forked from EMI-Group/GMOEA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGMOEA.py
58 lines (52 loc) · 2.47 KB
/
GMOEA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from GAN_model import GAN
from tournament import tournament
from spea2_env import *
from PM_mutation import pm_mutation
from spea2_env import environment_selection
class GMOEA(object):
def __init__(self, decs=None, gp=None):
self.decs = decs
self.gp = gp
self.w_max = 5
self.k = 10
self.lr = 0.0001
self.batch_size = 8
self.epoch = 200
self.n_noise = self.gp.d
def run(self):
pro = self.gp.pro
if self.decs is None:
population = pro.fit('init', self.gp.n)
else:
population = pro.fit(in_value=self.decs)
evaluated = np.shape(population[0])[0]
score = [[evaluated, pro.IGD(population[1])]]
net = GAN(self.gp.d, self.batch_size, self.lr, self.epoch, self.n_noise)
while evaluated <= self.gp.eva:
_, index = environment_selection(population, self.k)
ref_dec = population[0][index, :]
pool = ref_dec / np.tile(pro.upper, (self.k, 1))
label = np.zeros((self.gp.n, 1))
label[index, :] = 1
pop_dec = population[0]
input_dec = (pop_dec - np.tile(pro.lower, (np.shape(pop_dec)[0], 1))) / \
np.tile(pro.upper - pro.lower, (np.shape(pop_dec)[0], 1))
net.train(input_dec, label, pool)
for i in range(self.w_max):
print('IGD value: %.3f, Per: %.2f' %
(pro.IGD(population[1]), 100 * evaluated / self.gp.eva))
if 1 - (i/self.w_max)**2 > np.random.random(1):
off = net.generate(ref_dec / np.tile(pro.upper, (np.shape(ref_dec)[0], 1)), self.gp.n) * \
np.tile(pro.upper, (self.gp.n, 1))
off = pm_mutation(off, [self.gp.lower, self.gp.upper])
else:
fitness = cal_fit(population[1])
mating = tournament(k_size=2, n_size=self.gp.n, fit=fitness.reshape((len(fitness), 1)))
off = self.gp.operator(population[0][mating, :], boundary=[pro.lower, pro.upper])
offspring = pro.fit(in_value=off)
evaluated += np.shape(offspring[0])[0]
population = [np.r_[population[0], offspring[0]],
np.r_[population[1], offspring[1]]]
population, _ = environment_selection(population, self.gp.n)
score.append([evaluated, pro.IGD(population[1])])
return population, score