diff --git a/notebooks/pandas_06_data_cleaning.ipynb b/notebooks/pandas_06_data_cleaning.ipynb
index 3c3d6c6..a6696ff 100644
--- a/notebooks/pandas_06_data_cleaning.ipynb
+++ b/notebooks/pandas_06_data_cleaning.ipynb
@@ -2503,14 +2503,11 @@
"\n",
"Hints
\n",
" \n",
- "- Use the `rename` method and apply the mapping on the `columns`.\n",
- "- The input of the `rename` method van be a dictionary or a function. Use the `clean_column_name` as the function to rename the columns. \n",
- "- Make sure to explicitly set the columns= parameter. \n",
+ "- To rename columns, we can use the `rename()` method.\n",
+ "- The input of the `rename()` method can also be a function in addition to a dictionary. When passing a function to `rename()`, pandas will under the hood call this function for each the column name individually, and use the return value as the renamed column name.\n",
+ "- Make sure to explicitly set the `columns=` parameter. \n",
" \n",
- "__NOTE__ The function `clean_column_name` takes as input a string and returns the string after removing the prefix and suffix. \n",
- "\n",
- "- The pandas method `rename` applies this function to each column name individually. \n",
- "- `removeprefix()` and `removesuffix()` are [Python string methods](https://docs.python.org/3/library/stdtypes.html#string-methods) to remove start/trailing characters if present.\n",
+ "__NOTE__ The function `clean_column_name` takes as input a string and returns the string after removing the prefix and suffix. `removeprefix()` and `removesuffix()` are [Python string methods](https://docs.python.org/3/library/stdtypes.html#string-methods) to remove start/trailing characters if present.\n",
"\n",
" \n",
"\n",
@@ -2524,10 +2521,27 @@
"metadata": {
"tags": []
},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "'DAY_OF_WEEK'"
+ ]
+ },
+ "execution_count": 27,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"def clean_column_name(name):\n",
- " return name.removeprefix(\"TX_\").removesuffix(\"_DESCR_NL\")"
+ " \"\"\"\n",
+ " Takes a string and returns it after removing \"TX_\" and \"_DESCR_NL\".\n",
+ " \"\"\"\n",
+ " return name.removeprefix(\"TX_\").removesuffix(\"_DESCR_NL\")\n",
+ "\n",
+ "# example to show what the 'clean_column_name' function does\n",
+ "clean_column_name(\"TX_DAY_OF_WEEK_DESCR_NL\")"
]
},
{
diff --git a/notebooks/pandas_06_data_cleaning.md b/notebooks/pandas_06_data_cleaning.md
index 475247e..7e3b525 100644
--- a/notebooks/pandas_06_data_cleaning.md
+++ b/notebooks/pandas_06_data_cleaning.md
@@ -383,14 +383,11 @@ A number of the remaining metadata columns names have the `TX_` and the `_DESCR_
Hints
-- Use the `rename` method and apply the mapping on the `columns`.
-- The input of the `rename` method van be a dictionary or a function. Use the `clean_column_name` as the function to rename the columns.
-- Make sure to explicitly set the columns= parameter.
+- To rename columns, we can use the `rename()` method.
+- The input of the `rename()` method can also be a function in addition to a dictionary. When passing a function to `rename()`, pandas will under the hood call this function for each the column name individually, and use the return value as the renamed column name.
+- Make sure to explicitly set the `columns=` parameter.
-__NOTE__ The function `clean_column_name` takes as input a string and returns the string after removing the prefix and suffix.
-
-- The pandas method `rename` applies this function to each column name individually.
-- `removeprefix()` and `removesuffix()` are [Python string methods](https://docs.python.org/3/library/stdtypes.html#string-methods) to remove start/trailing characters if present.
+__NOTE__ The function `clean_column_name` takes as input a string and returns the string after removing the prefix and suffix. `removeprefix()` and `removesuffix()` are [Python string methods](https://docs.python.org/3/library/stdtypes.html#string-methods) to remove start/trailing characters if present.
@@ -398,7 +395,13 @@ __NOTE__ The function `clean_column_name` takes as input a string and returns th
```{code-cell} ipython3
def clean_column_name(name):
+ """
+ Takes a string and returns it after removing "TX_" and "_DESCR_NL".
+ """
return name.removeprefix("TX_").removesuffix("_DESCR_NL")
+
+# example to show what the 'clean_column_name' function does
+clean_column_name("TX_DAY_OF_WEEK_DESCR_NL")
```
```{code-cell} ipython3
diff --git a/notebooks/visualization_02_seaborn.ipynb b/notebooks/visualization_02_seaborn.ipynb
index 4ab2e21..92a0ef1 100644
--- a/notebooks/visualization_02_seaborn.ipynb
+++ b/notebooks/visualization_02_seaborn.ipynb
@@ -1558,9 +1558,10 @@
"Hints
\n",
"\n",
"- The sum of victims _for each_ hour of the day requires `groupby`. One can create a new column with the hour of the day or pass the hour directly to `groupby`.\n",
+ "- The groupby operation sets the key that you are grouping on as the index (row labels) of the result. The `reset_index()` method can be used to turn that index into normal dataframe columns.\n",
"- The `.dt` accessor provides access to all kinds of datetime information.\n",
- "- `rename` requires a dictionary with a mapping of the old vs new names.\n",
- "- A bar plot is in seaborn one of the `catplot` options. \n",
+ "- `rename()` requires a dictionary with a mapping of the old to new names.\n",
+ "- A bar plot is in seaborn one of the `catplot()` options. \n",
" \n",
" "
]
diff --git a/notebooks/visualization_02_seaborn.md b/notebooks/visualization_02_seaborn.md
index db1d409..b8aeb58 100644
--- a/notebooks/visualization_02_seaborn.md
+++ b/notebooks/visualization_02_seaborn.md
@@ -434,9 +434,10 @@ Use the `height` and `aspect` to adjust the figure width/height.
Hints
- The sum of victims _for each_ hour of the day requires `groupby`. One can create a new column with the hour of the day or pass the hour directly to `groupby`.
+- The groupby operation sets the key that you are grouping on as the index (row labels) of the result. The `reset_index()` method can be used to turn that index into normal dataframe columns.
- The `.dt` accessor provides access to all kinds of datetime information.
-- `rename` requires a dictionary with a mapping of the old vs new names.
-- A bar plot is in seaborn one of the `catplot` options.
+- `rename()` requires a dictionary with a mapping of the old to new names.
+- A bar plot is in seaborn one of the `catplot()` options.