-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
213 lines (180 loc) · 10 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import os
import argparse
import random
import numpy as np
from torch.utils.data import DataLoader, RandomSampler
from modules.model import *
from commons import NERdataset, logger, init_logger
from processor import NERProcessor
from tqdm import tqdm
from transformers import AdamW, get_linear_schedule_with_warmup
from transformers.tokenization_bert import BertTokenizer
from sklearn.metrics import classification_report
def build_dataset(args, processor, data_type='train', feature=None, device=torch.device('cpu')):
# Load data features from cache or dataset file
cached_features_file = os.path.join(args.data_dir, 'cached_{}_{}_{}'.format(
data_type,
list(filter(None, args.model_name_or_path.split('/'))).pop(),
str(args.max_seq_length)))
if os.path.exists(cached_features_file):
print("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
else:
print("Creating features from dataset file at %s", args.data_dir)
examples = processor.get_example(data_type, feature is not None)
features = processor.convert_examples_to_features(examples, args.max_seq_length, feature)
print("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
return NERdataset(features, device)
def caculator_metric(preds, golds, labels):
pred_iob_labels = [labels[label_id - 1] for label_id in preds]
gold_iob_labels = [labels[label_id - 1] for label_id in golds]
pred_labels = [labels[label_id - 1].split("-")[-1].strip() for label_id in preds]
gold_labels = [labels[label_id - 1].split("-")[-1].strip() for label_id in golds]
iob_metric = classification_report(pred_iob_labels, gold_iob_labels, output_dict=True)
metric = classification_report(pred_labels, gold_labels, output_dict=True)
return iob_metric, metric
def update_model_weights(model, iterator, optimizer, scheduler):
tr_loss = 0
model.train()
for step, batch in enumerate(tqdm(iterator, desc="Iteration")):
tokens, token_ids, attention_masks, token_mask, segment_ids, label_ids, label_masks, feats = batch
loss, _ = model.calculate_loss(token_ids, attention_masks, token_mask, segment_ids, label_ids, label_masks,
feats)
tr_loss += loss.item()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step()
scheduler.step()
model.zero_grad()
return tr_loss
def evaluate(model, iterator, label_map):
preds = []
golds = []
eval_loss = 0
model.eval()
for step, batch in enumerate(tqdm(iterator, desc="Iteration")):
tokens, token_ids, attention_masks, token_mask, segment_ids, label_ids, label_masks, feats = batch
loss, (logits, labels) = model.calculate_loss(token_ids, attention_masks, token_mask, segment_ids, label_ids,
label_masks, feats)
eval_loss += loss.item()
logits = torch.argmax(nn.functional.softmax(logits, dim=-1), dim=-1)
pred = logits.detach().cpu().numpy()
gold = labels.to('cpu').numpy()
preds.extend(pred)
golds.extend(gold)
iob_metric, metric = caculator_metric(preds, golds, label_map)
return eval_loss, iob_metric, metric
def run(args):
device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if os.path.exists(f"{args.output_dir}/training.log"):
os.remove(f"{args.output_dir}/training.log")
init_logger(f"{args.output_dir}/training.log")
tokenizer = BertTokenizer.from_pretrained(args.model_name_or_path)
processor = NERProcessor(args.data_dir, tokenizer)
num_labels = processor.get_num_labels()
logger.info("Build model ...")
config, model, feature = model_builder(model_name_or_path=args.model_name_or_path,
num_labels=num_labels,
feat_config_path=args.feat_config,
one_hot_embed=args.one_hot_emb,
use_lstm=args.use_lstm,
device=device)
model.to(device)
logger.info("Prepare dataset ...")
train_data = build_dataset(args, processor, data_type='train', feature=feature, device=device)
eval_data = build_dataset(args, processor, data_type='valid', feature=feature, device=device)
train_sampler = RandomSampler(train_data)
train_iterator = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
eval_sampler = RandomSampler(eval_data)
eval_iterator = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
num_train_optimization_steps = len(train_iterator) // args.gradient_accumulation_steps * args.num_train_epochs
warmup_steps = int(args.warmup_proportion * num_train_optimization_steps)
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps,
num_training_steps=num_train_optimization_steps)
logger.info("="*30 + f"Summary" + "="*30)
logger.info("MODEL:")
logger.info(f"\tBERT model: {args.model_name_or_path}")
logger.info(f"\tNumber of parameters: {sum(p.numel() for p in model.parameters())}")
logger.info("DATASET:")
logger.info(f"\tNumber of train Examples: {len(train_data)}")
logger.info(f"\tNumber of eval Examples: {len(eval_data)}")
logger.info(f"\tNumber of labels: {len(processor.labels)}")
logger.info("Hyper-Parameters:")
logger.info(f"\tMax sequence length: {args.max_seq_length}")
logger.info(f"\tLearning rate: {args.learning_rate}")
logger.info(f"\tNumber of epochs: {args.num_train_epochs}")
logger.info(f"\tTrain batch size: {args.train_batch_size}")
logger.info(f"\tEval batch size: {args.eval_batch_size}")
logger.info(f"\tAdam epsilon: {args.adam_epsilon}")
logger.info(f"\tWeight decay: {args.weight_decay}")
logger.info(f"\tWarmup Proportion: {args.warmup_proportion}")
logger.info(f"\tMax grad norm: {args.max_grad_norm}")
logger.info(f"\tGradient accumulation steps: {args.gradient_accumulation_steps}")
logger.info(f"\tSeed: {args.seed}")
logger.info(f"\tCuda: {args.cuda}")
logger.info(f"\tFeat config: {args.feat_config}")
logger.info(f"\tUse one-hot embbeding: {args.one_hot_emb}")
logger.info(f"\tOutput directory: {args.output_dir}")
model.train()
best_score = -1
for e in range(int(args.num_train_epochs)):
logger.info("="*30 + f"Epoch {e}" + "="*30)
tr_loss = update_model_weights(model, train_iterator, optimizer, scheduler)
logger.info(f"train Loss: {tr_loss}")
eval_loss, iob_metric, metric = evaluate(model, eval_iterator, processor.labels)
logger.info(f"eval Loss: {eval_loss}")
logger.info(f"F1-Score tag: {metric['macro avg']['f1-score']}")
logger.info(f"F1-Score IOB-tag: {iob_metric['macro avg']['f1-score']}")
logger.info(f"Metric:")
logger.info(f"\tO: {metric['O']['f1-score'] if 'O' in metric else 0.0}")
logger.info(f"\tMISC: {metric['MISC']['f1-score'] if 'MISC' in metric else 0.0}")
logger.info(f"\tPER: {metric['PER']['f1-score'] if 'PER' in metric else 0.0}")
logger.info(f"\tORG: {metric['ORG']['f1-score'] if 'ORG' in metric else 0.0}")
logger.info(f"\tLOC: {metric['LOC']['f1-score'] if 'LOC' in metric else 0.0}")
if iob_metric['macro avg']['f1-score'] > best_score:
best_score = iob_metric['macro avg']['f1-score']
best_epoch = e
model_path = f"{args.output_dir}/vner_model.bin"
torch.save(model.state_dict(), model_path)
logger.info(f"Model save at epoch {best_epoch} with best score {best_score}")
"""
python train.py --data_dir new_data/ --model_name_or_path bert-base-multilingual-cased --output_dir outputs
"""
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--data_dir", default=None, type=str, required=True)
parser.add_argument("--model_name_or_path", default=None, type=str, required=True) # bert-base-multilingual-cased
parser.add_argument("--output_dir", default=None, type=str, required=True)
# Other parameters
parser.add_argument("--feat_config", default=None, type=str)
parser.add_argument("--one_hot_emb", action='store_true')
parser.add_argument("--use_lstm", default=True, type=bool)
parser.add_argument("--cache_dir", default="", type=str)
parser.add_argument("--max_seq_length", default=128, type=int)
parser.add_argument("--train_batch_size", default=64, type=int)
parser.add_argument("--eval_batch_size", default=64, type=int)
parser.add_argument("--learning_rate", default=2e-5, type=float)
parser.add_argument("--weight_decay", default=0.0, type=float)
parser.add_argument("--adam_epsilon", default=1e-8, type=float)
parser.add_argument("--num_train_epochs", default=100.0, type=float)
parser.add_argument("--warmup_proportion", default=0.1, type=float)
parser.add_argument("--gradient_accumulation_steps", default=1, type=int)
parser.add_argument("--max_grad_norm", default=1.0, type=float)
parser.add_argument("--cuda", type=bool, default=True)
parser.add_argument('--seed', type=int, default=42)
args = parser.parse_args()
run(args)