-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdescription.py
executable file
·44 lines (27 loc) · 1.64 KB
/
description.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#!/usr/bin/env python3
__author__ = 'Dmitry Ustalov'
import argparse
import pandas as pd
from agreement import normalize
def main() -> None:
parser = argparse.ArgumentParser()
parser.add_argument('gt', type=argparse.FileType('r', encoding='UTF-8'))
parser.add_argument('toloka', type=argparse.FileType('r', encoding='UTF-8'))
args = parser.parse_args()
df_gt = pd.read_csv(args.gt, sep='\t', dtype=str, names=('audio', 'transcription'))
df_gt['transcription'] = df_gt['transcription'].apply(normalize)
df_toloka = pd.read_csv(args.toloka, sep='\t', dtype=str)
df_toloka.dropna(inplace=True, how='all')
df_toloka['OUTPUT:transcription'] = df_toloka['OUTPUT:transcription'].apply(normalize)
df_gt['length'] = df_gt['transcription'].str.split(' ').apply(len)
df_toloka['length'] = df_toloka['OUTPUT:transcription'].str.split(' ').apply(len)
print(f'GT has {len(df_gt)} audios for which Toloka has {len(df_toloka)} transcriptions '
f'provided by {df_toloka["ASSIGNMENT:worker_id"].nunique()} workers')
print(f'# of words in GT transcription is {df_gt["length"].mean():.2f} ± {df_gt["length"].std():.2f}')
print(f'# of words in Toloka transcription is {df_toloka["length"].mean():.2f} ± {df_toloka["length"].std():.2f}')
worker_degree = df_toloka.groupby('ASSIGNMENT:worker_id').apply(len)
print(f'# of transcription per worker is {worker_degree.mean():.2f} ± {worker_degree.std():.2f}')
task_degree = df_toloka.groupby('INPUT:audio').apply(len)
print(f'# of workers per transcription is {task_degree.mean():.2f} ± {task_degree.std():.2f}')
if __name__ == '__main__':
main()