-
Notifications
You must be signed in to change notification settings - Fork 0
/
detection_test_improve2_vectorize.py
680 lines (578 loc) · 24.6 KB
/
detection_test_improve2_vectorize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
# coding: utf-8
# In[1]:
import numpy as np
import cv2
import os
from os import listdir
from os.path import basename,isfile,join
import cPickle as pickle
#from matplotlib import pyplot as plt
from scipy import ndimage
from sklearn import neighbors
from sklearn import svm
from skimage.feature import hog
from skimage import feature
import random
import time
# In[2]:
def creat_posfile_group(pos_files_group):
i = 0
pos_files = []
group = []
for pfs in pos_files_group:
group_idx = []
for j in range(len(pfs)):
group_idx.append(i)
i = i+1
pos_files.append(pfs[j])
group.append(group_idx)
return pos_files,group
def get_pos(fi):
poses = []
with open(fi) as f:
lines = f.readlines()
for line in lines:
content = line.split()
file_dir = content[0]
tag = os.path.splitext(basename(file_dir))[0]
num_object = content[1]
for i in range(int(num_object)):
x = int(content[2+4*i])
y = int(content[2+4*i + 1])
w = int(content[2+4*i + 2])
h = int(content[2+4*i + 3])
poses.append([file_dir,x,y,w,h, tag +'_'+ str(i+1)])
return poses
def get_neg_images(fi):
neg_images = []
with open(fi) as f:
lines = f.readlines()
for line in lines:
content = line.split()
file_dir = content[0]
image = cv2.imread(file_dir.replace("\\", "/"))
num_object = content[1]
for i in range(int(num_object)):
x = int(content[2+4*i])
y = int(content[2+4*i + 1])
w = int(content[2+4*i + 2])
h = int(content[2+4*i + 3])
image[y:y+h, x:x+w] = 0
neg_images.append(image)
return neg_images
def unify_label(labels, group):
res = []
for a in labels:
for i in range(len(group)):
if a in group[i]:
res.append(i)
return np.array(res)
def highpass_and_imgback(pos,xsmall, xlarge):
cur_h, cur_w = pos.shape
if cur_h < 2*xlarge or cur_w < 2*xlarge:
#print cur_h, cur_w
resize_scale = int(max(2 * xlarge / (1.0*cur_w), 2 * xlarge / (cur_h*1.0))) + 1
#print resize_scale
pos = cv2.resize(pos,(0,0),fx = resize_scale,fy=resize_scale)
cur_h, cur_w = pos.shape
#print cur_h, cur_w
f = np.fft.fft2(pos)
fshift = np.fft.fftshift(f)
mask = np.zeros(pos.shape)
#mask = np.ones(pos.shape)
height = pos.shape[0]
width = pos.shape[1]
centerx = int(width/2)
centery = int(height/2)
mask[centery-xlarge:centery+xlarge,centerx-xlarge:centerx+xlarge] = 1
mask[centery-xsmall:centery+xsmall,centerx-xsmall:centerx+xsmall] = 0
fshift_filtered = fshift.copy() * mask
f_ishift_filtered = np.fft.ifftshift(fshift_filtered)
img_back = np.fft.ifft2(f_ishift_filtered)
mag_fshift = fshift_filtered[centery-xlarge:centery+xlarge,centerx-xlarge:centerx+xlarge]
epsilon = 10**-8
magnitude_spectrum = 20*np.log(np.abs(mag_fshift) + epsilon)
img_back = np.abs(img_back)
min_back = np.min(img_back)
max_back = np.max(img_back)
img_back = np.array((img_back-min_back)/(max_back-min_back)*255,dtype = np.uint8)
img_back = np.array(img_back, dtype = np.uint8)
img_back = np.clip(img_back, 0, 255)
return img_back, magnitude_spectrum
def get_sample(poses,xsmall, xlarge):
X = []
for p, l in poses:
x = p[1]
y = p[2]
w = p[3]
h = p[4]
image = cv2.imread(p[0].replace("\\", "/"))
image_preprocess = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
#image_preprocess = highpass_and_imgback(image_preprocess,xsmall, xlarge)
pos = image_preprocess[y:y + h, x:x + w]
"""
if (w < 2 * xlarge + 1) or (h < 2 * xlarge + 1):
scale = int(max(2 * xlarge / w, 2 * xlarge / h)) + 1
pos = cv2.resize(pos, (scale * pos.shape[0], scale * pos.shape[1]))
#print pos.shape
#h, w = pos.shape
#pos_back, magnitude = highpass_and_imgback(pos,xsmall, xlarge)
#pos_back = cv2.resize(pos_back, (h,w))
deg_step = 10
for deg in range(0,360, deg_step):
cur_pos = ndimage.interpolation.rotate(pos,deg, reshape=True)
cur_pos_back, magnitude = highpass_and_imgback(cur_pos,xsmall, xlarge)
X.append((magnitude,l,cur_pos))
"""
deg_step = 10
for deg in range(0,360, deg_step):
cur_pos = ndimage.interpolation.rotate(pos,deg, reshape=True)
cur_h, cur_w = cur_pos.shape
new_pos = cur_pos
new_pos = np.array(new_pos, np.uint8)
if (cur_w < 2 * xlarge + 1) or (cur_h < 2 * xlarge + 1):
scale = int(max(2 * xlarge / cur_w, 2 * xlarge / cur_h)) + 1
new_pos = cv2.resize(cur_pos, (scale * cur_pos.shape[1], scale * cur_pos.shape[0]))
new_pos = np.array(new_pos, np.uint8)
pos_back, magnitude = highpass_and_imgback(new_pos,xsmall, xlarge)
X.append((magnitude,l,new_pos))
#X.append((pos_back,l,pos))
return X
def PCA(data):
datamean = np.mean(data,0)
a = data - datamean
datamax_after_center = np.std(a,0) + 10e-8
b = a / datamax_after_center
x = b.transpose()
xcov = np.dot(x,x.transpose())/x.shape[1]
ux,sxx,vx = np.linalg.svd(xcov)
sx = sxx
return ux,sx,vx, datamean, datamax_after_center
def customPCA(data, ratio):
ux,sx,vx, datamean, datamax = PCA(data)
N = ux.shape[1]
sum_sx = np.sum(sx)
ac_sum = 0
k = 0
for _i in range(N):
if sx[_i] == 0:
break
k = _i
ac_sum += sx[_i]
if ac_sum/sum_sx >= ratio:
break
k += 1
return ux,sx,vx,datamean,datamax,k
def mydistance(a, b):
#return np.dot(a-b, (a-b).transpose() )
#return 1 - np.dot(a, b)
return 1 - np.dot(a, b)/(np.sqrt(np.dot(a,a)*np.dot(b,b)))
#return (1 - np.dot(a, b)/(np.sqrt(np.dot(a,a)*np.dot(b,b))))**2 + (1 - (np.sqrt(np.dot(a,a)/np.dot(b,b))))**2
# In[3]:
def check_foreground_hog(hypothesis, clf, _sz):
cur_pos = hypothesis
cur_h, cur_w = cur_pos.shape
if (cur_w < int(_sz[1])) or (cur_h < int(_sz[0])):
cur_pos = cv2.resize(cur_pos,(int(_sz[1]),int(_sz[0])))
hogFeature = feature.hog(cur_pos,
orientations=9,
pixels_per_cell=(8, 8),
cells_per_block=(2, 2),
transform_sqrt=True,
visualise=True,
feature_vector=False)[0]
predict = clf.predict([hogFeature.reshape(-1)])[0]
if predict == 1:
return True
else:
return False
def check_foreground_hog2(hypothesis_HoG, clf):
predict = clf.predict([hypothesis_HoG.reshape(-1)])[0]
if predict == 1:
#print 'hello'
return True
else:
return False
def check_foreground_hog_PCA(hypothesis_HoG, clf, hog_comp_parameter):
hog_comp_ux,hog_comp_sx,hog_comp_vx,hog_comp_datamean, hog_comp_datamax, hog_comp_k = hog_comp_parameter
hog_norm = (hypothesis_HoG.reshape(-1) - hog_comp_datamean) / hog_comp_datamax
hog_projected = np.dot(hog_norm, hog_comp_ux[:,:hog_comp_k])
predict = clf.predict([hog_projected])[0]
if predict == 1:
#print 'hello'
return True
else:
return False
def check_foreground_hog3(hypothesis_HoG, clf, foregroundThresh):
predict = clf.predict_proba([hypothesis_HoG.reshape(-1)])[0][1]
if predict >= foregroundThresh:
return True
else:
return False
# In[ ]:
def reconstruct_from_pca(x,ux,sx,vx,datamean, datamax,k):
N = ux.shape[1]
padded = np.zeros((N))
padded[:k] = x
reconstructed = np.dot(ux,padded)
return reconstructed
def check_foreground(hypothesis, max_error,min_norm, xsmall, xlarge,ux,sx,vx,datamean, datamax,k):
uxx = ux[:,:k]
cur_pos = hypothesis
cur_h, cur_w = cur_pos.shape
if (cur_w < 2 * xlarge + 1) or (cur_h < 2 * xlarge + 1):
scale = int(max(2 * xlarge / cur_w, 2 * xlarge / cur_h)) + 1
cur_pos = cv2.resize(cur_pos, (scale * cur_pos.shape[1], scale * cur_pos.shape[0]))
_, mag = highpass_and_imgback(cur_pos,xsmall, xlarge)
mag = mag.reshape(-1)
mag_norm = (mag-datamean)/datamax
mag_projected = np.dot(mag_norm, uxx)
mag_reconstructed = reconstruct_from_pca(mag_projected,ux,sx,vx,datamean, datamax,k)
reconstructed_error = np.sum((mag_reconstructed-mag_norm)**2)
if reconstructed_error > max_error or np.sqrt(np.sum(mag_projected[:k]**2)) < min_norm:
return False
else:
#print '%f vs %f, %f vs %f'%(reconstructed_error,max_error, np.sqrt(np.sum(mag_projected[:k/2]**2)), min_norm)
return True
pos_main_class = ['./annotation/Acanthamoeba_trophozoite_cyst.txt',
'./annotation/Balantidium_cyst_trophozoite.txt',
'./annotation/Cyclospora_oocyst_normal.txt',
'./annotation/Cystoisospora_oocyst_single.txt',
'./annotation/Giardia_trophozoite.txt',
'./annotation/Iodamoeba_cyst.txt',
'./annotation/Sarcocystis_oocyst_single.txt',
'./annotation/Toxoplasma_cyst_single.txt'
]
pos_files_group = [
['./annotation_subclass/Sarcocystis_oocyst_single_stage2.txt',
'./annotation_subclass/Sarcocystis_oocyst_single_stage3.txt',
'./annotation_subclass/Sarcocystis_oocyst_stage2.txt',
#'./annotation_subclass/Sarcocystis_oocyst_stage3.txt'
],
[#'./annotation_subclass/Cystoisospora_oocyst_single_stage1.txt',
#'./annotation_subclass/Cystoisospora_oocyst_single_stage2.txt',
#'./annotation_subclass/Cystoisospora_oocyst_single_stage3.txt',
#'./annotation_subclass/Cystoisospora_oocyst_single_stage4.txt',
'./annotation_subclass/Cystoisospora_oocyst_stage1.txt',
'./annotation_subclass/Cystoisospora_oocyst_stage2.txt',
'./annotation_subclass/Cystoisospora_oocyst_stage3.txt',
'./annotation_subclass/Cystoisospora_oocyst_stage4.txt'],
['./annotation/Iodamoeba_cyst.txt'],
['./annotation_subclass/Cyclospora_oocyst_stage1.txt',
'./annotation_subclass/Cyclospora_oocyst_stage2.txt',
'./annotation_subclass/Cyclospora_oocyst_stage3.txt'],
['./annotation/Toxoplasma_cyst_single.txt'],
]
names = ['Sarcocystis','Cystoisospora','Iodamoeba','Cyclospora','Toxoplasma']
pos_files, group = creat_posfile_group(pos_files_group)
numclass = len(group)
num_label = len(pos_files)
numlabel = len(pos_files)
print 'Loading model'
start_time = time.time()
with open("myModel_improved2.pickle",'rb') as f:
classifier,names,sz,ux,sx,vx,datamean, datamax, k,comp_parameters,root_filters,hog_comp_parameters,max_errors,min_norms,max_scales,min_scales,xlarge,xsmall,HoG_pixels_per_cell,HoG_cells_per_block = pickle.load(f)
uxx = ux[:,:k]
print 'Done loading model %s s'%(time.time() - start_time)
detection_dirs = ['./data/Sarcocystis_oocyst/',
'./data/Iodamoeba_cyst/',
'./data/Toxoplasma_cyst/',
'./data/Cyclospora_oocyst/',
'./data/Cystoisospora_oocyst/']
def nms_multiclass(hypotheses, overlap, numlabel):
x1 = np.array([x for x,y,w,h,c,p in hypotheses])
y1 = np.array([y for x,y,w,h,c,p in hypotheses])
x2 = np.array([x+w for x,y,w,h,c,p in hypotheses])
y2 = np.array([y+h for x,y,w,h,c,p in hypotheses])
_c = np.array([c for x,y,w,h,c,p in hypotheses])
area = (x2-x1+1)*(y2-y1+1) * 1.0
#probs = np.zeros((len(hypotheses),num_label))
probs = np.array([x for x,y,w,h,c,p in hypotheses])
"""
for _i in range(len(hypotheses)):
probs[_i][_c[_i]] = 1
for _i in range(0,len(hypotheses)-1):
for _j in range(_i+1,len(hypotheses)):
xx1 = max(x1[_i],x1[_j])
yy1 = max(y1[_i],y1[_j])
xx2 = min(x2[_i],x2[_j])
yy2 = min(y2[_i],y2[_j])
w = xx2 - xx1 + 1
h = yy2 - yy1 + 1
if w > 0 and h > 0:
o1 = w*h / area[_i]
o2 = w*h / area[_j]
if o1 >= overlap and o2 >= overlap:
#o = w*h/(area[_i] + area[_j] - w*h*1.0)
#if o > overlap:
probs[_i][_c[_j]] += 1
probs[_j][_c[_i]] += 1
s = [probs[_i][_c[_i]]/np.sum(probs[_i]) for _i in range(len(hypotheses))]
"""
s = probs
I = np.argsort(s).tolist()
pick = []
while not I == []:
_last = len(I) - 1
_i = I[_last]
pick.append(_i)
suppress = [_last]
for _pos in range(_last):
_j = I[_pos]
xx1 = max(x1[_i],x1[_j])
yy1 = max(y1[_i],y1[_j])
xx2 = min(x2[_i],x2[_j])
yy2 = min(y2[_i],y2[_j])
w = xx2 - xx1 + 1
h = yy2 - yy1 + 1
if w > 0 and h > 0:
o = w*h / area[_j]
if o >= overlap:
suppress.append(_pos)
for _index in sorted(suppress, reverse=True):
I.remove(I[_index])
return [(hypotheses[p],s[p]) for p in pick]
def nms_multiclass_faster(hypotheses, overlap, numlabel):
x1 = np.array([x for x,y,w,h,c,p in hypotheses])
y1 = np.array([y for x,y,w,h,c,p in hypotheses])
x2 = np.array([x+w for x,y,w,h,c,p in hypotheses])
y2 = np.array([y+h for x,y,w,h,c,p in hypotheses])
_c = np.array([c for x,y,w,h,c,p in hypotheses])
area = (x2-x1+1)*(y2-y1+1) * 1.0
#probs = np.zeros((len(hypotheses),num_label))
probs = np.array([x for x,y,w,h,c,p in hypotheses])
s = probs
I = np.argsort(s)
pick = []
while len(I) > 0:
_last = len(I) - 1
_i = I[_last]
pick.append(_i)
suppress = [_last]
xx1 = np.maximum(x1[_i],x1[I[:_last]])
yy1 = np.maximum(y1[_i],y1[I[:_last]])
xx2 = np.minimum(x2[_i],x2[I[:_last]])
yy2 = np.minimum(y2[_i],y2[I[:_last]])
w = np.maximum(0,xx2 - xx1 + 1)
h = np.maximum(0,yy2 - yy1 + 1)
o = (w*h) / area[I[:_last]]
I = np.delete(I, np.concatenate(([_last],np.where(o>overlap)[0])))
return [(hypotheses[p],s[p]) for p in pick]
def cumsum(a):
return [np.sum(a[:_i+1]) for _i in range(len(a))]
def load_groundtruth(fi):
res = []
with open(fi) as f:
lines = f.readlines()
for line in lines:
content = line.split()
file_dir = content[0].replace('\\','/')
num_object = content[1]
file_bb = []
for _i in range(int(num_object)):
x = int(content[2+4*_i])
y = int(content[2+4*_i + 1])
w = int(content[2+4*_i + 2])
h = int(content[2+4*_i + 3])
file_bb.append((x,y,w,h))
res.append((file_dir,file_bb))
return res
list_images = []
for detection_dir in detection_dirs:
only_files = [detection_dir + f for f in listdir(detection_dir) if isfile(join(detection_dir,f))]
list_images.extend(only_files)
overlap = 0.64
overlap_nms = overlap
colors = [(0,0,255),(0,255,0),(255,0,0),(255,0,255),(0,255,255),(255,255,0)]
#scales = range(1,50)
scales = [1,1.5,1.75,2,2.5,3,4,5,6,7,8,9,10]
#scales = 2**(1/10)**np.array([1,2,3,4,5,6,7,8,9,10])
save_dir = './result/improve/'
detections = []
names = ['Sarcocystis','Cystoisospora','Iodamoeba','Cyclospora','Toxoplasma']
annotation_test_files = ['./annotation/' + name + '.txt' for name in names]
mAP = []
#========== for test code only ========================================
#list_images = ['./data/Iodamoeba_cyst/Ibu_cys_human_sto_x40_003.jpg',
# './data/Iodamoeba_cyst/Ibu_cys_human_sto_x40_010.jpg']
#======================================================================
for file_dir_idx in range(len(list_images)):
print '=========== %d / %d =============='%(file_dir_idx+1,len(list_images))
file_dir = list_images[file_dir_idx]
print file_dir
tag = os.path.splitext(basename(file_dir))[0]
image = cv2.imread(file_dir)
hypotheses = []
img = image.copy()
start_detection = time.time()
for scale in scales:
resized = cv2.resize(image,(0,0), fx=1./scale, fy=1./scale)
img_gray = cv2.cvtColor(resized, cv2.COLOR_BGR2GRAY)
try:
hog_feature_map = feature.hog(img_gray,
orientations=9,
pixels_per_cell= HoG_pixels_per_cell,
cells_per_block= HoG_cells_per_block,
transform_sqrt=True,
visualise=True,
feature_vector=False)[0]
except:
print 'Cannot compute HoG feature map'
continue
for filter_sz_idx in range(len(sz)):
#if max_scales[filter_sz_idx] < scale:
# continue
start_time = time.time()
#img = resized.copy()
filter_sz = sz[filter_sz_idx]
_sz_HoG = (filter_sz[0]/HoG_pixels_per_cell[1] - HoG_cells_per_block[1]+1, filter_sz[1]/HoG_pixels_per_cell[0] - HoG_cells_per_block[0]+1)
comp_ux,comp_sx,comp_vx,comp_datamean, comp_datamax, comp_k = comp_parameters[filter_sz_idx]
comp_uxx = comp_ux[:,:comp_k]
hog_comp_ux,hog_comp_sx,hog_comp_vx,hog_comp_datamean, hog_comp_datamax, hog_comp_k = hog_comp_parameters[filter_sz_idx]
hog_comp_uxx = hog_comp_ux[:,:hog_comp_k]
hypotheses_HoG = []
hypotheses_img = []
locs = []
for _i in range(hog_feature_map.shape[0] - int(_sz_HoG[0])):
for _j in range(hog_feature_map.shape[1]- int(_sz_HoG[1])):
hypothesis_HoG = hog_feature_map[_i:int(_i+_sz_HoG[0]), _j:int(_j+_sz_HoG[1])]
hypotheses_HoG.append(hypothesis_HoG)
hypothesis_img = img_gray[int(_i*HoG_pixels_per_cell[1]):int(_i*HoG_pixels_per_cell[1]+ filter_sz[0]), int(_j*HoG_pixels_per_cell[0]):int(_j*HoG_pixels_per_cell[0]+ filter_sz[1])]
hypotheses_img.append(hypothesis_img)
locs.append((_j*scale*HoG_pixels_per_cell[0],_i*scale*HoG_pixels_per_cell[1],hypothesis.shape[1]*scale, hypothesis.shape[0]*scale))
#=================== check HoG foreground ========================
hypotheses_HoG_norm = (np.array(hypotheses_HoG)-hog_comp_datamean)/hog_comp_datamax
hypotheses_HoG_projected = np.dot(hypotheses_HoG_norm, hog_comp_uxx)
HoG_pass = root_filters[filter_sz_idx].predict(hypotheses_HoG_projected)
hypotheses_HoG = [hypo for hypo, keep in zip(hypotheses_HoG,HoG_pass) if keep == 1]
hypotheses_img = [hypo for hypo, keep in zip(hypotheses_img,HoG_pass) if keep == 1]
locs = [loc for loc, keep in zip(locs,HoG_pass) if keep == 1]
#=================================================================
#compute Fourier transform
mags = [highpass_and_imgback(hypo,xsmall,xlarge)[1].reshape(-1) for hypo in hypotheses_img]
#================== check norm ===================================
mags_norm = (np.array(mags)- comp_datamean)/comp_datamax
mags_projected = np.dot(mags_norm, comp_uxx)
norm_pass = [np.sqrt(np.sum(mag_projected[:comp_k]**2)) >= min_norms[filter_sz_idx] for mag_projected in mags_projected]
hypotheses_HoG = [hypo for hypo, keep in zip(hypotheses_HoG,norm_pass) if keep == True]
hypotheses_img = [hypo for hypo, keep in zip(hypotheses_img,norm_pass) if keep == True]
locs = [loc for loc, keep in zip(locs,norm_pass) if keep == True]
mags = [mag for mag, keep in zip(mags,norm_pass) if keep == True]
mags_projected = [mag for mag, keep in zip(mags_projected,norm_pass) if keep == True]
mags_norm = [mag for mag, keep in zip(mags_norm,norm_pass) if keep == True]
#=================================================================
#================== check reconstructed error ====================
mags_reconstructed = [reconstruct_from_pca(mag_projected,comp_ux,comp_sx,comp_vx,comp_datamean, comp_datamax,comp_k) for mag_projected in mags_projected]
reconstructed_errors = np.sum((np.array(mag_reconstructed)-np.array(mag_norm))**2, axis=1)
reconstruct_pass = [reconstructed_error <= max_errors[filter_sz_idx] for reconstructed_error in reconstructed_errors]
hypotheses_HoG = [hypo for hypo, keep in zip(hypotheses_HoG,reconstruct_pass) if keep == True]
hypotheses_img = [hypo for hypo, keep in zip(hypotheses_img,reconstruct_pass) if keep == True]
locs = [loc for loc, keep in zip(locs,reconstruct_pass) if keep == True]
mags = [mag for mag, keep in zip(mags,reconstruct_pass) if keep == True]
#=================================================================
#================= classify =======================================
mags_norm = (np.array(mags)- datamean)/datamax
mags_projected = np.dot(mags_norm, uxx)
probs = classifier.predict_proba(mags_projected)
categories = np.argmax(probs, axis = 1)
probs = probs[range(len(probs)), categories]
group_categories = unify_label(categories,group)
prob_thresh = 0.8
good_hypotheses = [(loc[0],loc[1],loc[2],loc[3], cate, prob) for loc, cate, prob in zip(locs,group_categories,probs) if prob > prob_thresh]
hypotheses.extend(good_hypotheses)
#=================================================================
print tag + '_hog_duplicate_res_detected_scale_%d_filter_%d.png'%(scale,filter_sz_idx)
print 'Detection %s seconds'%(time.time()-start_time)
temp_img = img.copy()
for _hypo in hypotheses:
x,y,w,h,c,prob = _hypo
cv2.rectangle(temp_img,(int(x),int(y)),(int((x+w)),int(y+h)),colors[c],3)
cv2.imwrite(save_dir + tag + '_detected_improved_before_nms.png',temp_img )
#detection = nms_multiclass(hypotheses,overlap_nms, num_label)
detection = nms_multiclass_faster(hypotheses,overlap_nms, num_label)
print 'Detection %s seconds'%(time.time()-start_detection)
for _hypo,_s in detection:
x,y,w,h,c,prob = _hypo
cv2.rectangle(img,(int(x),int(y)),(int((x+w)),int(y+h)),colors[c],3)
cv2.imwrite(save_dir + tag + '_detected_improved.png',img )
detections.append((file_dir,detection))
#print detections
with open(save_dir+'result_improved.pickle','wb') as f:
pickle.dump(detections,f)
for _c in range(len(names)):
gt = load_groundtruth(annotation_test_files[_c])
gt_det = [np.zeros(len(gt[_idx_k][1])) for _idx_k in range(len(gt))]
BB = []
in_files = []
for _bb in detections:
file_dir = _bb[0]
for _b in _bb[1]:
if _b[0][4] == _c:
BB.append(_b)
in_files.append(file_dir)
idxs = np.argsort([conf for bbox,conf in BB])
#BBB = [BB[_idx][1] for _idx in idxs]
BBB = [BB[_idx][0] for _idx in idxs]
in_files = [in_files[_idx] for _idx in idxs]
tp = np.zeros(len(BBB))
fp = np.zeros(len(BBB))
for _idx in range(len(BBB)):
_idx_gt = -1
_bb = BBB[_idx]
for _i in range(len(gt)):
if gt[_i][0] == in_files[_idx]:
_idx_gt = _i
if _idx_gt == -1:
continue
if gt[_idx_gt][1] == []:
fp[_idx] = 1
else:
jmax = -1
ovmax = 0
for _j in range(len(gt[_idx_gt][1])):
bbgt = gt[_idx_gt][1][_j]
#print bbgt
#print _bb
bi = (max(_bb[0],bbgt[0]),max(_bb[1],bbgt[1]),
min(_bb[0]+_bb[2],bbgt[0]+bbgt[2]),min(_bb[1]+_bb[3],bbgt[1]+bbgt[3]))
iw = bi[2] - bi[0] + 1
ih = bi[3] - bi[1] + 1
if iw > 0 and ih > 0:
#ua = (_bb[2]-_bb[0] + 1)*(_bb[3]-_bb[1] + 1) +(bbgt[2]-bbgt[0]+1)*(bbgt[3]-bbgt[1]+1) - iw*ih
ua = (_bb[2])*(_bb[3]) +(bbgt[2])*(bbgt[3]) - iw*ih*1.0
ov = iw*ih/ua
ov = iw*ih/ua
if ov > ovmax:
ovmax = ov
jmax = _j
if ovmax > overlap:
if not gt_det[_idx_gt][jmax]:
tp[_idx] = 1
gt_det[_idx_gt][jmax] = 1
else:
fp[_idx] = 1
else:
fp[_idx] = 1
fp = np.array(cumsum(fp))
tp = np.array(cumsum(tp))
npos = np.sum([len(_gt[1]) for _gt in gt])
rec = tp*1.0/npos
prec = tp*1.0/ (tp+fp + 10e-8)
#print prec
#print rec
ap = 0
for t in [0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]:
p = [prec[_i] for _i in range(len(prec)) if rec[_i] > t]
if p == []:
p = 0
else:
p = max(p)
ap = ap + p/11
#mAP.append(ap)
if not len(prec) == 0:
mAP.append((ap,prec[-1],rec[-1]))
else:
mAP.append((ap,0,0))
print mAP
with open(save_dir+'mAP_improved.pickle','wb') as f:
pickle.dump(mAP,f)