-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcontrollers.py
182 lines (140 loc) · 5.88 KB
/
controllers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import abc
import math
import random
import numpy as np
import torch
from soft_body import PressureSoftBody
class BaseController(abc.ABC):
def __init__(self, input_dim, output_dim):
self.input_dim = input_dim
self.output_dim = output_dim
def __str__(self):
return "BaseController[input_dim={},output_dim={}]".format(self.input_dim, self.output_dim)
@abc.abstractmethod
def get_params(self):
pass
@abc.abstractmethod
def set_params(self, params):
pass
@abc.abstractmethod
def control(self, t, obs):
pass
@abc.abstractmethod
def get_number_of_params(self):
pass
@staticmethod
def get_number_of_params_for_controller(config):
if config["brain"] == "random":
return 0
elif config["brain"] == "phase":
return config["n_masses"] + 1 + 2
elif config["brain"] == "inflate":
return 0
elif config["brain"] == "mlp":
return (config["n_masses"] * 3 + 3) * (config["n_masses"] + 1) + config["n_masses"] + 1
raise ValueError("Invalid controller name: {}".format(config.brain))
@classmethod
def create_controller(cls, config, input_dim, output_dim, brain, solution):
if brain == "random":
controller = RandomController(input_dim, output_dim)
elif brain == "phase":
controller = PhaseController(input_dim, output_dim)
elif brain == "inflate":
controller = InflateController(input_dim, output_dim,
PressureSoftBody.get_pressure_at_rest(config["T"],
config["mass"], config["r"]) / 100)
elif brain == "mlp":
controller = MLPController(input_dim, output_dim, config["control_pressure"])
else:
raise ValueError("Invalid controller name: {}".format(brain))
controller.set_params(solution)
return controller
class RandomController(BaseController):
def __init__(self, input_dim, output_dim):
BaseController.__init__(self, input_dim, output_dim)
def __str__(self):
return super(RandomController, self).__str__().replace("Base", "Random")
def get_params(self):
return np.empty(0)
def set_params(self, params):
pass
def control(self, t, obs):
return np.random.random(self.output_dim) * 2.0 - 1.0
def get_number_of_params(self):
return 0
class PhaseController(BaseController):
def __init__(self, input_dim, output_dim):
BaseController.__init__(self, input_dim, output_dim)
self.freq = random.random()
self.ampl = random.random()
self.phases = []
def get_params(self):
return np.concatenate([self.freq, self.ampl, self.phases])
def set_params(self, params):
self.freq = params[0]
self.ampl = params[1]
self.phases = params[2:]
def control(self, t, obs):
return np.sin([2 * math.pi * self.freq * t * self.phases[i] * self.ampl for i in range(self.output_dim)])
def get_number_of_params(self):
return self.output_dim + 2
class InflateController(BaseController):
def __init__(self, input_dim, output_dim, delta_p):
BaseController.__init__(self, input_dim, output_dim)
self.delta_p = delta_p
def get_params(self):
return np.empty(0)
def set_params(self, params):
pass
def control(self, t, obs):
if t < 360:
return np.zeros(self.output_dim)
return np.array([0 if i < self.output_dim - 1 else self.delta_p for i in range(self.output_dim)])
def get_number_of_params(self):
return 0
class MLPController(BaseController):
def __init__(self, input_dim, output_dim, control_pressure):
BaseController.__init__(self, input_dim, output_dim)
self.joint_nn = torch.nn.Sequential(
torch.nn.Linear(in_features=self.input_dim, out_features=self.output_dim - 1),
torch.nn.Identity()
)
if control_pressure:
self.pressure_nn = torch.nn.Sequential(torch.nn.Linear(in_features=self.input_dim, out_features=1),
torch.nn.Identity()
)
self.control_pressure = control_pressure
def __str__(self):
return super(MLPController, self).__str__().replace("Base", "MLP")
def get_params(self):
params = np.empty(0)
for _, p in self.joint_nn.parameters():
params = np.append(params, p.detach().numpy())
if not self.control_pressure:
return params
for _, p in self.pressure_nn.parameters():
params = np.append(params, p.detach().numpy())
return params
def set_params(self, params):
state_dict = self.joint_nn.state_dict()
start = 0
for key, coeffs in state_dict.items():
num = coeffs.numel()
state_dict[key] = torch.tensor(np.array(params[start:start + num]).reshape(state_dict[key].shape))
start += num
self.joint_nn.load_state_dict(state_dict)
if not self.control_pressure:
return
state_dict = self.pressure_nn.state_dict()
for key, coeffs in state_dict.items():
num = coeffs.numel()
state_dict[key] = torch.tensor(np.array(params[start:start + num]).reshape(state_dict[key].shape))
start += num
self.pressure_nn.load_state_dict(state_dict)
def control(self, t, obs):
obs = torch.from_numpy(obs).float()
if not self.control_pressure:
return self.joint_nn(obs).detach().numpy()
return np.concatenate([self.joint_nn(obs).detach().numpy(), self.pressure_nn(obs).detach().numpy()])
def get_number_of_params(self):
raise self.input_dim * self.output_dim + self.output_dim