diff --git a/cookbook/workflows/startup_idea_validator.py b/cookbook/workflows/startup_idea_validator.py new file mode 100644 index 000000000..c4070f622 --- /dev/null +++ b/cookbook/workflows/startup_idea_validator.py @@ -0,0 +1,213 @@ +""" +1. Install dependencies using: `pip install openai exa_py sqlalchemy phidata` +2. Run the script using: `python cookbook/workflows/blog_post_generator.py` +""" + +import json +from typing import Optional, Iterator + +from pydantic import BaseModel, Field + +from phi.agent import Agent +from phi.model.openai import OpenAIChat +from phi.tools.googlesearch import GoogleSearch +from phi.workflow import Workflow, RunResponse, RunEvent +from phi.storage.workflow.sqlite import SqlWorkflowStorage +from phi.utils.pprint import pprint_run_response +from phi.utils.log import logger + + +class IdeaClarification(BaseModel): + originality: str = Field(..., description="Originality of the idea.") + mission: str = Field(..., description="Mission of the company.") + objectives: str = Field(..., description="Objectives of the company.") + + +class MarketResearch(BaseModel): + total_addressable_market: str = Field(..., description="Total addressable market (TAM).") + serviceable_available_market: str = Field(..., description="Serviceable available market (SAM).") + serviceable_obtainable_market: str = Field(..., description="Serviceable obtainable market (SOM).") + target_customer_segments: str = Field(..., description="Target customer segments.") + + +class StartupIdeaValidator(Workflow): + idea_clarifier_agent: Agent = Agent( + model=OpenAIChat(id="gpt-4o-mini"), + instructions=[ + "Given a user's startup idea, its your goal to refine that idea. ", + "Evaluates the originality of the idea by comparing it with existing concepts. ", + "Define the mission and objectives of the startup.", + ], + add_history_to_messages=True, + add_datetime_to_instructions=True, + response_model=IdeaClarification, + structured_outputs=True, + debug_mode=False, + ) + + market_research_agent: Agent = Agent( + model=OpenAIChat(id="gpt-4o-mini"), + tools=[GoogleSearch()], + instructions=[ + "You are provided with a startup idea and the company's mission and objectives. ", + "Estimate the total addressable market (TAM), serviceable available market (SAM), and serviceable obtainable market (SOM). ", + "Define target customer segments and their characteristics. ", + "Search the web for resources if you need to.", + ], + add_history_to_messages=True, + add_datetime_to_instructions=True, + response_model=MarketResearch, + structured_outputs=True, + debug_mode=False, + ) + + competitor_analysis_agent: Agent = Agent( + model=OpenAIChat(id="gpt-4o-mini"), + tools=[GoogleSearch()], + instructions=[ + "You are provided with a startup idea and some market research related to the idea. ", + "Identify existing competitors in the market. ", + "Perform Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis for each competitor. ", + "Assess the startup’s potential positioning relative to competitors.", + ], + add_history_to_messages=True, + add_datetime_to_instructions=True, + markdown=True, + debug_mode=False, + ) + + report_agent: Agent = Agent( + model=OpenAIChat(id="gpt-4o-mini"), + instructions=[ + "You are provided with a startup idea and other data about the idea. ", + "Summarise everything into a single report.", + ], + add_history_to_messages=True, + add_datetime_to_instructions=True, + markdown=True, + debug_mode=False, + ) + + def get_idea_clarification(self, startup_idea: str) -> Optional[IdeaClarification]: + try: + response: RunResponse = self.idea_clarifier_agent.run(startup_idea) + + # Check if we got a valid response + if not response or not response.content: + logger.warning("Empty Idea Clarification response") + # Check if the response is of the expected type + if not isinstance(response.content, IdeaClarification): + logger.warning("Invalid response type") + + return response.content + + except Exception as e: + logger.warning(f"Failed: {str(e)}") + + return None + + def get_market_research(self, startup_idea: str, idea_clarification: IdeaClarification) -> Optional[MarketResearch]: + agent_input = {"startup_idea": startup_idea, **idea_clarification.model_dump()} + + try: + response: RunResponse = self.market_research_agent.run(json.dumps(agent_input, indent=4)) + + # Check if we got a valid response + if not response or not response.content: + logger.warning("Empty Market Research response") + + # Check if the response is of the expected type + if not isinstance(response.content, MarketResearch): + logger.warning("Invalid response type") + + return response.content + + except Exception as e: + logger.warning(f"Failed: {str(e)}") + + return None + + def get_competitor_analysis(self, startup_idea: str, market_research: MarketResearch) -> Optional[str]: + agent_input = {"startup_idea": startup_idea, **market_research.model_dump()} + + try: + response: RunResponse = self.competitor_analysis_agent.run(json.dumps(agent_input, indent=4)) + + # Check if we got a valid response + if not response or not response.content: + logger.warning("Empty Competitor Analysis response") + + return response.content + + except Exception as e: + logger.warning(f"Failed: {str(e)}") + + return None + + def run(self, startup_idea: str) -> Iterator[RunResponse]: + logger.info(f"Generating a startup validation report for: {startup_idea}") + + # Clarify and quantify the idea + idea_clarification: Optional[IdeaClarification] = self.get_idea_clarification(startup_idea) + + if idea_clarification is None: + yield RunResponse( + event=RunEvent.workflow_completed, + content=f"Sorry, could not even clarify the idea: {startup_idea}", + ) + return + + # Do some market research + market_research: Optional[MarketResearch] = self.get_market_research(startup_idea, idea_clarification) + + if market_research is None: + yield RunResponse( + event=RunEvent.workflow_completed, + content="Market research failed", + ) + return + + competitor_analysis: Optional[str] = self.get_competitor_analysis(startup_idea, market_research) + + # Compile the final report + final_response: RunResponse = self.report_agent.run( + json.dumps( + { + "startup_idea": startup_idea, + **idea_clarification.model_dump(), + **market_research.model_dump(), + "competitor_analysis_report": competitor_analysis, + }, + indent=4, + ) + ) + + yield RunResponse(content=final_response.content, event=RunEvent.workflow_completed) + + +# Run the workflow if the script is executed directly +if __name__ == "__main__": + from rich.prompt import Prompt + + # Get idea from user + idea = Prompt.ask( + "[bold]What is your startup idea?[/bold]\n✨", + default="A marketplace for Christmas Ornaments made from leather", + ) + + # Convert the idea to a URL-safe string for use in session_id + url_safe_idea = idea.lower().replace(" ", "-") + + startup_idea_validator = StartupIdeaValidator( + description="Startup Idea Validator", + session_id=f"validate-startup-idea-{url_safe_idea}", + storage=SqlWorkflowStorage( + table_name="validate_startup_ideas_workflow", + db_file="tmp/workflows.db", + ), + debug_mode=True + ) + + final_report: Iterator[RunResponse] = startup_idea_validator.run(startup_idea=idea) + + pprint_run_response(final_report, markdown=True)