-
Notifications
You must be signed in to change notification settings - Fork 75
/
Copy pathablation_vgg16_c.py
executable file
·118 lines (111 loc) · 5.08 KB
/
ablation_vgg16_c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import numpy as np
import torch
import torchvision
import torch.nn as nn
import math
class VGG16_C(nn.Module):
""""""
def __init__(self, pretrain=None, logger=None, block=5):
super(VGG16_C, self).__init__()
self.block = block
self.conv1_1 = nn.Conv2d(3, 64, (3, 3), stride=1, padding=1)
self.relu1_1 = nn.ReLU(inplace=True)
self.conv1_2 = nn.Conv2d(64, 64, (3, 3), stride=1, padding=1)
self.relu1_2 = nn.ReLU(inplace=True)
if block >= 2:
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
self.conv2_1 = nn.Conv2d(64, 128, (3, 3), stride=1, padding=1)
self.relu2_1 = nn.ReLU(inplace=True)
self.conv2_2 = nn.Conv2d(128, 128, (3, 3), stride=1, padding=1)
self.relu2_2 = nn.ReLU(inplace=True)
if block >= 3:
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
self.conv3_1 = nn.Conv2d(128, 256, (3, 3), stride=1, padding=1)
self.relu3_1 = nn.ReLU(inplace=True)
self.conv3_2 = nn.Conv2d(256, 256, (3, 3), stride=1, padding=1)
self.relu3_2 = nn.ReLU(inplace=True)
self.conv3_3 = nn.Conv2d(256, 256, (3, 3), stride=1, padding=1)
self.relu3_3 = nn.ReLU(inplace=True)
if block >= 4:
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
self.conv4_1 = nn.Conv2d(256, 512, (3, 3), stride=1, padding=1)
self.relu4_1 = nn.ReLU(inplace=True)
self.conv4_2 = nn.Conv2d(512, 512, (3, 3), stride=1, padding=1)
self.relu4_2 = nn.ReLU(inplace=True)
self.conv4_3 = nn.Conv2d(512, 512, (3, 3), stride=1, padding=1)
self.relu4_3 = nn.ReLU(inplace=True)
if block >= 5:
self.pool4 = nn.MaxPool2d(2, stride=1, ceil_mode=True)
self.conv5_1 = nn.Conv2d(512, 512, (3, 3), stride=1, padding=2, dilation=2)
self.relu5_1 = nn.ReLU(inplace=True)
self.conv5_2 = nn.Conv2d(512, 512, (3, 3), stride=1, padding=2, dilation=2)
self.relu5_2 = nn.ReLU(inplace=True)
self.conv5_3 = nn.Conv2d(512, 512, (3, 3), stride=1, padding=2, dilation=2)
self.relu5_3 = nn.ReLU(inplace=True)
if pretrain:
own_state_dict = self.state_dict()
state_dict = torch.load(pretrain)
for name, param in own_state_dict.items():
if name in state_dict:
if logger:
logger.info('copy the weights of %s from pretrained model' % name)
param.copy_(state_dict[name])
else:
if logger:
logger.info('init the weights of %s from mean 0, std 0.01 gaussian distribution'\
% name)
if 'bias' in name:
param.zero_()
else:
param.normal_(0, 0.01)
else:
self._initialize_weights(logger)
def forward(self, x):
side = []
conv1_1 = self.relu1_1(self.conv1_1(x))
conv1_2 = self.relu1_2(self.conv1_2(conv1_1))
side += [conv1_1, conv1_2]
if self.block >= 2:
pool1 = self.pool1(conv1_2)
conv2_1 = self.relu2_1(self.conv2_1(pool1))
conv2_2 = self.relu2_2(self.conv2_2(conv2_1))
side += [conv2_1, conv2_2]
if self.block >= 3:
pool2 = self.pool2(conv2_2)
conv3_1 = self.relu3_1(self.conv3_1(pool2))
conv3_2 = self.relu3_2(self.conv3_2(conv3_1))
conv3_3 = self.relu3_3(self.conv3_3(conv3_2))
side += [conv3_1, conv3_2, conv3_3]
if self.block >= 4:
pool3 = self.pool3(conv3_3)
conv4_1 = self.relu4_1(self.conv4_1(pool3))
conv4_2 = self.relu4_2(self.conv4_2(conv4_1))
conv4_3 = self.relu4_3(self.conv4_3(conv4_2))
side += [conv4_1, conv4_2, conv4_3]
if self.block >= 5:
pool4 = self.pool4(conv4_3)
conv5_1 = self.relu5_1(self.conv5_1(pool4))
conv5_2 = self.relu5_2(self.conv5_2(conv5_1))
conv5_3 = self.relu5_3(self.conv5_3(conv5_2))
side += [conv5_1, conv5_2, conv5_3]
return side
def _initialize_weights(self, logger=None):
for m in self.modules():
if isinstance(m, nn.Conv2d):
if logger:
logger.info('init the weights of %s from mean 0, std 0.01 gaussian distribution'\
% m)
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.weight.data.normal_(0, 0.01)
m.bias.data.zero_()
if __name__ == '__main__':
model = VGG16_C()
# im = np.zeros((1,3,100,100))
# out = model(Variable(torch.from_numpy(im)))