths in WordRank and running gensim version in Dockerfile (@parulsethi, #1503)
- Fix commit version for gensim in Dockerfile (@parulsethi, #1491)
- Fix encoding problems with tests on windows. Fix #1441 (@menshikh-iv, #1469)
- Fix parameters in score_cbow_pair (@jmhessel, #1468)
- Fix parameters in score_sentence_cbow (@jmhessel, #1467)
- Fix TextDirectoryCorpus on windows (@macks22, #1463)
- Fix gensim version in Dockerfile (@parulsethi, #1456)
- Fix WordOccurenceAccumulator on windows. Fix #1441 (@macks22, #1449)
- Fix scipy/numpy requirements (downgrade). Fix #1450 (@menshikh-iv, #1450)
📚 Tutorial and doc improvements:
- Fix links and spaces in quick start guide (@iamsanten, #1500)
- Fix error of ConcatedDoc2Vec in doc2vec-imdb notebook (@robocator, #1377)
- Fix Sphinx warnings. Fix #1192 (@prerna135, #1442)
- Fix typo in LdaModel.diff method (@parulsethi, #1461)
- Add Tensorboard visualization for LDA (@parulsethi, #1396)
- Update old and add new notebook with CoherenceModel (@macks22, #1431)
🌟 New features:
- Add sklearn wrapper for RpModel (@chinmayapancholi13, #1395)
- Add sklearn wrappers for LdaModel and LsiModel (@chinmayapancholi13, #1398)
- Add sklearn wrapper for LdaSeq (@chinmayapancholi13, #1405)
- Add keras wrapper for Word2Vec model (@chinmayapancholi13, #1248)
- Add LdaModel.diff method (@menshikh-iv, #1334)
- Allow use of truncated Dictionary for coherence measures. Fix #1342 (@macks22, #1349)
👍 Improvements:
- Fix save_as_text/load_as_text for Dictionary (@vlejd, #1402)
- Add sampling support for corpus. Fix #308 (@vlejd, #1408)
- Add napoleon extension to sphinx (@rasto2211, #1411)
- Add KeyedVectors support to AnnoyIndexer (@quole, #1318)
- Add BaseSklearnWrapper (@chinmayapancholi13, #1383)
- Replace num_words to topn in model for unification. Fix #1198 (@prakhar2b, #1200)
- Rename out_path to out_name & add logging for WordRank model. Fix #1310 (@parulsethi, #1332)
- Remove multiple iterations of corpus in p_boolean_document (@danielchamberlain, #1325)
- Fix codestyle in TfIdf (@piskvorky, #1313)
- Fix warnings from Sphinx. Partial fix #1192 (@souravsingh, #1330)
- Add test_env to setup.py (@menshikh-iv, #1336)
🔴 Bug fixes:
- Add cleanup in annoy test (@prakhar2b, #1420)
- Add cleanup in lda backprop test (@prakhar2b, #1417)
- Fix out-of-vocab in FastText (@jayantj, #1409)
- Add cleanup in WordRank test (@parulsethi, #1410)
- Fix rest requirements in Travis. Partial fix #1393 (@ibrahimsharaf, @menshikh-iv, #1400)
- Fix morfessor exception. Partial fix #1324 (@souravsingh, #1406)
- Fix test for FastText (@prakhar2b, #1371)
- Fix WikiCorpus (@alekol, #1333)
- Fix backward incompatibility for LdaModel (@chinmayapancholi13, #1327)
- Fix support for old and new FastText model format. Fix #1301 (@prakhar2b, #1319)
- Fix wrapper tests. Fix #1323 (@shubhamjain74, #1359)
- Update export_phrases method. Fix #794 (@toumorokoshi, #1362)
- Fix sklearn exception in test (@souravsingh, #1350)
📚 Tutorial and doc improvements:
- Fix incorrect link in tutorials (@aneesh-joshi, #1426)
- Add notebook with sklearn wrapper examples (@chinmayapancholi13, #1428)
- Replace absolute pathes to relative in notebooks (@vochicong, #1414)
- Fix code-style in keras notebook (@chinmayapancholi13, #1394)
- Replace absolute pathes to relative in notebooks (@vochicong, #1407)
- Fix typo in quickstart guide (@vochicong, #1404)
- Update docstring for WordRank. Fix #1384 (@parulsethi, #1378)
- Update docstring for SkLdaModel (@chinmayapancholi13, #1382)
- Update logic for updatetype in LdaModel (@chinmayapancholi13, #1389)
- Update docstring for Doc2Vec (@jstol, #1379)
- Fix docstring for KL-distance (@viciousstar, #1373)
- Update Corpora_and_Vector_Spaces tutorial (@charliejharrison, #1308)
- Add visualization for difference between LdaModel (@menshikh-iv, #1374)
- Fix punctuation & typo in changelog (@piskvorky, @menshikh-iv, #1366)
- Fix PEP8 & typo in several PRs (@menshikh-iv, #1369)
- Update docstrings connected with backward compability in for LdaModel (@chinmayapancholi13, #1365)
- Update Corpora_and_Vector_Spaces tutorial (@schuyler1d, #1360)
- Fix typo in Doc2Vec doctsring (@fujiyuu75, #1356)
- Update Annoy tutorial (@pmbaumgartner, #1355)
- Update temp folder in tutorials (@yl2526, #1352)
- Remove spaces after print in Topics_and_Transformation tutorial (@gsimore, #1354)
- Update Dictionary docstring (@oonska, #1347)
- Add section headings in word2vec notebook (@MikeTheReader, #1348)
- Fix broken urls in starter tutorials (@ka7eh, #1346)
- Update quick start notebook (@yardsale8, #1345)
- Fix typo in quick start notebook (@MikeTheReader, #1344)
- Fix docstring in keyedvectors (@chinmayapancholi13, #1337)
🌟 New features:
- Add modified save_word2vec_format for Doc2Vec, to save document vectors. (@parulsethi, #1256)
👍 Improvements:
- Add automatic code style check limited only to the code modified in PR (@tmylk, #1287)
- Replace
logger.warn
bylogger.warning
(@chinmayapancholi13, #1295) - Docs word2vec docstring improvement, deprecation labels (@shubhvachher, #1274)
- Stop passing 'sentences' as parameter to Doc2Vec. Fix #511 (@gogokaradjov, #1306)
🔴 Bug fixes:
- Allow indexing with np.int64 in doc2vec. Fix #1231 (@bogdanteleaga, #1254)
- Update Doc2Vec docstring. Fix #1302 (@datapythonista, #1307)
- Ignore rst and ipynb file in Travis flake8 validations (@datapythonista, #1309)
📚 Tutorial and doc improvements:
- Update Tensorboard Doc2Vec notebook (@parulsethi, #1286)
- Update Doc2Vec IMDB Notebook, replace codesc to smart_open (@robotcator, #1278)
- Add explanation of
size
to Word2Vec Notebook (@jbcoe, #1305) - Add extra param to WordRank notebook. Fix #1276 (@parulsethi, #1300)
- Update warning message in WordRank (@parulsethi, #1299)
Breaking changes:
Any direct calls to method train() of Word2Vec/Doc2Vec now require an explicit epochs parameter and explicit estimate of corpus size. The most usual way to call train
is vec_model.train(sentences, total_examples=self.corpus_count, epochs=self.iter)
See the method documentation for more information.
New features:
- Add output word prediction in word2vec. Only for negative sampling scheme. See ipynb (@chinmayapancholi13, #1209)
- scikit_learn wrapper for LSI Model in Gensim (@chinmayapancholi13, #1244)
- Add the 'keep_tokens' parameter to 'filter_extremes'. (@toliwa, #1210)
- Load FastText models with specified encoding (@jayantj, #1210)
Improvements:
- Fix loading large FastText models on Mac. (@jaksmid, #1196)
- Sklearn LDA wrapper now works in sklearn pipeline (@kris-singh, #1213)
- glove2word2vec conversion script refactoring (@parulsethi, #1247)
- Word2vec error message when update called before train . Fix #1162 (@hemavakade, #1205)
- Allow training if model is not modified by "_minimize_model". Add deprecation warning. (@chinmayapancholi13, #1207)
- Update the warning text when building vocab on a trained w2v model (@prakhar2b, #1190)
Bug fixes:
-
Fix word2vec reset_from bug in v1.0.1 Fix #1230. (@Kreiswolke, #1234)
-
Distributed LDA: checking the length of docs instead of the boolean value, plus int index conversion (@saparina, #1191)
-
syn0_lockf initialised with zero in intersect_word2vec_format() (@KiddoZhu, #1267)
-
Fix wordrank max_iter_dump calculation. Fix #1216 (@ajkl, #1217)
-
Make SgNegative test use skip-gram (@shubhvachher, #1252)
-
pep8/pycodestyle fixes for hanging indents in Summarization module (@SamriddhiJain, #1202)
-
WordRank and Mallet wrappers single vs double quote issue in windows. (@prakhar2b, #1208)
-
Fix #824 : no corpus in init, but trim_rule in init (@prakhar2b, #1186)
-
Hardcode version number. Fix #1138. (@tmylk, #1138)
Tutorial and doc improvements:
-
Color dictionary according to topic notebook update (@bhargavvader, #1164)
-
Fix hdp show_topic/s docstring (@parulsethi, #1264)
-
Add docstrings for word2vec.py forwarding functions (@shubhvachher, #1251)
-
updated description for worker_loop function used in score function (@chinmayapancholi13, #1206)
- Rebuild cumulative table on load. Fix #1180. (@tmylk, #1181)
- most_similar_cosmul bug fix (@dkim010, #1177)
- Fix loading old word2vec models pre-1.0.0 (@jayantj, #1179)
- Load utf-8 words in fasttext (@jayantj, #1176)
New features:
- Add Author-topic modeling (@olavurmortensen, #893)
- Add FastText word embedding wrapper (@Jayantj, #847)
- Add WordRank word embedding wrapper (@parulsethi, #1066, #1125)
- Add VarEmbed word embedding wrapper (@anmol01gulati, #1067))
- Add sklearn wrapper for LDAModel (@AadityaJ, #932)
Deprecated features:
- Move
load_word2vec_format
andsave_word2vec_format
out of Word2Vec class to KeyedVectors (@tmylk, #1107) - Move properties
syn0norm
,syn0
,vocab
,index2word
from Word2Vec class to KeyedVectors (@tmylk,#1147) - Remove support for Python 2.6, 3.3 and 3.4 (@tmylk,#1145)
Improvements:
- Python 3.6 support (@tmylk #1077)
- Phrases and Phraser allow a generator corpus (ELind77 #1099)
- Ignore DocvecsArray.doctag_syn0norm in save. Fix #789 (@accraze, #1053)
- Fix bug in LsiModel that occurs when id2word is a Python 3 dictionary. (@cvangysel, #1103
- Fix broken link to paper in readme (@bhargavvader, #1101)
- Lazy formatting in evaluate_word_pairs (@akutuzov, #1084)
- Deacc option to keywords pre-processing (@bhargavvader, #1076)
- Generate Deprecated exception when using Word2Vec.load_word2vec_format (@tmylk, #1165)
- Fix hdpmodel constructor docstring for print_topics (#1152) (@toliwa, #1152)
- Default to per_word_topics=False in LDA get_item for performance (@menshikh-iv, #1154)
- Fix bound computation in Author Topic models. (@olavurmortensen, #1156)
- Write UTF-8 byte strings in tensorboard conversion (@tmylk, #1144)
- Make top_topics and sparse2full compatible with numpy 1.12 strictly int idexing (@tmylk, #1146)
Tutorial and doc improvements:
- Clarifying comment in is_corpus func in utils.py (@greninja, #1109)
- Tutorial Topics_and_Transformations fix markdown and add references (@lgmoneda, #1120)
- Fix doc2vec-lee.ipynb results to match previous behavior (@bahbbc, #1119)
- Remove Pattern lib dependency in News Classification tutorial (@luizcavalcanti, #1118)
- Corpora_and_Vector_Spaces tutorial text clarification (@lgmoneda, #1116)
- Update Transformation and Topics link from quick start notebook (@mariana393, #1115)
- Quick Start Text clarification and typo correction (@luizcavalcanti, #1114)
- Fix typos in Author-topic tutorial (@Fil, #1102)
- Address benchmark inconsistencies in Annoy tutorial (@droudy, #1113)
- Add note about Annoy speed depending on numpy BLAS setup in annoytutorial.ipynb (@greninja, #1137)
- Fix dependencies description on doc2vec-IMDB notebook (@luizcavalcanti, #1132)
- Add documentation for WikiCorpus metadata. (@kirit93, #1163)
- Add note about Annoy speed depending on numpy BLAS setup in annoytutorial.ipynb (@greninja, #1137)
- Remove direct access to properties moved to KeyedVectors (@tmylk, #1147)
- Remove support for Python 2.6, 3.3 and 3.4 (@tmylk, #1145)
- Write UTF-8 byte strings in tensorboard conversion (@tmylk, #1144)
- Make top_topics and sparse2full compatible with numpy 1.12 strictly int idexing (@tmylk, #1146)
New features:
- Add Author-topic modeling (@olavurmortensen, #893)
- Add FastText word embedding wrapper (@Jayantj, #847)
- Add WordRank word embedding wrapper (@parulsethi, #1066, #1125)
- Add sklearn wrapper for LDAModel (@AadityaJ, #932)
Improvements:
- Python 3.6 support (@tmylk #1077)
- Phrases and Phraser allow a generator corpus (ELind77 #1099)
- Ignore DocvecsArray.doctag_syn0norm in save. Fix #789 (@accraze, #1053)
- Move load and save word2vec_format out of word2vec class to KeyedVectors (@tmylk, #1107)
- Fix bug in LsiModel that occurs when id2word is a Python 3 dictionary. (@cvangysel, #1103
- Fix broken link to paper in readme (@bhargavvader, #1101)
- Lazy formatting in evaluate_word_pairs (@akutuzov, #1084)
- Deacc option to keywords pre-processing (@bhargavvader, #1076)
Tutorial and doc improvements:
- Clarifying comment in is_corpus func in utils.py (@greninja, #1109)
- Tutorial Topics_and_Transformations fix markdown and add references (@lgmoneda, #1120)
- Fix doc2vec-lee.ipynb results to match previous behavior (@bahbbc, #1119)
- Remove Pattern lib dependency in News Classification tutorial (@luizcavalcanti, #1118)
- Corpora_and_Vector_Spaces tutorial text clarification (@lgmoneda, #1116)
- Update Transformation and Topics link from quick start notebook (@mariana393, #1115)
- Quick Start Text clarification and typo correction (@luizcavalcanti, #1114)
- Fix typos in Author-topic tutorial (@Fil, #1102)
- Address benchmark inconsistencies in Annoy tutorial (@droudy, #1113)
- Disable direct access warnings on save and load of Word2vec/Doc2vec (@tmylk, #1072)
- Making Default hs error explicit (@accraze, #1054)
- Removed unnecessary numpy imports (@bhargavvader, #1065)
- Utils and Matutils changes (@bhargavvader, #1062)
- Tests for the evaluate_word_pairs function (@akutuzov, #1061)
- Added suggested lda model method and print methods to HDP class (@bhargavvader, #1055)
- New class KeyedVectors to store embedding separate from training code (@anmol01gulati and @droudy, #980)
- Evaluation of word2vec models against semantic similarity datasets like SimLex-999 (@akutuzov, #1047)
- TensorBoard word embedding visualisation of Gensim Word2vec format (@loretoparisi, #1051)
- Throw exception if load() is called on instance rather than the class in word2vec and doc2vec (@dust0x, #889)
- Loading and Saving LDA Models across Python 2 and 3. Fix #853 (@anmolgulati, #913, #1093)
- Fix automatic learning of eta (prior over words) in LDA (@olavurmortensen, #1024).
- eta should have dimensionality V (size of vocab) not K (number of topics). eta with shape K x V is still allowed, as the user may want to impose specific prior information to each topic.
- eta is no longer allowed the "asymmetric" option. Asymmetric priors over words in general are fine (learned or user defined).
- As a result, the eta update (
update_eta
) was simplified some. It also no longer logs eta when updated, because it is too large for that. - Unit tests were updated accordingly. The unit tests expect a different shape than before; some unit tests were redundant after the change;
eta='asymmetric'
now should raise an error.
- Optimise show_topics to only call get_lambda once. Fix #1006. (@bhargavvader, #1028)
- HdpModel doc improvement. Inference and print_topics (@dsquareindia, #1029)
- Removing Doc2Vec defaults so that it won't override Word2Vec defaults. Fix #795. (@markroxor, #929)
- Remove warning on gensim import "pattern not installed". Fix #1009 (@shashankg7, #1018)
- Add delete_temporary_training_data() function to word2vec and doc2vec models. (@deepmipt-VladZhukov, #987)
- Documentation improvements (@IrinaGoloshchapova, #1010, #1011)
- LDA tutorial by Olavur, tips and tricks (@olavurmortensen, #779)
- Add double quote in commmand line to run on Windows (@akarazeev, #1005)
- Fix directory names in notebooks to be OS-independent (@mamamot, #1004)
- Respect clip_start, clip_end in most_similar. Fix #601. (@parulsethi, #994)
- Replace Python sigmoid function with scipy in word2vec & doc2vec (@markroxor, #989)
- WMD to return 0 instead of inf for sentences that contain a single word (@rbahumi, #986)
- Pass all the params through the apply call in lda.get_document_topics(), test case to use the per_word_topics through the corpus in test_ldamodel (@parthoiiitm, #978)
- Pyro annotations for lsi_worker (@markroxor, #968)
- Add vocabulary expansion feature to word2vec. (@isohyt, #900)
- Tutorial: Reproducing Doc2vec paper result on wikipedia. (@isohyt, #654)
- Add Save/Load interface to AnnoyIndexer for index persistence (@fortiema, #845)
- Fixed issue #938,Creating a unified base class for all topic models. (@markroxor, #946)
- breaking change in
HdpTopicFormatter.show_topics
- breaking change in
- Add Phraser for Phrases optimization. ( @gojomo & @anujkhare , #837)
- Fix issue #743, in word2vec's n_similarity method if at least one empty list is passed ZeroDivisionError is raised (@pranay360, #883)
- Change export_phrases in Phrases model. Fix issue #794 (@AadityaJ, #879)
- bigram construction can now support multiple bigrams within one sentence
- Fix issue #838, RuntimeWarning: overflow encountered in exp (@markroxor, #895)
- Change some log messages to warnings as suggested in issue #828. (@rhnvrm, #884)
- Fix issue #851, In summarizer.py, RunTimeError is raised if single sentence input is provided to avoid ZeroDivionError. (@metalaman, #887)
- Fix issue #791, correct logic for iterating over SimilarityABC interface. (@MridulS, #839)
- Fix RP model loading for large Fortran-order arrays (@piskvorky, #605)
- Remove ShardedCorpus from init because of Theano dependency (@tmylk, #919)
- Documentation improvements ( @dsquareindia & @tmylk, #914, #906 )
- Add Annoy memory-mapping example (@harshul1610, #899)
- Fixed issue #601, correct docID in most_similar for clip range (@parulsethi, #994)
- wordtopics has changed to word_topics in ldamallet, and fixed issue #764. (@bhargavvader, #771)
- assigning wordtopics value of word_topics to keep backward compatibility, for now
- topics, topn parameters changed to num_topics and num_words in show_topics() and print_topics() (@droudy, #755)
- In hdpmodel and dtmmodel
- NOT BACKWARDS COMPATIBLE!
- Added random_state parameter to LdaState initializer and check_random_state() (@droudy, #113)
- Topic coherence update with
c_uci
,c_npmi
measures. LdaMallet, LdaVowpalWabbit support. Addtopics
parameter to coherencemodel. Can now provide tokenized topics to calculate coherence value. Faster backtracking. (@dsquareindia, #750, #793) - Added a check for empty (no words) documents before starting to run the DTM wrapper if model = "fixed" is used (DIM model) as this causes the an error when such documents are reached in training. (@eickho, #806)
- New parameters
limit
,datatype
for load_word2vec_format();lockf
for intersect_word2vec_format (@gojomo, #817) - Changed
use_lowercase
option in word2vec accuracy tocase_insensitive
to account for case variations in training vocabulary (@jayantj, #804 - Link to Doc2Vec on airline tweets example in tutorials page (@544895340, #823)
- Small error on Doc2vec notebook tutorial (@charlessutton, #816)
- Bugfix: Full2sparse clipped to use abs value (@tmylk, #811)
- WMD docstring: add tutorial link and query example (@tmylk, #813)
- Annoy integration to speed word2vec and doc2vec similarity. Tutorial update (@droudy, #799,#792 )
- Add converter of LDA model between Mallet, Vowpal Wabit and gensim (@dsquareindia, #798, #766)
- Distributed LDA in different network segments without broadcast (@menshikh-iv, #782)
- Update Corpora_and_Vector_Spaces.ipynb (@megansquire, #772)
- DTM wrapper bug fixes caused by renaming num_words in #755 (@bhargavvader, #770)
- Add LsiModel.docs_processed attribute (@hobson, #763)
- Dynamic Topic Modelling in Python. Google Summer of Code 2016 project. (@bhargavvader, #739, #831)
- Topic coherence C_v and U_mass (@dsquareindia, #710)
- Added Distance Metrics to matutils.pt (@bhargavvader, #656)
- Tutorials migrated from website to ipynb (@j9chan, #721), (@jesford, #733), (@jesford, #725), (@jesford, #716)
- New doc2vec intro tutorial (@seanlaw, #730)
- Gensim Quick Start Tutorial (@andrewjlm, #727)
- Add export_phrases(sentences) to model Phrases (hanabi1224 #588)
- SparseMatrixSimilarity returns a sparse matrix if
maintain_sparsity
is True (@davechallis, #590) - added functionality for Topics of Words in document - i.e, dynamic topics. (@bhargavvader, #704)
- also included tutorial which explains new functionalities, and document word-topic colring.
- Made normalization an explicit transformation. Added 'l1' norm support (@dsquareindia, #649)
- added term-topics API for most probable topic for word in vocab. (@bhargavvader, #706)
- build_vocab takes progress_per parameter for smaller output (@zer0n, #624)
- Control whether to use lowercase for computing word2vec accuracy. (@alantian, #607)
- Easy import of GloVe vectors using Gensim (Manas Ranjan Kar, #625)
- Allow easy port of GloVe vectors into Gensim
- Standalone script with command line arguments, compatible with Python>=2.6
- Usage: python -m gensim.scripts.glove2word2vec -i glove_vectors.txt -o output_word2vec_compatible.txt
- Add
similar_by_word()
andsimilar_by_vector()
to word2vec (@isohyt, #381) - Convenience method for similarity of two out of training sentences to doc2vec (@ellolo, #707)
- Dynamic Topic Modelling Tutorial updated with Dynamic Influence Model (@bhargavvader, #689)
- Added function to filter 'n' most frequent words from the dictionary (@abhinavchawla, #718)
- Raise warnings if vocab is single character elements and if alpha is increased in word2vec/doc2vec (@dsquareindia, #705)
- Tests for wikidump (@jonmcoe, #723)
- Mallet wrapper sparse format support (@RishabGoel, #664)
- Doc2vec pre-processing script translated from bash to Python (@andrewjlm, #720)
- Better internal handling of job batching in word2vec (#535)
- up to 300% speed up when training on very short documents (~tweets)
- Word2vec CLI in line with original word2vec.c (Andrey Kutuzov, #538)
- Same default values. See diff https://github.com/akutuzov/gensim/commit/6456cbcd75e6f8720451766ba31cc046b4463ae2
- Standalone script with command line arguments matching those of original C tool.
- Usage: python -m gensim.scripts.word2vec_standalone -train data.txt -output trained_vec.txt -size 200 -window 2 -sample 1e-4
- Improved load_word2vec_format() performance (@svenkreiss, #555)
- Remove
init_sims()
call for performance improvements when normalized vectors are not needed. - Remove
norm_only
parameter (API change). Callinit_sims(replace=True)
after theload_word2vec_format()
call for the oldnorm_only=True
behavior.
- Remove
- Word2vec allows non-strict unicode error handling (ignore or replace) (Gordon Mohr, #466)
- Doc2Vec
model.docvecs[key]
now raises KeyError for unknown keys (Gordon Mohr, #520) - Fix
DocvecsArray.index_to_doctag
somost_similar()
returns string doctags (Gordon Mohr, #560) - On-demand loading of the
pattern
library in utils.lemmatize (Jan Zikes, #461)utils.HAS_PATTERN
flag moved toutils.has_pattern()
- Threadsafe Word2Vec/Doc2Vec finish-check to avoid hang/unending Word2Vec/Doc2Vec training (Gordon Mohr, #571)
- Tuned
TestWord2VecModel.test_cbow_hs()
against random failures (Gordon Mohr, #531) - Prevent ZeroDivisionError when
default_timer()
indicate no elapsed time (Gordon Mohr, #518) - Forwards compatibility for NumPy > 1.10 (Matti Lyra, #494, #513)
- LdaModel and LdaMulticore produce a large number of DeprecationWarnings from .inference() because the term ids in each chunk returned from utils.grouper are floats. This behaviour has been changed so that the term IDs are now ints.
- utils.grouper returns a python list instead of a numpy array in .update() when LdaModel is called in non distributed mode
- in distributed mode .update() will still call utils.grouper with as_numpy=True to save memory
- LdaModel.update and LdaMulticore.update have a new keyword parameter chunks_as_numpy=True/False (defaults to False) that allows controlling this behaviour
- Make show_topics return value consistent across models (Christopher Corley, #448)
- All models with the
show_topics
method should return a list of(topic_number, topic)
tuples, wheretopic
is a list of(word, probability)
tuples. - This is a breaking change that affects users of the
LsiModel
,LdaModel
, andLdaMulticore
that may be reliant on the old tuple layout of(probability, word)
.
- All models with the
- Mixed integer & string document-tags (keys to doc-vectors) will work (Gordon Mohr, #491)
- DocvecsArray's
index2doctag
list is renamed/reinterpreted asoffset2doctag
offset2doctag
entries map todoctag_syn0
indexes after last plain-int doctag (if any)- (If using only string doctags,
offset2doctag
may be interpreted same asindex2doctag
.)
- DocvecsArray's
- New Tutorials on Dynamic Topic Modelling and Classification via Word2Vec (@arttii #471, @mataddy #500)
- Auto-learning for the eta parameter on the LdaModel (Christopher Corley, #479)
- Python 3.5 support
- Speed improvements to keyword and summarisation methods (@erbas #441)
- OSX wheels (#504)
- Win build (#492)
- tutorial on text summarization (Ólavur Mortensen, #436)
- more flexible vocabulary construction in word2vec & doc2vec (Philipp Dowling, #434)
- added support for sliced TransformedCorpus objects, so that after applying (for instance) TfidfModel the returned corpus remains randomly indexable. (Matti Lyra, #425)
- changed the LdaModel.save so that a custom
ignore
list can be passed in (Matti Lyra, #331) - added support for NumPy style fancy indexing to corpus objects (Matti Lyra, #414)
- py3k fix in distributed LSI (spacecowboy, #433)
- Windows fix for setup.py (#428)
- fix compatibility for scipy 0.16.0 (#415)
- improvements to testing, switch to Travis CI containers
- support for loading old word2vec models (<=0.11.1) in 0.12+ (Gordon Mohr, #405)
- various bug fixes to word2vec, doc2vec (Gordon Mohr, #393, #386, #404)
- TextSummatization support for very short texts (Federico Barrios, #390)
- support for word2vec[['word1', 'word2'...]] convenience API calls (Satish Palaniappan, #395)
- MatrixSimilarity supports indexing generator corpora (single pass)
- complete API, performance, memory overhaul of doc2vec (Gordon Mohr, #356, #373, #380, #384)
- fast infer_vector(); optional memory-mapped doc vectors; memory savings with int doc IDs
- 'dbow_words' for combined DBOW & word skip-gram training; new 'dm_concat' mode
- multithreading & negative-sampling optimizations (also benefitting word2vec)
- API NOTE: doc vectors must now be accessed/compared through model's 'docvecs' field (eg: "model.docvecs['my_ID']" or "model.docvecs.most_similar('my_ID')")
- https://github.com/piskvorky/gensim/blob/develop/docs/notebooks/doc2vec-IMDB.ipynb
- new "text summarization" module (PR #324: Federico Lopez, Federico Barrios)
- new matutils.argsort with partial sort
- performance speedups to all similarity queries (word2vec, Similarity classes...)
- word2vec can compute likelihood scores for classification (Mat Addy, #358)
- word2vec supports "encoding" parameter when loading from C format, for non-utf8 models
- more memory-efficient word2vec training (#385)
- fixes to Python3 compatibility (Pavel Kalaidin #330, S-Eugene #369)
- enhancements to save/load format (Liang Bo Wang #363, Gordon Mohr #356)
- pickle defaults to protocol=2 for better py3 compatibility
- fixes and improvements to wiki parsing (Lukas Elmer #357, Excellent5 #333)
- fix to phrases scoring (Ikuya Yamada, #353)
- speed up of phrases generation (Dave Challis, #349)
- changes to multipass LDA training (Christopher Corley, #298)
- various doc improvements and fixes (Matti Lyra #331, Hongjoo Lee #334)
- fixes and improvements to LDA (Christopher Corley #323)
- added "topic ranking" to sort topics by coherence in LdaModel (jtmcmc, #311)
- new fast ShardedCorpus out-of-core corpus (Jan Hajic jr., #284)
- utils.smart_open now uses the smart_open package (#316)
- new wrapper for LDA in Vowpal Wabbit (Dave Challis, #304)
- improvements to the DtmModel wrapper (Yang Han, #272, #277)
- move wrappers for external modeling programs into a submodule (Christopher Corley, #295)
- allow transparent compression of NumPy files in save/load (Christopher Corley, #248)
- save/load methods now accept file handles, in addition to file names (macks22, #292)
- fixes to LdaMulticore on Windows (Feng Mai, #305)
- lots of small fixes & py3k compatibility improvements (Chyi-Kwei Yau, Daniel Nouri, Timothy Emerick, Juarez Bochi, Christopher Corley, Chirag Nagpal, Jan Hajic jr., Flávio Codeço Coelho)
- re-released as 0.11.1 and 0.11.1-1 because of a packaging bug
- added streamed phrases = collocation detection (Miguel Cabrera, #258)
- added param for multiple word2vec epochs (sebastienj, #243)
- added doc2vec (=paragraph2vec = extension of word2vec) model (Timothy Emerick, #231)
- initialize word2vec deterministically, for increased experiment reproducibility (KCzar, #240)
- all indexed corpora now allow full Python slicing syntax (Christopher Corley, #246)
- update distributed code for new Pyro4 API and py3k (Michael Brooks, Marco Bonzanini, #255, #249)
- fixes to six module version (Lars Buitinck, #259)
- fixes to setup.py (Maxim Avanov and Christopher Corley, #260, #251)
- ...and lots of minor fixes & updates all around
- new parallelized, LdaMulticore implementation (Jan Zikes, #232)
- Dynamic Topic Models (DTM) wrapper (Arttii, #205)
- word2vec compiled from bundled C file at install time: no more pyximport (#233)
- standardize show_/print_topics in LdaMallet (Benjamin Bray, #223)
- add new word2vec multiplicative objective (3CosMul) of Levy & Goldberg (Gordon Mohr, #224)
- preserve case in MALLET wrapper (mcburton, #222)
- support for matrix-valued topic/word prior eta in LdaModel (mjwillson, #208)
- py3k fix to SparseCorpus (Andreas Madsen, #234)
- fix to LowCorpus when switching dictionaries (Christopher Corley, #237)
- word2vec: new n_similarity method for comparing two sets of words (François Scharffe, #219)
- make LDA print/show topics parameters consistent with LSI (Bram Vandekerckhove, #201)
- add option for efficient word2vec subsampling (Gordon Mohr, #206)
- fix length calculation for corpora on empty files (Christopher Corley, #209)
- improve file cleanup of unit tests (Christopher Corley)
- more unit tests
- unicode now stored everywhere in gensim internally; accepted input stays either utf8 or unicode
- various fixes to the py3k ported code
- allow any dict-like input in Dictionary.from_corpus (Andreas Madsen)
- error checking improvements to the MALLET wrapper
- ignore non-articles during wiki parsig
- utils.lemmatize now (optionally) ignores stopwords
- full Python 3 support (targeting 3.3+, #196)
- all internal methods now expect & store unicode, instead of utf8
- new optimized word2vec functionality: negative sampling, cbow (sebastien-j, #162)
- allow by-frequency sort in Dictionary.save_as_text (Renaud Richardet, #192)
- add topic printing to HDP model (Tiepes, #190)
- new gensim_addons package = optional install-time Cython compilations (Björn Esser, #197)
- added py3.3 and 3.4 to Travis CI tests
- fix a cbow word2vec bug (Liang-Chi Hsieh)
- MmCorpus fix for Windows
- LdaMallet support for printing/showing topics
- fix LdaMallet bug when user specified a file prefix (Victor, #184)
- fix LdaMallet output when input is single vector (Suvir)
- added LdaMallet unit tests
- more py3k fixes (Lars Buitinck)
- change order of LDA topic printing (Fayimora Femi-Balogun, #188)
- save/load automatically single out large arrays + allow mmap
- allow .gz/.bz2 corpus filenames => transparently (de)compressed I/O
- CBOW model for word2vec (Sébastien Jean, #176)
- new API for storing corpus metadata (Joseph Chang, #169)
- new LdaMallet class = train LDA using wrapped Mallet
- new MalletCorpus class for corpora in Mallet format (Christopher Corley, #179)
- better Wikipedia article parsing (Joseph Chang, #170)
- word2vec load_word2vec_format uses less memory (Yves Raimond, #164)
- load/store vocabulary files for word2vec C format (Yves Raimond, #172)
- HDP estimation on new documents (Elliot Kulakow, #153)
- store labels in SvmLight corpus (Ritesh, #152)
- fix word2vec binary load on Windows (Stephanus van Schalkwyk)
- replace numpy.svd with scipy.svd for more stability (Sven Döring, #159)
- parametrize LDA constructor (Christopher Corley, #174)
- steps toward py3k compatibility (Lars Buitinck, #154)
- use travis-ci for continuous integration
- auto-optimize LDA asymmetric prior (Ben Trahan)
- update for new word2vec binary format (Daren Race)
- doc rendering fix (Dan Foreman-Mackey)
- better LDA perplexity logging
- fix Pyro thread leak in distributed algos (Brian Feeny)
- optimizations in word2vec (Bryan Rink)
- allow compressed input in LineSentence corpus (Eric Moyer)
- upgrade ez_setup, doc improvements, minor fixes etc.
- python3 port by Parikshit Samant: https://github.com/samantp/gensimPy3
- massive optimizations to word2vec (cython, BLAS, multithreading): ~20x-300x speedup
- new word2vec functionality (thx to Ghassen Hamrouni, PR #124)
- new CSV corpus class (thx to Zygmunt Zając)
- corpus serialization checks to prevent overwriting (by Ian Langmore, PR #125)
- add context manager support for older Python<=2.6 for gzip and bz2
- added unittests for word2vec
- initial version of word2vec, a neural network deep learning algo
- make distributed gensim compatible with the new Pyro
- allow merging dictionaries (by Florent Chandelier)
- new design for the gensim website!
- speed up handling of corner cases when returning top-n most similar
- make Random Projections compatible with new scipy (andrewjOc360, PR #110)
- allow "light" (faster) word lemmatization (by Karsten Jeschkies)
- save/load directly from bzip2 files (by Luis Pedro Coelho, PR #101)
- Blei corpus now tries harder to find its vocabulary file (by Luis Pedro Coelho, PR #100)
- sparse vector elements can now be a list (was: only a 2-tuple)
- simple_preprocess now optionally deaccents letters (ř/š/ú=>r/s/u etc.)
- better serialization of numpy corpora
- print_topics() returns the topics, in addition to printing/logging
- fixes for more robust Windows multiprocessing
- lots of small fixes, data checks and documentation updates
- added HashDictionary (by Homer Strong)
- support for adding target classes in SVMlight format (by Corrado Monti)
- fixed problems with global lemmatizer object when running in parallel on Windows
- parallelization of Wikipedia processing + added script version that lemmatizes the input documents
- added class method to initialize Dictionary from an existing corpus (by Marko Burjek)
- improved performance of sharding (similarity queries)
- better Wikipedia parsing (thx to Alejandro Weinstein and Lars Buitinck)
- faster Porter stemmer (thx to Lars Buitinck)
- several minor fixes (in HDP model thx to Greg Ver Steeg)
- improvements to documentation
- better support for Pandas series input (thx to JT Bates)
- a new corpus format: UCI bag-of-words (thx to Jonathan Esterhazy)
- a new model, non-parametric bayes: HDP (thx to Jonathan Esterhazy; based on Chong Wang's code)
- improved support for new scipy versions (thx to Skipper Seabold)
- lemmatizer support for wikipedia parsing (via the
pattern
python package) - extended the lemmatizer for multi-core processing, to improve its performance
- fixed Similarity sharding bug (issue #65, thx to Paul Rudin)
- improved LDA code (clarity & memory footprint)
- optimized efficiency of Similarity sharding
- improved gensim landing page
- improved accuracy of SVD (Latent Semantic Analysis) (thx to Mark Tygert)
- changed interpretation of LDA topics: github issue #57
- took out similarity server code introduced in 0.8.1 (will become a separate project)
- started using
tox
for testing -
- several smaller fixes and optimizations
- transactional similarity server: see docs/simserver.html
- website moved from university hosting to radimrehurek.com
- much improved speed of lsi[corpus] transformation:
- accuracy tests of incremental svd: test/svd_error.py and http://groups.google.com/group/gensim/browse_thread/thread/4b605b72f8062770
- further improvements to memory-efficiency of LDA and LSA
- improved wiki preprocessing (thx to Luca de Alfaro)
- model.print_topics() debug fncs now support std output, in addition to logging (thx to Homer Strong)
- several smaller fixes and improvements
- changed all variable and function names to comply with PEP8 (numTopics->num_topics): BREAKS BACKWARD COMPATIBILITY!
- added support for similarity querying more documents at once (index[query_documents] in addition to index[query_document]; much faster)
- rewrote Similarity so that it is more efficient and scalable (using disk-based mmap'ed shards)
- simplified directory structure (src/gensim/ is now only gensim/)
- several small fixes and optimizations
- added
corpora.IndexedCorpus
, a base class for corpus serializers (thx to Dieter Plaetinck). This allows corpus formats that inherit from it (MmCorpus, SvmLightCorpus, BleiCorpus etc.) to retrieve individual documents by their id in O(1), e.g.corpus[14]
returns document #14. - merged new code from the LarKC.eu team (
corpora.textcorpus
,models.logentropy_model
, lots of unit tests etc.) - fixed a bug in
lda[bow]
transformation (was returning gamma distribution instead of theta). LDA model generation was not affected, only transforming new vectors. - several small fixes and documentation updates
- new LDA implementation after Hoffman et al.: Online Learning for Latent Dirichlet Allocation
- distributed LDA
- updated LDA docs (wiki experiments, distributed tutorial)
- matrixmarket header now uses capital 'M's: MatrixMarket. (André Lynum reported than Matlab has trouble processing the lowercase version)
- moved code to github
- started gensim Google group
- added workaround for a bug in numpy: pickling a fortran-order array (e.g. LSA model) and then loading it back and using it results in segfault (thx to Brian Merrel)
- bundled a new version of ez_setup.py: old failed with Python2.6 when setuptools were missing (thx to Alan Salmoni).
- further optimization to LSA; this is the version used in my NIPS workshop paper
- got rid of SVDLIBC dependency (one-pass LSA now uses stochastic algo for base-base decompositions)
- sped up Latent Dirichlet ~10x (through scipy.weave, optional)
- finally, distributed LDA! scales almost linearly, but no tutorial yet. see the tutorial on distributed LSI, everything's completely analogous.
- several minor fixes and improvements; one nasty bug fixed (lsi[corpus] didn't work; thx to Danilo Spinelli)
- added stochastic SVD decomposition (faster than the current one-pass LSI algo, but needs two passes over the input corpus)
- published gensim on mloss.org
- added workaround for a numpy bug where SVD sometimes fails to converge for no good reason
- changed content of gensims's PyPi title page
- completed HTML tutorial on distributed LSA
- fixed a bug in LSA that occurred when the number of features was smaller than the number of topics (thx to Richard Berendsen)
- optimized vocabulary generation in gensim.corpora.dictionary (faster and less memory-intense)
- MmCorpus accepts compressed input (file-like objects such as GzipFile, BZ2File; to save disk space)
- changed sparse solver to SVDLIBC (sparsesvd on PyPi) for large document chunks
- added distributed LSA, updated tutorials (still experimental though)
- several minor bug fixes
- added option for online LSI training (yay!). the transformation can now be used after any amount of training, and training can be continued at any time with more data.
- optimized the tf-idf transformation, so that it is a strictly one-pass algorithm in all cases (thx to Brian Merrell).
- fixed Windows-specific bug in handling binary files (thx to Sutee Sudprasert)
- fixed 1-based feature counting bug in SVMlight format (thx to Richard Berendsen)
- added 'Topic :: Text Processing :: Linguistic' to gensim's pypi classifiers
- change of sphinx documentation css and layout
- finished all tutorials, stable version
- tutorial on transformations
- added Random Projections (aka Random Indexing), as another transformation model.
- several DML-CZ specific updates
- updated documentation
- further memory optimizations in SVD (LSI)
- added missing test files to MANIFEST.in
- documentation changes
- added gensim reference to Wikipedia articles (SVD, LSI, LDA, TFIDF, ...)
- finally, a tutorial!
- similarity queries got their own package
- pdf documentation
- removed dependency on python2.5 (theoretically, gensim now runs on 2.6 and 2.7 as well).
- support for
python setup.py test
- fixing package metadata
- documentation clean-up
- First version