-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproteus.f90
executable file
·202 lines (171 loc) · 6.09 KB
/
proteus.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
subroutine Proteus(ndim, k,gap,ptol,func_gap,iter)
! This subroutine gives the local minimal of the func_gap in multidimensional
! parameters space
! Ref: Nelder, J.A., and Mead, R. 1965, Computer Journal, vol. 7, pp. 308–313. [1]
use para, only : dp, cpuid, stdout, eps9
implicit none
integer, intent(in) :: ndim ! number of parameters
integer, intent(out) :: iter ! number of iterations
real(dp), intent(in) :: ptol ! tolerance to be achieved in func_gap
real(dp), intent(inout) :: gap(ndim+1)
real(dp), intent(inout) :: k(ndim+1, ndim)
! function to calculate the energy gap for a given k point x
interface
function func_gap(n, x)
implicit none
integer, parameter :: dp= kind(1d0)
integer, intent(in) :: n
real(dp), dimension(n), intent(in) :: x
real(dp) :: func_gap
end function func_gap
end interface
integer, parameter :: itmax=500 ! maximum iterations
real(dp), parameter :: tiny=1.0e-10
integer :: iworst
real(dp), dimension(size(k,2)) :: ksum
call Proteus_0
contains
subroutine Proteus_0
implicit none
integer :: i,ibest,inworst
real(dp) :: rtol,ysave,ytry,ytmp
iter=0
! Enter here when starting or have just overall contracted.
! Recompute ksum.
ksum(:)=sum(k(:,:),dim=1)
do while (.true.)
! Enter here when have just changed a single point.
! Determine which point is the highest (worst) iworst, next-highest inworst,
! and lowest (best) ibest
ibest=iminloc(gap(:))
iworst=imaxloc(gap(:))
ytmp=gap(iworst)
gap(iworst)=gap(ibest)
inworst=imaxloc(gap(:))
gap(iworst)=ytmp
! Compute the fractional range from highest to lowest and return if
! satisfactory.
! If returning, put best point and value in slot 1.
rtol=2.0_dp*abs(gap(iworst)-gap(ibest))/(abs(gap(iworst))+abs(gap(ibest))+tiny)
if (rtol < ptol.or.gap(ibest)<eps9) then
call swap1(gap(1),gap(ibest))
call swap2(k(1,:),k(ibest,:))
call printkgap(k, gap)
return
end if
if (iter >= itmax) then
if (cpuid.eq.0) write(stdout, *)'itmax exceeded in Proteus'
return
endif
! start a new iteration. first extrapolate by a factor ?1 through the
! face of the simplex
! across from the high point, i.e., reflect the simplex from the high
! point.
ytry=protry(-1.0_dp)
iter=iter+1
call printkgap(k, gap)
if (ytry <= gap(ibest)) then
! gives a result better than the best point, so
! try an additional extrapolation by a factor of 2
ytry=protry(2.0_dp)
iter=iter+1
call printkgap(k, gap)
else if (ytry >= gap(inworst)) then
! the reflected point is worse than the second
! highest, so look for an intermediate lower point, i.e., do a
! one-dimensional contraction.
ysave=gap(iworst)
ytry=protry(0.5_dp)
iter=iter+1
call printkgap(k, gap)
if (ytry >= ysave) then
! can't seem to get rid of that high point. better contract
! around the lowest (best) point.
k(:,:)=0.5_dp*(k(:,:)+spread(k(ibest,:),1,size(k,1)))
do i=1,ndim+1
if (i /= ibest) gap(i)=func_gap(ndim, k(i,:))
end do
!keep track of function evaluations.
iter=iter+ndim
ksum(:)=sum(k(:,:),dim=1)
end if
end if
end do !go back for the test of doneness and the next
end subroutine Proteus_0
function protry(fac)
! Extrapolates by a factor fac through the face of the simplex across from
! the high point,
! tries it, and replaces the high point if the new point is better.
implicit none
real(dp), intent(in) :: fac
real(dp) :: protry
real(dp) :: fac1,fac2,ytry
real(dp), dimension(size(k,2)) :: ptry
fac1=(1.0_dp-fac)/ndim
fac2=fac1-fac
ptry(:)=ksum(:)*fac1-k(iworst,:)*fac2
ytry=func_gap(ndim, ptry)
if (ytry < gap(iworst)) then
gap(iworst)=ytry
ksum(:)=ksum(:)-k(iworst,:)+ptry(:)
k(iworst,:)=ptry(:)
end if
protry=ytry
end function protry
function iminloc(gap0)
! Find the location of the minimum value of y
implicit none
real(dp), intent(in) :: gap0(ndim+1)
integer :: iminloc
integer :: i
iminloc=1
do i=1, ndim+1
if (gap0(i)<gap0(iminloc)) iminloc=i
enddo
end function iminloc
function imaxloc(gap0)
! Find the location of the maximum value of gap
implicit none
real(dp), intent(in) :: gap0(ndim+1)
integer :: imaxloc
integer :: i
imaxloc=1
do i=1, ndim+1
if (gap0(i)>gap0(imaxloc)) imaxloc=i
enddo
end function imaxloc
subroutine swap1(x, y)
! swap x and y, real valued
implicit none
real(dp), intent(inout) :: x
real(dp), intent(inout) :: y
real(dp) :: z
z= x
x= y
y= z
return
end subroutine swap1
subroutine swap2(x, y)
! swap x and y, real vector valued
implicit none
real(dp), intent(inout) :: x(ndim)
real(dp), intent(inout) :: y(ndim)
real(dp) :: z(ndim)
z= x
x= y
y= z
return
end subroutine swap2
subroutine printkgap(k0, gap0)
implicit none
real(dp), intent(in) :: k0(ndim+1, ndim)
real(dp), intent(in) :: gap0(ndim+1 )
integer :: i
if (mod(iter, 50).ne.1) return
! output some informations
if (cpuid.eq.0) write(stdout, '(a, i8)') 'Proteus iter= ', iter
if (cpuid.eq.0) write(stdout, '("k ", 4f16.6)') (k0(1, i), i=1, ndim)
if (cpuid.eq.0) write(stdout, '("gap", 4f16.6)') (gap0( i), i=1, ndim+1)
return
end subroutine printkgap
end subroutine Proteus