-
Notifications
You must be signed in to change notification settings - Fork 131
/
data_resize_ffhq.py
123 lines (92 loc) · 3.24 KB
/
data_resize_ffhq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import argparse
import multiprocessing
from functools import partial
from io import BytesIO
from pathlib import Path
import lmdb
from PIL import Image
from torch.utils.data import Dataset
from torchvision.transforms import functional as trans_fn
from tqdm import tqdm
import os
def resize_and_convert(img, size, resample, quality=100):
img = trans_fn.resize(img, size, resample)
img = trans_fn.center_crop(img, size)
buffer = BytesIO()
img.save(buffer, format="jpeg", quality=quality)
val = buffer.getvalue()
return val
def resize_multiple(img,
sizes=(128, 256, 512, 1024),
resample=Image.LANCZOS,
quality=100):
imgs = []
for size in sizes:
imgs.append(resize_and_convert(img, size, resample, quality))
return imgs
def resize_worker(img_file, sizes, resample):
i, (file, idx) = img_file
img = Image.open(file)
img = img.convert("RGB")
out = resize_multiple(img, sizes=sizes, resample=resample)
return i, idx, out
def prepare(env,
paths,
n_worker,
sizes=(128, 256, 512, 1024),
resample=Image.LANCZOS):
resize_fn = partial(resize_worker, sizes=sizes, resample=resample)
# index = filename in int
indexs = []
for each in paths:
file = os.path.basename(each)
name, ext = file.split('.')
idx = int(name)
indexs.append(idx)
# sort by file index
files = sorted(zip(paths, indexs), key=lambda x: x[1])
files = list(enumerate(files))
total = 0
with multiprocessing.Pool(n_worker) as pool:
for i, idx, imgs in tqdm(pool.imap_unordered(resize_fn, files)):
for size, img in zip(sizes, imgs):
key = f"{size}-{str(idx).zfill(5)}".encode("utf-8")
with env.begin(write=True) as txn:
txn.put(key, img)
total += 1
with env.begin(write=True) as txn:
txn.put("length".encode("utf-8"), str(total).encode("utf-8"))
class ImageFolder(Dataset):
def __init__(self, folder, exts=['jpg']):
super().__init__()
self.paths = [
p for ext in exts for p in Path(f'{folder}').glob(f'**/*.{ext}')
]
def __len__(self):
return len(self.paths)
def __getitem__(self, index):
path = os.path.join(self.folder, self.paths[index])
img = Image.open(path)
return img
if __name__ == "__main__":
"""
converting ffhq images to lmdb
"""
num_workers = 16
# original ffhq data path
in_path = 'datasets/ffhq'
# target output path
out_path = 'datasets/ffhq.lmdb'
if not os.path.exists(out_path):
os.makedirs(out_path)
resample_map = {"lanczos": Image.LANCZOS, "bilinear": Image.BILINEAR}
resample = resample_map['lanczos']
sizes = [256]
print(f"Make dataset of image sizes:", ", ".join(str(s) for s in sizes))
# imgset = datasets.ImageFolder(in_path)
# imgset = ImageFolder(in_path)
exts = ['jpg']
paths = [p for ext in exts for p in Path(f'{in_path}').glob(f'**/*.{ext}')]
# print(paths[:10])
with lmdb.open(out_path, map_size=1024**4, readahead=False) as env:
prepare(env, paths, num_workers, sizes=sizes, resample=resample)