-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.lua
255 lines (227 loc) · 9.45 KB
/
main.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
require 'nn'
require 'cutorch'
require 'cunn'
require 'cudnn'
require 'optim'
local nninit = require 'nninit'
require 'ResidualDrop'
-- Saves 40% time according to http://torch.ch/blog/2016/02/04/resnets.html
-- FFT based convolutions via CuDNN-4 : Using the CuDNN Torch bindings, one can
-- select the fastest convolution kernels by setting cudnn.fastest and
-- cudnn.benchmark to true. This automatically benchmarks each possible
-- algorithm on your GPU and chooses the fastest one. This sped up the time
-- per-mini-batch by about 40% on a single GPU, but slowed down the multi-GPU
-- case due to the additional kernel launch overhead.
cudnn.fastest = true
cudnn.benchmark = true
-- From the Penlight Lua Libraries (https://github.com/stevedonovan/Penlight)
opt = lapp[[
--maxEpochs (default 500) Maximum number of epochs to train the network
--batchSize (default 128) Mini-batch size
--N (default 18) Model has 6*N+2 convolutional layers
--dataset (default cifar10) Use cifar10, cifar100 or svhn
--deathMode (default lin_decay) Use lin_decay or uniform
--deathRate (default 0) 1-p_L for lin_decay, 1-p_l for uniform, 0 is constant depth
--device (default 0) Which GPU to run on, 0-based indexing
--augmentation (default true) Standard data augmentation (CIFAR only), true or false
--resultFolder (default "") Path to the folder where you'd like to save results
--dataRoot (default "") Path to data (e.g. contains cifar10-train.t7)
]]
-- Output selected options
print(opt)
-- Default to the first GPU; torch uses 1-based indexing for GPU, so +1
cutorch.setDevice(opt.device+1)
-- Set seed for randomization so we can replicate our results
cutorch.manualSeed(1)
torch.manualSeed(1)
-- number of OpenMP threads, 1 is enough
torch.setnumthreads(1)
---- Loading data ----
-- Load the relevant dataset object
if opt.dataset == 'svhn' then require 'svhn-dataset' else require 'cifar-dataset' end
-- Load all data (train, validate, test) and shuffle
all_data, all_labels = get_Data(opt.dataset, opt.dataRoot, true)
-- Split up data
dataTrain = Dataset.LOADER(all_data, all_labels, "train", opt.batchSize, opt.augmentation)
dataValid = Dataset.LOADER(all_data, all_labels, "valid", opt.batchSize)
dataTest = Dataset.LOADER(all_data, all_labels, "test", opt.batchSize)
-- Get training data mean and std and normalize validation and test sets
local mean,std = dataTrain:preprocess()
dataValid:preprocess(mean,std)
dataTest:preprocess(mean,std)
print("Training set size:\t", dataTrain:size())
print("Validation set size:\t", dataValid:size())
print("Test set size:\t\t", dataTest:size())
---- Optimization hyperparameters ----
sgdState = {
weightDecay = 1e-4,
momentum = 0.9,
dampening = 0,
nesterov = true,
}
-- Point at which learning rate decrease by 10x
lrSchedule = {svhn = {0.6, 0.7 },
cifar10 = {0.5, 0.75},
cifar100 = {0.5, 0.75}}
---- Buidling the residual network model ----
-- Input: 3x32x32
print('Building model...')
model = nn.Sequential()
------> 3, 32,32
-- Documentation: https://github.com/torch/nn/blob/master/doc/convolution.md#nn.SpatialConvolution
-- input channels: 3
-- output channels: 16
-- kernel: [3, 3]
-- stride: [1, 1]
-- padding: [1, 1]
model:add(cudnn.SpatialConvolution(3, 16, 3,3, 1,1, 1,1)
:init('weight', nninit.kaiming, {gain = 'relu'})
:init('bias', nninit.constant, 0))
-- Documentation: https://github.com/torch/nn/blob/master/doc/convolution.md#nn.SpatialBatchNormalization
-- input channels: 16
model:add(cudnn.SpatialBatchNormalization(16))
-- Documentation: https://github.com/torch/nn/blob/master/doc/transfer.md#relu
-- inplace: true
model:add(cudnn.ReLU(true))
------> 16, 32,32 First Group
for i=1,opt.N do addResidualDrop(model, nil, 16) end
------> 32, 16,16 Second Group
addResidualDrop(model, nil, 16, 32, 2)
for i=1,opt.N-1 do addResidualDrop(model, nil, 32) end
------> 64, 8,8 Third Group
addResidualDrop(model, nil, 32, 64, 2)
for i=1,opt.N-1 do addResidualDrop(model, nil, 64) end
------> 10, 8,8 Pooling, Linear, Softmax
model:add(nn.SpatialAveragePooling(8,8)):add(nn.Reshape(64))
if opt.dataset == 'cifar10' or opt.dataset == 'svhn' then
model:add(nn.Linear(64, 10))
elseif opt.dataset == 'cifar100' then
model:add(nn.Linear(64, 100))
else
print('Invalid argument for dataset!')
end
model:add(cudnn.LogSoftMax())
model:cuda()
loss = nn.ClassNLLCriterion()
loss:cuda()
collectgarbage()
-- print(model) -- if you need to see the architecture, it's going to be long!
---- Determines the position of all the residual blocks ----
addtables = {}
for i=1,model:size() do
if tostring(model:get(i)) == 'nn.ResidualDrop' then addtables[#addtables+1] = i end
end
---- Sets the deathRate (1 - survival probability) for all residual blocks ----
-- TODO: replace death rates with 'alphas', which should be trainable variables, and add them to some list
for i,block in ipairs(addtables) do
if opt.deathMode == 'uniform' then
model:get(block).deathRate = opt.deathRate
elseif opt.deathMode == 'lin_decay' then
model:get(block).deathRate = i / #addtables * opt.deathRate
else
print('Invalid argument for deathMode!')
end
end
---- Resets all gates to open ----
function openAllGates()
for i,block in ipairs(addtables) do model:get(block).gate = true end
end
---- Testing ----
function evalModel(dataset)
model:evaluate()
openAllGates() -- this is actually redundant, test mode never skips any layer
local correct = 0
local total = 0
local batches = torch.range(1, dataset:size()):long():split(opt.batchSize)
for i=1,#batches do
local batch = dataset:sampleIndices(batches[i])
local inputs, labels = batch.inputs, batch.outputs:long()
local y = model:forward(inputs:cuda()):float()
local _, indices = torch.sort(y, 2, true)
-- indices is a tensor with shape (batchSize, nClasses)
local top1 = indices:select(2, 1)
correct = correct + torch.eq(top1, labels):sum()
total = total + indices:size(1)
end
return 1-correct/total
end
-- Saving and printing results
all_results = {} -- contains test and validation error throughout training
-- For CIFAR, accounting is done every epoch, and for SVHN, every 200 iterations
function accounting(training_time)
local results = {evalModel(dataValid), evalModel(dataTest)}
all_results[#all_results + 1] = results
-- Saves the errors. These get covered up by new ones every time the function is called
torch.save(opt.resultFolder .. string.format('errors_%d_%s_%s_%.1f',
opt.N, opt.dataset, opt.deathMode, opt.deathRate), all_results)
if opt.dataset == 'svhn' then
print(string.format('Iter %d:\t%.2f%%\t\t%.2f%%\t\t%0.0fs',
sgdState.iterCounter, results[1]*100, results[2]*100, training_time))
else
print(string.format('Epoch %d:\t%.2f%%\t\t%.2f%%\t\t%0.0fs',
sgdState.epochCounter, results[1]*100, results[2]*100, training_time))
end
end
-- TODO: add a function to do a forward pass on the validation set and backprop w.r.t. the alphas
---- Training ----
function main()
local weights, gradients = model:getParameters()
sgdState.epochCounter = 1
if opt.dataset == 'svhn' then
sgdState.iterCounter = 1
print('Training...\nIter\t\tValid. err\tTest err\tTraining time')
else
print('Training...\nEpoch\tValid. err\tTest err\tTraining time')
end
local all_indices = torch.range(1, dataTrain:size())
local timer = torch.Timer()
while sgdState.epochCounter <= opt.maxEpochs do
-- Learning rate schedule
if sgdState.epochCounter < opt.maxEpochs*lrSchedule[opt.dataset][1] then
sgdState.learningRate = 0.1
elseif sgdState.epochCounter < opt.maxEpochs*lrSchedule[opt.dataset][2] then
sgdState.learningRate = 0.01
else
sgdState.learningRate = 0.001
end
local shuffle = torch.randperm(dataTrain:size())
local batches = all_indices:index(1, shuffle:long()):long():split(opt.batchSize)
for i=1,#batches do
model:training()
openAllGates() -- resets all gates to open
-- Randomly determines the gates to close, according to their survival probabilities
for i,tb in ipairs(addtables) do
if torch.rand(1)[1] < model:get(tb).deathRate then model:get(tb).gate = false end
end
function feval(x)
gradients:zero()
local batch = dataTrain:sampleIndices(batches[i])
local inputs, labels = batch.inputs, batch.outputs:long()
inputs = inputs:cuda()
labels = labels:cuda()
local y = model:forward(inputs)
local loss_val = loss:forward(y, labels)
local dl_df = loss:backward(y, labels)
model:backward(inputs, dl_df)
return loss_val, gradients
end
optim.sgd(feval, weights, sgdState)
if opt.dataset == 'svhn' then
if sgdState.iterCounter % 200 == 0 then
accounting(timer:time().real)
timer:reset()
end
sgdState.iterCounter = sgdState.iterCounter + 1
end
end
if opt.dataset ~= 'svhn' then
accounting(timer:time().real)
timer:reset()
end
sgdState.epochCounter = sgdState.epochCounter + 1
end
-- Saves the the last model, optional. Model loading feature is not available now but is easy to add
-- torch.save(opt.resultFolder .. string.format('model_%d_%s_%s_%.1f',
-- opt.N, opt.dataset, opt.deathMode, opt.deathRate), model)
end
main()