-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrest.py
63 lines (51 loc) · 1.57 KB
/
rest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import io
import cv2
import base64
import random
import string
import numpy as np
from monodepth2.infer import load_model
from tools import get_res
from base64 import decodestring
from fastapi import FastAPI, File
from fastapi.staticfiles import StaticFiles
from starlette.requests import Request
from starlette.responses import StreamingResponse
def random_string(string_length=8):
letters = string.ascii_lowercase
return ''.join(random.choice(letters) for i in range(string_length))
scale = {
'avg': 1,
'num_human': 0
}
inference = {'name': 'monodepth'}
if inference['name'] == 'monodepth':
encoder, depth_decoder, (feed_width, feed_height) = load_model("mono+stereo_640x192")
inference['encoder'] = encoder
inference['depth_decoder'] = depth_decoder
inference['input_size'] = (feed_width, feed_height)
tracker = None
# if args.with_tracker:
# tracker = tracker_obj("./tracking_wo_bnw")
# tracker.reset()
depth_merger = 'median'
app = FastAPI()
app.mount("/results", StaticFiles(directory="results"), name="results")
@app.post("/predict")
def predict(request: Request,
file: bytes = File(...)):
img = cv2.imdecode(np.fromstring(io.BytesIO(file).read(), np.uint8), 1)
_, res_img = get_res(
img,
inference,
scale,
tracker,
depth_merger,
False
)
res_img = cv2.cvtColor(res_img, cv2.COLOR_RGB2BGR)
img_name = f'results/{random_string()}.png'
cv2.imwrite(img_name, res_img)
return {
"file_name": img_name
} #base64.b64encode(res_img.tobytes())