-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexercise-1.13.scm
47 lines (41 loc) · 942 Bytes
/
exercise-1.13.scm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#lang planet neil/sicp
; TODO(jgessner): talk to paul and matthias about this proof
; ϕ = phi
; ψ = psi
; Prove that Fib(n) is the closest integer to ϕ^n/√5,
; where ϕ = (1 + √5)/2 == 1.618033988749895
; Hint: Let ψ = (1 - √5)/2 == -0.618033988749895
; Use induction and the definition of the Fibonacci numbers (see section 1.2.2)
; to prove that Fib(n) = (ϕ^n - ψ^n)/√5.
(define (fib n)
(fib-iter 1 0 n))
(define (fib-iter a b count)
(if (= count 0)
b
(fib-iter (+ a b) a (- count 1))))
(define (proof n)
(/ (- (expt 1.618033988749895 n) (expt -0.618033988749895 n)) (sqrt 5)))
; > (fib 2)
; 1
; > (proof 2)
; 0.9999999999999998
; > (fib 3)
; 2
; > (proof 3)
; 2.0
; > (fib 4)
; 3
; > (proof 4)
; 3.0
; > (fib 10)
; 55
; > (proof 10)
; 54.99999999999999
; > (fib 111)
; 70492524767089125814114
; > (proof 111)
; 7.04925247670891e+22
; > (fib 75)
; 2111485077978050
; > (proof 75)
; 2111485077978049.5