-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathLE.agda
131 lines (100 loc) · 4.6 KB
/
LE.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
{-# OPTIONS --cubical --safe #-}
module LE where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Empty
open import Cubical.Relation.Nullary
open import Cubical.Relation.Nullary.DecidableEq
open import Cubical.Data.Nat
using (ℕ; zero; isSetℕ; _+_; +-zero; +-suc)
renaming (suc to succ; inj-m+ to +-inj₁; inj-+m to +-inj₂; injSuc to succ-inj; snotz to ¬succ≡zero)
module ZeroSucc where
data _≤_ : ℕ → ℕ → Type₀ where
leZero : ∀ {m} → zero ≤ m
leSucc : ∀ {n m} → n ≤ m → succ n ≤ succ m
leRefl : ∀ n → n ≤ n
leRefl zero = leZero
leRefl (succ n) = leSucc (leRefl n)
leStep : ∀ {n m} → n ≤ m → n ≤ succ m
leStep leZero = leZero
leStep (leSucc p) = leSucc (leStep p)
lePred : ∀ {n m} → succ n ≤ succ m → n ≤ m
lePred (leSucc p) = p
lePlus : ∀ p n m → p + n ≡ m → n ≤ m
lePlus zero n _ p+n≡m = subst (n ≤_) p+n≡m (leRefl n)
lePlus (succ p) zero zero p+n≡m = leZero
lePlus (succ p) (succ n) zero p+n≡m = ⊥-elim (¬succ≡zero p+n≡m)
lePlus (succ p) n (succ m) p+n≡m = leStep (lePlus p n m (succ-inj p+n≡m))
decide-≤ : ∀ n m → Dec (n ≤ m)
decide-≤ zero m = yes leZero
decide-≤ (succ n) zero = no (λ ())
decide-≤ (succ n) (succ m) with decide-≤ n m
... | yes p = yes (leSucc p)
... | no ¬p = no (λ p → ¬p (lePred p))
isProp-≤ : ∀ {n m} → isProp (n ≤ m)
isProp-≤ leZero leZero = refl
isProp-≤ (leSucc p) (leSucc q) = cong leSucc (isProp-≤ p q)
module ReflStep where
data _≤_ : ℕ → ℕ → Type₀ where
leRefl : ∀ {n} → n ≤ n
leStep : ∀ {n m} → n ≤ m → n ≤ succ m
leZero : ∀ m → zero ≤ m
leZero zero = leRefl
leZero (succ m) = leStep (leZero m)
leSucc : ∀ {n m} → n ≤ m → succ n ≤ succ m
leSucc leRefl = leRefl
leSucc (leStep p) = leStep (leSucc p)
-- Path between ReflStep and ZeroSucc
toZS : ∀ {n m} → n ≤ m → n ZeroSucc.≤ m
toZS leRefl = ZeroSucc.leRefl _
toZS (leStep p) = ZeroSucc.leStep (toZS p)
fromZS : ∀ {n m} → n ZeroSucc.≤ m → n ≤ m
fromZS ZeroSucc.leZero = leZero _
fromZS (ZeroSucc.leSucc p) = leSucc (fromZS p)
to∘from : ∀ {n m} (x : n ZeroSucc.≤ m) → toZS (fromZS x) ≡ x
to∘from x = ZeroSucc.isProp-≤ _ x
from∘to : ∀ {n m} (x : n ≤ m) → fromZS (toZS x) ≡ x
from∘to leRefl = lemma _ where
lemma : ∀ m → fromZS (ZeroSucc.leRefl m) ≡ leRefl
lemma zero = refl
lemma (succ m) = cong leSucc (lemma m)
from∘to (leStep x) = lemma (toZS x) ∙ cong leStep (from∘to x) where
lemma : ∀ {n m} → (p : n ZeroSucc.≤ m) → fromZS (ZeroSucc.leStep p) ≡ leStep (fromZS p)
lemma ZeroSucc.leZero = refl
lemma (ZeroSucc.leSucc p) = cong leSucc (lemma p)
≡ZeroSucc : _≤_ ≡ ZeroSucc._≤_
≡ZeroSucc = funExt λ n → funExt λ m → isoToPath (iso toZS fromZS to∘from from∘to)
isProp-≤ : ∀ {n m} → isProp (n ≤ m)
isProp-≤ {n} {m} = subst (λ R → isProp (R n m)) (sym ≡ZeroSucc) ZeroSucc.isProp-≤
module ExistsSum where
data _≤_ : ℕ → ℕ → Type₀ where
exists : ∀ {n m} p → p + n ≡ m → n ≤ m
leZero : ∀ m → zero ≤ m
leZero m = exists m (+-zero m)
leSucc : ∀ {n m} → n ≤ m → succ n ≤ succ m
leSucc (exists p x) = exists p (+-suc p _ ∙ cong succ x)
toZS : ∀ {n m} → n ≤ m → n ZeroSucc.≤ m
toZS (exists p x) = ZeroSucc.lePlus p _ _ x
fromZS : ∀ {n m} → n ZeroSucc.≤ m → n ≤ m
fromZS ZeroSucc.leZero = leZero _
fromZS (ZeroSucc.leSucc p) = leSucc (fromZS p)
to∘from : ∀ {n m} (x : n ZeroSucc.≤ m) → toZS (fromZS x) ≡ x
to∘from x = ZeroSucc.isProp-≤ _ x
isProp-≤ : ∀ {n m} → isProp (n ≤ m)
isProp-≤ {n} {m} (exists p pp) (exists q qq) i =
exists (lemma₁ i) (lemma₂ i)
where
lemma₁ : p ≡ q
lemma₁ = +-inj₂ (pp ∙ sym qq)
lemma₂ : PathP (λ i → lemma₁ i + n ≡ m) pp qq
lemma₂ = isOfHLevel→isOfHLevelDep
{n = 1} {A = ℕ} {B = λ p → p + n ≡ m}
(λ a → isSetℕ _ _) pp qq lemma₁
from∘to : ∀ {n m} → (x : n ≤ m) → fromZS (toZS x) ≡ x
from∘to x = isProp-≤ _ x
≡ZeroSucc : _≤_ ≡ ZeroSucc._≤_
≡ZeroSucc = funExt λ n → funExt λ m → isoToPath (iso toZS fromZS to∘from from∘to)
≡ReflStep : _≤_ ≡ ReflStep._≤_
≡ReflStep = ≡ZeroSucc ∙ sym ReflStep.≡ZeroSucc