forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_cifar.py
452 lines (383 loc) · 15.3 KB
/
train_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""AutoAugment Train/Eval module.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import contextlib
import os
import time
import custom_ops as ops
import data_utils
import helper_utils
import numpy as np
from shake_drop import build_shake_drop_model
from shake_shake import build_shake_shake_model
import tensorflow as tf
from wrn import build_wrn_model
tf.flags.DEFINE_string('model_name', 'wrn',
'wrn, shake_shake_32, shake_shake_96, shake_shake_112, '
'pyramid_net')
tf.flags.DEFINE_string('checkpoint_dir', '/tmp/training', 'Training Directory.')
tf.flags.DEFINE_string('data_path', '/tmp/data',
'Directory where dataset is located.')
tf.flags.DEFINE_string('dataset', 'cifar10',
'Dataset to train with. Either cifar10 or cifar100')
tf.flags.DEFINE_integer('use_cpu', 1, '1 if use CPU, else GPU.')
FLAGS = tf.flags.FLAGS
arg_scope = tf.contrib.framework.arg_scope
def setup_arg_scopes(is_training):
"""Sets up the argscopes that will be used when building an image model.
Args:
is_training: Is the model training or not.
Returns:
Arg scopes to be put around the model being constructed.
"""
batch_norm_decay = 0.9
batch_norm_epsilon = 1e-5
batch_norm_params = {
# Decay for the moving averages.
'decay': batch_norm_decay,
# epsilon to prevent 0s in variance.
'epsilon': batch_norm_epsilon,
'scale': True,
# collection containing the moving mean and moving variance.
'is_training': is_training,
}
scopes = []
scopes.append(arg_scope([ops.batch_norm], **batch_norm_params))
return scopes
def build_model(inputs, num_classes, is_training, hparams):
"""Constructs the vision model being trained/evaled.
Args:
inputs: input features/images being fed to the image model build built.
num_classes: number of output classes being predicted.
is_training: is the model training or not.
hparams: additional hyperparameters associated with the image model.
Returns:
The logits of the image model.
"""
scopes = setup_arg_scopes(is_training)
with contextlib.nested(*scopes):
if hparams.model_name == 'pyramid_net':
logits = build_shake_drop_model(
inputs, num_classes, is_training)
elif hparams.model_name == 'wrn':
logits = build_wrn_model(
inputs, num_classes, hparams.wrn_size)
elif hparams.model_name == 'shake_shake':
logits = build_shake_shake_model(
inputs, num_classes, hparams, is_training)
return logits
class CifarModel(object):
"""Builds an image model for Cifar10/Cifar100."""
def __init__(self, hparams):
self.hparams = hparams
def build(self, mode):
"""Construct the cifar model."""
assert mode in ['train', 'eval']
self.mode = mode
self._setup_misc(mode)
self._setup_images_and_labels()
self._build_graph(self.images, self.labels, mode)
self.init = tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer())
def _setup_misc(self, mode):
"""Sets up miscellaneous in the cifar model constructor."""
self.lr_rate_ph = tf.Variable(0.0, name='lrn_rate', trainable=False)
self.reuse = None if (mode == 'train') else True
self.batch_size = self.hparams.batch_size
if mode == 'eval':
self.batch_size = 25
def _setup_images_and_labels(self):
"""Sets up image and label placeholders for the cifar model."""
if FLAGS.dataset == 'cifar10':
self.num_classes = 10
else:
self.num_classes = 100
self.images = tf.placeholder(tf.float32, [self.batch_size, 32, 32, 3])
self.labels = tf.placeholder(tf.float32,
[self.batch_size, self.num_classes])
def assign_epoch(self, session, epoch_value):
session.run(self._epoch_update, feed_dict={self._new_epoch: epoch_value})
def _build_graph(self, images, labels, mode):
"""Constructs the TF graph for the cifar model.
Args:
images: A 4-D image Tensor
labels: A 2-D labels Tensor.
mode: string indicating training mode ( e.g., 'train', 'valid', 'test').
"""
is_training = 'train' in mode
if is_training:
self.global_step = tf.train.get_or_create_global_step()
logits = build_model(
images,
self.num_classes,
is_training,
self.hparams)
self.predictions, self.cost = helper_utils.setup_loss(
logits, labels)
self.accuracy, self.eval_op = tf.metrics.accuracy(
tf.argmax(labels, 1), tf.argmax(self.predictions, 1))
self._calc_num_trainable_params()
# Adds L2 weight decay to the cost
self.cost = helper_utils.decay_weights(self.cost,
self.hparams.weight_decay_rate)
if is_training:
self._build_train_op()
# Setup checkpointing for this child model
# Keep 2 or more checkpoints around during training.
with tf.device('/cpu:0'):
self.saver = tf.train.Saver(max_to_keep=2)
self.init = tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer())
def _calc_num_trainable_params(self):
self.num_trainable_params = np.sum([
np.prod(var.get_shape().as_list()) for var in tf.trainable_variables()
])
tf.logging.info('number of trainable params: {}'.format(
self.num_trainable_params))
def _build_train_op(self):
"""Builds the train op for the cifar model."""
hparams = self.hparams
tvars = tf.trainable_variables()
grads = tf.gradients(self.cost, tvars)
if hparams.gradient_clipping_by_global_norm > 0.0:
grads, norm = tf.clip_by_global_norm(
grads, hparams.gradient_clipping_by_global_norm)
tf.summary.scalar('grad_norm', norm)
# Setup the initial learning rate
initial_lr = self.lr_rate_ph
optimizer = tf.train.MomentumOptimizer(
initial_lr,
0.9,
use_nesterov=True)
self.optimizer = optimizer
apply_op = optimizer.apply_gradients(
zip(grads, tvars), global_step=self.global_step, name='train_step')
train_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies([apply_op]):
self.train_op = tf.group(*train_ops)
class CifarModelTrainer(object):
"""Trains an instance of the CifarModel class."""
def __init__(self, hparams):
self._session = None
self.hparams = hparams
self.model_dir = os.path.join(FLAGS.checkpoint_dir, 'model')
self.log_dir = os.path.join(FLAGS.checkpoint_dir, 'log')
# Set the random seed to be sure the same validation set
# is used for each model
np.random.seed(0)
self.data_loader = data_utils.DataSet(hparams)
np.random.seed() # Put the random seed back to random
self.data_loader.reset()
def save_model(self, step=None):
"""Dumps model into the backup_dir.
Args:
step: If provided, creates a checkpoint with the given step
number, instead of overwriting the existing checkpoints.
"""
model_save_name = os.path.join(self.model_dir, 'model.ckpt')
if not tf.gfile.IsDirectory(self.model_dir):
tf.gfile.MakeDirs(self.model_dir)
self.saver.save(self.session, model_save_name, global_step=step)
tf.logging.info('Saved child model')
def extract_model_spec(self):
"""Loads a checkpoint with the architecture structure stored in the name."""
checkpoint_path = tf.train.latest_checkpoint(self.model_dir)
if checkpoint_path is not None:
self.saver.restore(self.session, checkpoint_path)
tf.logging.info('Loaded child model checkpoint from %s',
checkpoint_path)
else:
self.save_model(step=0)
def eval_child_model(self, model, data_loader, mode):
"""Evaluate the child model.
Args:
model: image model that will be evaluated.
data_loader: dataset object to extract eval data from.
mode: will the model be evalled on train, val or test.
Returns:
Accuracy of the model on the specified dataset.
"""
tf.logging.info('Evaluating child model in mode %s', mode)
while True:
try:
with self._new_session(model):
accuracy = helper_utils.eval_child_model(
self.session,
model,
data_loader,
mode)
tf.logging.info('Eval child model accuracy: {}'.format(accuracy))
# If epoch trained without raising the below errors, break
# from loop.
break
except (tf.errors.AbortedError, tf.errors.UnavailableError) as e:
tf.logging.info('Retryable error caught: %s. Retrying.', e)
return accuracy
@contextlib.contextmanager
def _new_session(self, m):
"""Creates a new session for model m."""
# Create a new session for this model, initialize
# variables, and save / restore from
# checkpoint.
self._session = tf.Session(
'',
config=tf.ConfigProto(
allow_soft_placement=True, log_device_placement=False))
self.session.run(m.init)
# Load in a previous checkpoint, or save this one
self.extract_model_spec()
try:
yield
finally:
tf.Session.reset('')
self._session = None
def _build_models(self):
"""Builds the image models for train and eval."""
# Determine if we should build the train and eval model. When using
# distributed training we only want to build one or the other and not both.
with tf.variable_scope('model', use_resource=False):
m = CifarModel(self.hparams)
m.build('train')
self._num_trainable_params = m.num_trainable_params
self._saver = m.saver
with tf.variable_scope('model', reuse=True, use_resource=False):
meval = CifarModel(self.hparams)
meval.build('eval')
return m, meval
def _calc_starting_epoch(self, m):
"""Calculates the starting epoch for model m based on global step."""
hparams = self.hparams
batch_size = hparams.batch_size
steps_per_epoch = int(hparams.train_size / batch_size)
with self._new_session(m):
curr_step = self.session.run(m.global_step)
total_steps = steps_per_epoch * hparams.num_epochs
epochs_left = (total_steps - curr_step) // steps_per_epoch
starting_epoch = hparams.num_epochs - epochs_left
return starting_epoch
def _run_training_loop(self, m, curr_epoch):
"""Trains the cifar model `m` for one epoch."""
start_time = time.time()
while True:
try:
with self._new_session(m):
train_accuracy = helper_utils.run_epoch_training(
self.session, m, self.data_loader, curr_epoch)
tf.logging.info('Saving model after epoch')
self.save_model(step=curr_epoch)
break
except (tf.errors.AbortedError, tf.errors.UnavailableError) as e:
tf.logging.info('Retryable error caught: %s. Retrying.', e)
tf.logging.info('Finished epoch: {}'.format(curr_epoch))
tf.logging.info('Epoch time(min): {}'.format(
(time.time() - start_time) / 60.0))
return train_accuracy
def _compute_final_accuracies(self, meval):
"""Run once training is finished to compute final val/test accuracies."""
valid_accuracy = self.eval_child_model(meval, self.data_loader, 'val')
if self.hparams.eval_test:
test_accuracy = self.eval_child_model(meval, self.data_loader, 'test')
else:
test_accuracy = 0
tf.logging.info('Test Accuracy: {}'.format(test_accuracy))
return valid_accuracy, test_accuracy
def run_model(self):
"""Trains and evalutes the image model."""
hparams = self.hparams
# Build the child graph
with tf.Graph().as_default(), tf.device(
'/cpu:0' if FLAGS.use_cpu else '/gpu:0'):
m, meval = self._build_models()
# Figure out what epoch we are on
starting_epoch = self._calc_starting_epoch(m)
# Run the validation error right at the beginning
valid_accuracy = self.eval_child_model(
meval, self.data_loader, 'val')
tf.logging.info('Before Training Epoch: {} Val Acc: {}'.format(
starting_epoch, valid_accuracy))
training_accuracy = None
for curr_epoch in xrange(starting_epoch, hparams.num_epochs):
# Run one training epoch
training_accuracy = self._run_training_loop(m, curr_epoch)
valid_accuracy = self.eval_child_model(
meval, self.data_loader, 'val')
tf.logging.info('Epoch: {} Valid Acc: {}'.format(
curr_epoch, valid_accuracy))
valid_accuracy, test_accuracy = self._compute_final_accuracies(
meval)
tf.logging.info(
'Train Acc: {} Valid Acc: {} Test Acc: {}'.format(
training_accuracy, valid_accuracy, test_accuracy))
@property
def saver(self):
return self._saver
@property
def session(self):
return self._session
@property
def num_trainable_params(self):
return self._num_trainable_params
def main(_):
if FLAGS.dataset not in ['cifar10', 'cifar100']:
raise ValueError('Invalid dataset: %s' % FLAGS.dataset)
hparams = tf.contrib.training.HParams(
train_size=50000,
validation_size=0,
eval_test=1,
dataset=FLAGS.dataset,
data_path=FLAGS.data_path,
batch_size=128,
gradient_clipping_by_global_norm=5.0)
if FLAGS.model_name == 'wrn':
hparams.add_hparam('model_name', 'wrn')
hparams.add_hparam('num_epochs', 200)
hparams.add_hparam('wrn_size', 160)
hparams.add_hparam('lr', 0.1)
hparams.add_hparam('weight_decay_rate', 5e-4)
elif FLAGS.model_name == 'shake_shake_32':
hparams.add_hparam('model_name', 'shake_shake')
hparams.add_hparam('num_epochs', 1800)
hparams.add_hparam('shake_shake_widen_factor', 2)
hparams.add_hparam('lr', 0.01)
hparams.add_hparam('weight_decay_rate', 0.001)
elif FLAGS.model_name == 'shake_shake_96':
hparams.add_hparam('model_name', 'shake_shake')
hparams.add_hparam('num_epochs', 1800)
hparams.add_hparam('shake_shake_widen_factor', 6)
hparams.add_hparam('lr', 0.01)
hparams.add_hparam('weight_decay_rate', 0.001)
elif FLAGS.model_name == 'shake_shake_112':
hparams.add_hparam('model_name', 'shake_shake')
hparams.add_hparam('num_epochs', 1800)
hparams.add_hparam('shake_shake_widen_factor', 7)
hparams.add_hparam('lr', 0.01)
hparams.add_hparam('weight_decay_rate', 0.001)
elif FLAGS.model_name == 'pyramid_net':
hparams.add_hparam('model_name', 'pyramid_net')
hparams.add_hparam('num_epochs', 1800)
hparams.add_hparam('lr', 0.05)
hparams.add_hparam('weight_decay_rate', 5e-5)
hparams.batch_size = 64
else:
raise ValueError('Not Valid Model Name: %s' % FLAGS.model_name)
cifar_trainer = CifarModelTrainer(hparams)
cifar_trainer.run_model()
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
tf.app.run()