-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbrain.c
186 lines (155 loc) · 7.03 KB
/
brain.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
/*
* Copyright (C) 2014-2018 Philippe Aubertin.
* All rights reserved.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of other contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <math.h>
#include <xmmintrin.h>
#include "brain.h"
/* This function and the next few ones use compiler intrinsic functions for SSE2
* instructions that act on vectors of four floating point values. The return
* value and all arguments of these functions are vectors of four floating point
* values. */
static inline genome_f4_t mux(genome_f4_t cond, genome_f4_t vthen, genome_f4_t velse) {
/* mux(p, a, b) = p ? a : b
* = p & a | ~p & b */
return _mm_or_ps(
_mm_and_ps(cond, vthen),
_mm_andnot_ps(cond, velse) );
}
static inline genome_f4_t mux_if_less(genome_f4_t op1, genome_f4_t op2, genome_f4_t vthen, genome_f4_t velse) {
genome_f4_t cond;
cond = _mm_cmplt_ps(op1, op2);
return mux(cond, vthen, velse);
}
static inline genome_f4_t mux_if_between(genome_f4_t op, genome_f4_t low, genome_f4_t high, genome_f4_t vthen, genome_f4_t velse) {
genome_f4_t cond;
cond = _mm_and_ps(
_mm_cmplt_ps(low, op),
_mm_cmplt_ps(op, high) );
return mux(cond, vthen, velse);
}
/* Rectifier activation function (ReLU) */
static inline genome_f4_t relu(genome_f4_t t) {
return mux_if_less(t, _mm_set1_ps(0.0), _mm_set1_ps(0.0), t);
}
/* Piecewise polynomial approximation of a sigmoid-like curve
*
* The value of the function is zero for arguments under -5 and one for
* arguments over 5. Between -5 and 5, the value of the function is the value of
* a degree 3 polynomial with the following characteristics:
*
* - The polynomial has value 0 at -5 and 1 at 5 so as not to have
* discontinuities.
* - The first derivative is zero at -5 and 5 to prevent discontinuities of
* that derivative.
*
* */
static inline genome_f4_t sigmoid(genome_f4_t t) {
genome_f4_t poly;
genome_f4_t mux1;
genome_f4_t mux2;
/* compute polynomial:
* poly(t) = -0.002 * t^3 + 0.15 * t + 0.5
* = (-0.002 * t^2 + 0.15) * t + 0.5 */
poly = (_mm_set1_ps(-0.002) * t*t + _mm_set1_ps(0.15)) * t + _mm_set1_ps(0.5);
/* select poly if -5 < t < 5, 0 if t < -5, 1 otherwise (t > 5) */
mux1 = mux_if_less(t, _mm_set1_ps(-5.0), _mm_set1_ps(0.0), poly);
mux2 = mux_if_less(t, _mm_set1_ps( 5.0), mux1, _mm_set1_ps(1.0));
return mux2;
}
/* Piecewise polynomial approximation of a gaussian-like curve
*
* The value of the function is zero for arguments under -5 and over 5. Between
* -5 and 0 the value of the function is the value of a degree 3 polynomial,
* whereas between 0 and 5, it is the value of that same polynomial computed on
* the inverse of the argument (i.e. p(-x)). The coefficients of the polynomial
* have been computed with the following constraints in mind:
*
* - The polynomial has value 0 at -5 and 1 at 0 so as not to have
* discontinuities.
* - The first derivative is zero at -5 and 0 to prevent discontinuities of
* that derivative.
* */
static inline genome_f4_t gaussian(genome_f4_t t) {
genome_f4_t a;
genome_f4_t poly;
/* select coefficient: a = -0.016 if t < 0, 0.016 otherwise */
a = mux_if_less(t, _mm_set1_ps(0.0), _mm_set1_ps(-0.016), _mm_set1_ps(0.016));
/* compute polynomial:
* poly(t) = +/-0.016 * t^3 - 0.12 * t^2 + 1.0
* = a * t^3 - 0.12 * t^2 + 1.0
* = (a * t - 0.12) * t^2 + 1.0 */
poly = (a * t - _mm_set1_ps(0.12)) * t*t + _mm_set1_ps(1.0);
/* select poly if -5 < t < 5, 0 otherwise */
return mux_if_between(t, _mm_set1_ps(-5.0), _mm_set1_ps(5.0), poly, _mm_set1_ps(0.0));
}
bool brain_control_init(brain_control_t *control) {
control->left_speed = 0.0;
control->right_speed = 0.0;
return true;
}
void brain_control_compute(brain_control_t * restrict control, const genome_t * restrict genome, const stimuli_t * restrict stimuli) {
const gene_chunk_t *weight;
const float *hidden;
gene_chunk_t hidden_layer[GENOME_HIDDEN_GENES];
gene_chunk_t input[GENOME_INPUT_COUNT];
gene_chunk_t acc;
int idx, idy;
input[0].v = _mm_load1_ps(&stimuli->food_intensity);
input[1].v = _mm_load1_ps(&stimuli->food_angle);
input[2].v = _mm_load1_ps(&stimuli->danger_intensity);
input[3].v = _mm_load1_ps(&stimuli->danger_angle);
input[4].v = _mm_load1_ps(&stimuli->wall_intensity);
input[5].v = _mm_load1_ps(&stimuli->wall_angle);
input[6].v = _mm_load1_ps(&stimuli->food_odour);
input[7].v = _mm_load1_ps(&stimuli->danger_odour);
for(idy = 0; idy < GENOME_HIDDEN_GENES; ++idy) {
/* chunk 0 is bias, weight * 1 = weight */
acc.v = genome->hidden[idy].chunk[0].v;
weight = &genome->hidden[idy].chunk[1];
for(idx = 0; idx < GENOME_INPUT_COUNT; ++idx) {
acc.v += weight[idx].v * input[idx].v;
}
if(idy < GENOME_SIGMOID_GENES) {
hidden_layer[idy].v = gaussian(acc.v);
}
else if(idy < GENOME_SIGMOID_GENES + GENOME_GAUSSIAN_GENES) {
hidden_layer[idy].v = sigmoid(acc.v);
}
else {
hidden_layer[idy].v = relu(acc.v);
}
}
/* chunk 0 is bias */
acc.v = genome->output.chunk[0].v;
weight = &genome->output.chunk[1];
hidden = (float *)hidden_layer;
for(idx = 0; idx < GENOME_HIDDEN_COUNT; ++idx) {
acc.v += weight[idx].v * _mm_load1_ps(&hidden[idx]);
}
acc.v = sigmoid(acc.v);
control->left_speed = acc.f[0];
control->right_speed = acc.f[1];
}