forked from rowanz/merlot_reserve
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
1116 lines (901 loc) · 49.6 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Pretraining dataloader
"""
import sys
sys.path.append('../')
import time
from pretrain.data_utils import resize_and_pad, get_shape_list, pad_to_fixed_size, \
uniform_random_select, random_categorical_without_replacement, sample_bernoulli, batch_index_iterator, \
sample_bernoullis, cumulative_maximum_int, encode_string
from mreserve.lowercase_encoder import get_encoder, START, END, PADDING, MASK, AUDIOSPAN, LTOVPOOL, MASKAUDIO
import math
import tensorflow as tf
import regex as re
import numpy as np
import tensorflow_datasets as tfds
import functools
from copy import deepcopy
import random
from collections import defaultdict
import warnings
with warnings.catch_warnings():
warnings.simplefilter("ignore")
tf.config.experimental.set_visible_devices([], 'GPU')
logger = tf.get_logger()
encoder = get_encoder()
###################################
segment_k2f = {
'image/encoded': tf.io.FixedLenFeature((), tf.string, default_value=''),
'image/format': tf.io.FixedLenFeature((), tf.string, default_value='jpeg'),
'image/key/sha256': tf.io.FixedLenFeature((), tf.string, default_value=''),
'image/height': tf.io.FixedLenFeature((), tf.int64, 1),
'image/width': tf.io.FixedLenFeature((), tf.int64, 1),
'spectrogram/encoded': tf.io.FixedLenFeature((), tf.string, default_value=''),
'spectrogram/format': tf.io.FixedLenFeature((), tf.string, default_value='jpeg'),
'spectrogram/key/sha256': tf.io.FixedLenFeature((), tf.string, default_value=''),
'spectrogram/height': tf.io.FixedLenFeature((), tf.int64, 1),
'spectrogram/width': tf.io.FixedLenFeature((), tf.int64, 1),
'spectrogram/magic_number': tf.io.FixedLenFeature((), tf.float32, 1),
'youtube_id': tf.io.FixedLenFeature((), tf.string, default_value=''),
'video_src_index': tf.io.FixedLenFeature((), tf.int64, 1),
'title': tf.io.VarLenFeature(tf.int64),
'tags': tf.io.VarLenFeature(tf.int64),
'description': tf.io.VarLenFeature(tf.int64),
'meta': tf.io.FixedLenFeature((), tf.string, default_value=''),
'playback_speed': tf.io.VarLenFeature(tf.int64),
'start_time': tf.io.FixedLenFeature((), tf.float32, 1),
'end_time': tf.io.FixedLenFeature((), tf.float32, 1),
'tok_ids': tf.io.VarLenFeature(tf.int64),
'tok_start_times': tf.io.VarLenFeature(tf.float32),
'tok_end_times': tf.io.VarLenFeature(tf.float32),
'random_text': tf.io.VarLenFeature(tf.int64),
}
def load_and_resize_img(encoded_jpg, config):
"""
Encoded JPG -> image patches
:param encoded_jpg: string
:return: [(H // P) * (W // P), P * P * 3] image
"""
P = config['vit_patch_size']
h1, w1 = config['output_grid']
img = tf.image.decode_jpeg(encoded_jpg, channels=3)
img = tf.image.convert_image_dtype(img, dtype=tf.float32)
img, this_image_info = resize_and_pad(img, (h1 * P, w1 * P),
do_random_scale=config.get('do_random_scale', True),
random_scale_max=config.get('random_scale_max', 1.1),
random_scale_min=config.get('random_scale_min', 1.05),
shrink_both_sides=config.get('shrink_both_sides', True),
do_flip_if_vertical=config.get('do_flip_if_vertical', True),
resize_method='random')
img = tf.nn.space_to_depth(img[None], P, data_format='NHWC')
img = tf.reshape(img, [h1 * w1, P * P * 3])
return img
def load_audio(x, config):
"""
:param x: A tuple with a string (of the encoded audio) and a magic number for inverse scaling
:return: [num_audio_subsegments, audio_seq_length, num_mels],
"""
encoded_audio, magic_number, playback_speed = x
img = tf.image.decode_jpeg(encoded_audio, channels=1)
img = tf.squeeze(img, 2)
img.set_shape([config['num_mels'], config['spec_size']])
img = tf.transpose(img)
# Extract N sequences
content_len = config['num_audio_subsegments'] * config['audio_seq_length']
assert content_len < config['spec_size']
paddings = tf.random.uniform([config['num_audio_subsegments'] + 1], minval=0, maxval=1.0)
num_pad = config['spec_size'] - content_len
paddings_int = tf.cast(num_pad * tf.cumsum(paddings / tf.reduce_sum(paddings)), dtype=tf.int32)
start_idx = paddings_int[:config['num_audio_subsegments']] + tf.range(config['num_audio_subsegments']) * config[
'audio_seq_length']
audio_seqs = []
for i in range(config['num_audio_subsegments']):
audio_seqs.append(img[start_idx[i]:(start_idx[i] + config['audio_seq_length'])])
audio_seqs = tf.stack(audio_seqs)
audio_seqs = tf.cast(audio_seqs, dtype=tf.float32) / magic_number # Don't use convert_image_dtype as that scales it
# If we wanted to invert it completely
# mel = tf.exp(log_mel) - config['spec_eps']
# Add in the playback speed as an extra feature
audio_seqs.set_shape([config['num_audio_subsegments'], config['audio_seq_length'], config['num_mels']])
playback_speed_f32 = tf.cast(playback_speed, dtype=tf.float32)
audio_seqs = tf.concat(
[audio_seqs, tf.fill([config['num_audio_subsegments'], config['audio_seq_length'], 1], playback_speed_f32)], -1)
fft_window = config['fft_window_size'] / config['sample_rate']
fft_to_time_scale = config['fft_hop_length'] / config['sample_rate']
audio_start_t = tf.cast(start_idx, dtype=tf.float32) * fft_to_time_scale - fft_window / 2.0
audio_end_t = audio_start_t + config['audio_seq_length'] * fft_to_time_scale + fft_window
return audio_seqs, audio_start_t, audio_end_t
def pad_tokens_to_fixed_size(tokens, padded_seq_len):
"""
Pad, then truncate tokens to padded_seq_len
:param tokens:
:param padded_seq_len:
:return:
"""
missing_len = tf.maximum(padded_seq_len - get_shape_list(tokens, 2)[0], 0)
dummy_row = tf.constant([0, -1, -1], dtype=tf.int32)
tokens = tf.concat([tokens, tf.tile(dummy_row[None], [missing_len, 1])], 0)[:padded_seq_len]
tokens = tf.reshape(tokens, [padded_seq_len, 3])
return tokens
def _one_hot(idx, N):
m = get_shape_list(idx, 1)[0]
return tf.reduce_any(tf.equal(tf.range(N)[:, None], idx[None]), 1)
def select_tokens(tokens, padded_seq_len, num_segments):
"""
Take out stuff from `tokens` without killing mask tokens
We can cut out `audiospan' tokens on the RHS, not the left
:param tokens:
:param padded_seq_len:
:return:
"""
L = get_shape_list(tokens, 2)[0]
amt_to_truncate = L - padded_seq_len
is_mask = tf.cumsum(tf.cast((tokens[:, 0] == MASK) | (tokens[:, 0] == MASKAUDIO), dtype=tf.int32))
is_audiospan = tf.cumsum(tf.cast(tokens[:, 0] == AUDIOSPAN, dtype=tf.int32))
lhs_amt = tf.reduce_sum(tf.cast((is_mask == 0) & (is_audiospan == 0), dtype=tf.int32))
rhs_amt = tf.reduce_sum(tf.cast(is_mask == is_mask[-1], dtype=tf.int32)) - 1
# Truncate from both sides
trunc_start = tf.minimum(amt_to_truncate // 2, lhs_amt)
trunc_end = tf.minimum(amt_to_truncate - trunc_start, rhs_amt)
trunc_start = tf.minimum(amt_to_truncate - trunc_end, lhs_amt)
tokens0 = tokens[trunc_start:(L-trunc_end)]
# We might need to more aggressively sample
keep_logits = 1e7 * tf.cast(tf.equal(tokens0[:, 0], MASK) & (tokens0[:, 0] != AUDIOSPAN), dtype=tf.float32)
# Try to keep the same segments together
segment_to_score = tf.random.uniform(shape=[num_segments], minval=-1e5, maxval=1e5, dtype=tf.float32)
keep_logits += tf.gather(segment_to_score, tokens0[:, 1])
idx2 = tf.sort(random_categorical_without_replacement(keep_logits, padded_seq_len))
tokens1 = tf.gather(tokens0, idx2)
return tf.cond(
get_shape_list(tokens0, 2)[0] > padded_seq_len,
lambda: tokens1,
lambda: tokens0,
)
def mask_tokens(tokens_ragged, mask_idx, do_audio_span=None, audio_token_length=6, text_span_start_counter=0,
num_groups=1, padded_seq_len=None, do_audio_mask=False):
"""
Masks tokens in a ragged representation.
:param tokens_ragged: a [N, L] representation of tokens
you can do this conversion by e.g.
tokens_ragged = tf.RaggedTensor.from_value_rowids(tokens, segment_idx)
:param mask_idx_onehot: a [N] vector for the rows we should mask
:param do_audio_span: Optional: a [N] vector for whether to turn the row into an audio span.
:param text_span_start_counter: An integer >= 0. basically if we have other text spans from a different masker,
this means we won't cross-over into them
:param num_groups: How many partitions to split the tokens into
:param padded_seq_len: Length to pad things to
:param do_audio_mask: Whether to mask audio
:return: A [sum(do_mask), L] representation of text spans, in ragged form
A list of tokens of size [<=L, 3]. The columns are [token_id, audio_span, text_span]
"""
N = tokens_ragged.bounding_shape()[0]
mask_idx = tf.sort(mask_idx, 0)
text_spans = tf.gather(tokens_ragged, mask_idx)
mask_idx_onehot = _one_hot(mask_idx, N)
if do_audio_span is not None:
do_audio_span = tf.logical_and(do_audio_span, tf.logical_not(mask_idx_onehot))
audio_span_full = tf.fill([N, audio_token_length], AUDIOSPAN)
tokens_ragged = tf.compat.v1.where(do_audio_span, audio_span_full, tokens_ragged)
# Replace with mask token
mask_tok = tf.fill([N, 1], MASK)
if do_audio_mask:
mask_tok = tf.concat([mask_tok, tf.fill([N, 1], MASKAUDIO)], 1)
tokens_ragged = tf.compat.v1.where(mask_idx_onehot, mask_tok, tokens_ragged)
# Replace each token with the corresponding index into text_spans if it's a MASK token, else -1
text_ptr = tf.cumsum(tf.cast(mask_idx_onehot, dtype=tf.int32)) - 1 + text_span_start_counter
text_ptr = tf.where(mask_idx_onehot, text_ptr, tf.fill([N], -1))
# split into groups
grp_size = N // num_groups
output_grouped = []
for i in range(num_groups):
tokens_ragged_i = tokens_ragged[i * grp_size:(i + 1) * grp_size]
idxs_i = tf.cast(tf.where(tokens_ragged_i)[:, 0], dtype=tf.int32)
audio_ptr_i = idxs_i + i * grp_size
# text pointer -- grab all tokens if it's a mask token
text_ptr_i = text_ptr[i * grp_size:(i + 1) * grp_size]
text_ptr_i = tf.gather(text_ptr_i, idxs_i)
# Do the formatting thing with the audio pointers and text pointers (for MASK tokens)
output_i = tf.stack([tokens_ragged_i.values, audio_ptr_i, text_ptr_i], -1)
if padded_seq_len is not None:
is_over_budget = get_shape_list(output_i, 2)[0] > padded_seq_len
output_i = tf.cond(is_over_budget,
lambda: select_tokens(output_i, padded_seq_len, num_segments=N),
lambda: pad_tokens_to_fixed_size(output_i, padded_seq_len))
output_grouped.append(output_i)
return text_spans, output_grouped
def shift_ragged_tokens_at_positions(tokens_ragged, positions, right_to_left=True):
"""
Given a ragged tensor of size [N, L] and an index of positions, we shift those values one to the left, or one to the right
:param tokens_ragged:
:param positions:
:return:
"""
N = tokens_ragged.bounding_shape()[0]
positions = tf.cast(positions, dtype=tf.int32)
pos_onehot = _one_hot(positions, N)
pos_onehot = tf.logical_and(pos_onehot, tf.greater(tokens_ragged.row_lengths(), 0))
amt_to_take = tf.cast(pos_onehot, dtype=tf.int32)
if right_to_left:
amt_to_take = amt_to_take[1:]
sub1 = tf.concat([[0], -amt_to_take], 0)
add1 = tf.concat([amt_to_take, [0]], 0)
else:
amt_to_take = amt_to_take[:-1]
sub1 = tf.concat([-amt_to_take, [0]], 0)
add1 = tf.concat([[0], amt_to_take], 0)
row_lengths = tokens_ragged.row_lengths() + sub1 + add1
return tf.RaggedTensor.from_row_lengths(tokens_ragged.values, row_lengths)
def random_do_both_directions(f):
# Decorator to do right than left, then left than right, or the other way around
def _f(x, **kwargs):
x_rtl0 = f(x, **kwargs, right_to_left=True)
x_rtl1 = f(x_rtl0, **kwargs, right_to_left=False)
x_ltr0 = f(x, **kwargs, right_to_left=False)
x_ltr1 = f(x_ltr0, **kwargs, right_to_left=True)
return tf.cond(sample_bernoulli(0.5), lambda: x_rtl1, lambda: x_ltr1)
return _f
@random_do_both_directions
def reassign_empty_tokens(tokens_ragged, *, mask_idx, right_to_left: bool=True):
"""
If there's something that's empty (and masked), steal one of the tokens
:param tokens_ragged: Ragged Tensor of timesteps, [N rows, L]
:param mask_idx: Index into length L, whether we mask that.
:param right_to_left: Direction
:return:
"""
# 1. Reassign empty tokens
N = tokens_ragged.bounding_shape()[0]
mask_idx_onehot = _one_hot(mask_idx, N)
row_lengths = tokens_ragged.row_lengths()
needs_tokens = tf.logical_and(mask_idx_onehot, tf.equal(row_lengths, 0))
can_donate = tf.logical_and(tf.logical_not(mask_idx_onehot), tf.greater_equal(row_lengths, 2))
if right_to_left:
positions = tf.where(tf.logical_and(can_donate[1:], needs_tokens[:-1]))[:, 0] + 1
return shift_ragged_tokens_at_positions(tokens_ragged, positions)
else:
positions = tf.where(tf.logical_and(can_donate[:-1], needs_tokens[1:]))[:, 0]
return shift_ragged_tokens_at_positions(tokens_ragged, positions, right_to_left=False)
@random_do_both_directions
def increase_textmask(tokens_ragged, *, mask_idx, tok_centroids_vals, audio_start_end, right_to_left: bool=True,
delta_thresh=0.1):
"""
Increase text mask by 1 in places
:param tokens_ragged:
:param mask_idx:
:param tok_centroids_vals: Values that go into a ragged tensor
:param audio_start_end: [N, 2] coords.
:param right_to_left: Direction
:param delta_thresh: Threshold for assigning
:return:
"""
nrows_real = tokens_ragged.bounding_shape(axis=0)
tok_centroids_expanded = tf.RaggedTensor.from_value_rowids(tok_centroids_vals, tokens_ragged.value_rowids() + 1,
nrows=nrows_real + 2, name='increase_textmask')
# Don't let us increase at the expense of empty tokens
nmask = get_shape_list(mask_idx, 1)[0]
if right_to_left:
# Move from the mini segment to our right, to us
t_out_right = tf.reduce_min(tf.gather(tok_centroids_expanded, mask_idx + 2), -1)
# only things at least length 1
t_out_right = tf.where(tf.less_equal(tf.gather(tok_centroids_expanded.row_lengths(), mask_idx + 2), 1),
tf.fill([nmask], 10000.0), t_out_right)
audio_boundary_r = tf.gather(audio_start_end[:, 1], mask_idx)
delta_r = (t_out_right - audio_boundary_r)
take_from_right = tf.less(delta_r, delta_thresh)
right_is_masked = tf.reduce_any(tf.equal(mask_idx[:, None] + 1, mask_idx[None]), -1)
take_from_right = tf.logical_and(take_from_right, tf.logical_not(right_is_masked))
take_from_right = tf.logical_and(take_from_right, tf.less(mask_idx + 1, nrows_real))
take_from_right_idx = tf.gather(mask_idx + 1, tf.where(take_from_right)[:, 0])
return shift_ragged_tokens_at_positions(tokens_ragged, take_from_right_idx, right_to_left=True)
else:
t_out_left = tf.reduce_max(tf.gather(tok_centroids_expanded, mask_idx), -1)
t_out_left = tf.where(tf.less_equal(tf.gather(tok_centroids_expanded.row_lengths(), mask_idx), 1),
tf.fill([nmask], -10000.0), t_out_left)
audio_boundary_l = tf.gather(audio_start_end[:, 0], mask_idx)
delta_l = (audio_boundary_l - t_out_left)
take_from_left = tf.less(delta_l, delta_thresh)
left_is_masked = tf.reduce_any(tf.equal(mask_idx[:, None] - 1, mask_idx[None]), -1)
take_from_left = tf.logical_and(take_from_left, tf.logical_not(left_is_masked))
take_from_left = tf.logical_and(take_from_left, tf.greater(mask_idx, 0))
take_from_left_idx = tf.gather(mask_idx - 1, tf.where(take_from_left)[:, 0])
return shift_ragged_tokens_at_positions(tokens_ragged, take_from_left_idx, right_to_left=False)
# is_valid = re.compile(r"^[ A-Za-z0-9\-$%&'+,./:?@\[\]_’]*$")
is_valid = re.compile(r"^[ A-Za-z0-9']*$")
TOKEN_IS_VALID = [(i > 10) and bool(is_valid.match(encoder.decode([i]))) for i in range(encoder.get_vocab_size())]
bad_tokens = [149, 4858, 9504, 15162, 22312, 22433, 32156]
for i in bad_tokens:
TOKEN_IS_VALID[i] = False
def filter_out_tokens_not_in_youtube(spans_i, token_is_valid_tf=None):
if token_is_valid_tf is None:
token_is_valid_tf = tf.constant(TOKEN_IS_VALID, dtype=tf.bool)
# Filter out tokens not seen in YouTube
new_span_idx = tf.where(tf.gather(token_is_valid_tf, spans_i.values))[:, 0]
spans_i = tf.RaggedTensor.from_value_rowids(tf.gather(spans_i.values, new_span_idx),
tf.gather(spans_i.value_rowids(), new_span_idx),
nrows=spans_i.bounding_shape(axis=0))
return spans_i
def convert_rawtext_into_fake_segments(tokens, desired_len, span_budget, use_v1_stats=False):
"""
:param tokens: Tokens that we will mask. I'm only going to mask alphanumeric characters
:param desired_len: desired length of the tokens
:param mask_rate: How much to mask
:return A ragged list of tokens
"""
# # I got this empirically to minimize KL divergence between lengths of this and audio-to-text and text-to-audio
if use_v1_stats:
logger.info("rawtext stats v1 -- should be for yttemporal 180m")
weights = [0.0210583 , 0.03984984, 0.06506665, 0.09467365, 0.12138153,
0.13305461, 0.12973022, 0.11296043, 0.09024, 0.06730134,
0.04789645, 0.03232633, 0.02123288, 0.01397406, 0.00925371]
else:
logger.info("rawtext stats v2 -- should be for ytmega")
weights = [0.03233136, 0.05236081, 0.08763368, 0.11757072, 0.13737426,
0.13717706, 0.12541218, 0.10262764, 0.0771088 , 0.05364242,
0.0342899 , 0.0203823 , 0.01177542, 0.00664939, 0.00366406]
ev = sum(i * w_i for i, w_i in enumerate(weights)) + 1
logger.info("mask weights ev={:.3f}, weights={}".format(ev, weights))
# k masked tokens that cover an expected length of k * e
# L - k non masked tokens
# mask rate is then ek/(L-k+ek)
# some algebra and then
#####################
# I'm going to be conservative here bc I don't want to have too many tokens
L = desired_len + int((ev * 0.85 - 1) * span_budget)
L = tf.minimum(L, get_shape_list(tokens, 1)[0])
segm_lens = tf.squeeze(tf.random.categorical(tf.math.log([weights]), dtype=tf.int32, num_samples=L), 0) + 1
# Truncate to the suggested length
segm_lens_keep = tf.less_equal(tf.cumsum(segm_lens), L)
segm_lens = tf.gather(segm_lens, tf.where(segm_lens_keep)[:, 0])
# Randomly truncate tokens if it's really long
l_sel = tf.reduce_sum(segm_lens)
wiggle_room = get_shape_list(tokens, 1)[0] - l_sel
random_offset = tf.random.uniform(shape=[], minval=0, maxval=tf.maximum(wiggle_room, 1), dtype=tf.int32)
tokens_ragged = tf.RaggedTensor.from_row_lengths(tokens[random_offset:(random_offset + l_sel)], segm_lens)
extra_lhs = tokens[:random_offset]
extra_rhs = tokens[(random_offset+l_sel):]
return tokens_ragged, extra_lhs, extra_rhs
def dataset_parser(record, config):
"""
We are going to return the following things:
* Images: [num_segments, H, W, 3]
* audio: [num_segments, num_audio_spans, T, num_mels]
:param record:
:return:
"""
num_segments = config['num_segments']
keys_to_features = {f'c{i:02d}/{k}': v for i in range(num_segments) for k, v in segment_k2f.items()}
parsed_features = tf.io.parse_single_example(record, keys_to_features)
features = {}
def _unsparsify(x):
if isinstance(x, tf.SparseTensor):
x = x.values
if x.dtype == tf.int64:
x = tf.cast(x, dtype=tf.int32)
return x
segment_list = [{k: _unsparsify(parsed_features.pop(f'c{i:02d}/{k}')) for k in segment_k2f} for i in
range(num_segments)]
# Load images
encodeds = tf.stack([x['image/encoded'] for x in segment_list])
features['images'] = tf.map_fn(functools.partial(load_and_resize_img, config=config),
elems=encodeds, fn_output_signature=tf.float32)
if config.get('disable_imgs_dataloader', False):
print("Disabling images from the dataloader level!!!", flush=True)
features['images'] *= 0.0
magic_numbers = tf.stack([x['spectrogram/magic_number'] for x in segment_list])
encodeds = tf.stack([x['spectrogram/encoded'] for x in segment_list])
playback_speeds = tf.squeeze(tf.stack([x['playback_speed'] for x in segment_list], 0), 1)
features['audio_clips'], audio_start, audio_end = tf.map_fn(
functools.partial(load_audio, config=config),
elems=(encodeds, magic_numbers, playback_speeds),
fn_output_signature=(tf.float32, tf.float32, tf.float32),
)
if config.get('disable_audio_dataloader', False):
print("Disabling audio from the dataloader level!!!", flush=True)
features['audio_clips'] *= 0.0
######################################################
num_audio_spans = num_segments * config['num_audio_subsegments']
num_audio_spans_trg = int(num_audio_spans * config['mask_rate'])
num_text2audio_seqs = config['num_text2audio_seqs']
num_audio2text_seqs = config['num_audio2text_seqs']
segment_idx = []
tok_centroids_all = []
audio_start_end_all = []
t_start = 0.0
for i, segment_i in enumerate(segment_list):
# Partition the tokens into the audio segments
tok_centroids = (segment_i['tok_start_times'] + segment_i['tok_end_times']) / 2.0
audio_centroids = (audio_start[i] + audio_end[i]) / 2.0
tok_to_audio = tf.abs(tok_centroids[:, None] - audio_centroids[None])
assignment = tf.cast(tf.argmin(tok_to_audio, 1), dtype=tf.int32)
# Constrain to be non-negative (usually things are OK but ocasionally weird stuff happens)
assignment = cumulative_maximum_int(assignment)
segment_idx.append(assignment + i * config['num_audio_subsegments'])
# Keep track of timesteps -- this is in case mulitple things are in the batch
tok_centroids_all.append(tok_centroids + t_start)
audio_start_end_all.append(tf.stack([audio_start[i], audio_end[i]], -1) + t_start)
t_start += (segment_i['end_time'] - segment_i['start_time'])
segment_idx = tf.concat(segment_idx, 0)
tokens_ragged = tf.RaggedTensor.from_value_rowids(tf.concat([x['tok_ids'] for x in segment_list], 0),
segment_idx, nrows=num_audio_spans, name='ragged0')
tok_centroids_vals = tf.concat(tok_centroids_all, 0)
audio_start_end = tf.concat(audio_start_end_all, 0)
# Use different segments for the targets
audio_spans_trg_idx = uniform_random_select(n=num_audio_spans, num_samples=num_audio_spans_trg * (
num_text2audio_seqs + num_audio2text_seqs), sort_idx=False)
text_to_audio_idx = tf.reshape(audio_spans_trg_idx[:num_audio_spans_trg * num_text2audio_seqs],
[num_text2audio_seqs, num_audio_spans_trg])
audio_to_text_idx = tf.reshape(audio_spans_trg_idx[num_audio_spans_trg * num_text2audio_seqs:],
[num_audio2text_seqs, num_audio_spans_trg])
# First do text -> audio
spans_all = []
tokens_all = []
for i in range(num_text2audio_seqs):
# Mess with the alignments such that we mask more things of length 1,
# and that audio targets are smaller than the text
tokens_ragged_i = reassign_empty_tokens(tokens_ragged, mask_idx=text_to_audio_idx[i])
# I tuned delta_thresh s.t. the probability of a span of length 1 or 2 is the same for both T2A and A2T
tokens_ragged_i = increase_textmask(tokens_ragged_i, mask_idx=text_to_audio_idx[i],
tok_centroids_vals=tok_centroids_vals,
audio_start_end=audio_start_end,
delta_thresh=0.125)
spans, output_groups = mask_tokens(tokens_ragged_i, mask_idx=text_to_audio_idx[i],
text_span_start_counter=i * num_audio_spans_trg,
num_groups=config['num_segment_groups'],
padded_seq_len=config['lang_seq_len'],
do_audio_mask=True)
spans_all.append(spans)
tokens_all.extend(output_groups)
# [num_groups * num_text2audio_seqs, L, 3]
features['text2audio'] = tf.stack(tokens_all, 0)
#######################################################
# Now do audio -> text. will this be easier? hope so!
audio_tokens_all = []
for i in range(num_audio2text_seqs):
audio_span_trg_idx = audio_to_text_idx[i]
# Convert things to the LEFT or the RIGHT of a masked-out span into text, so that the prediction of
# the missing text makes sense (and also hopefully such that bleeding is less important)
one_hot_mask = _one_hot(audio_span_trg_idx, N=num_audio_spans)
one_hot_mask_exp = tf.concat([[False], one_hot_mask, [False]], 0)
should_textify = tf.logical_or(one_hot_mask_exp[2:], one_hot_mask_exp[:-2])
should_textify = tf.logical_and(should_textify, tf.logical_not(one_hot_mask))
should_textify = tf.logical_and(should_textify,
sample_bernoullis(config.get('convert_extra_span_to_text_prob', 0.8),
N=num_audio_spans))
spans, output_groups = mask_tokens(tokens_ragged, mask_idx=audio_span_trg_idx,
do_audio_span=tf.logical_not(should_textify),
audio_token_length=config['audio_token_length'],
padded_seq_len=config['lang_seq_len'],
text_span_start_counter=(i + num_text2audio_seqs) * num_audio_spans_trg,
num_groups=config['num_segment_groups'])
spans_all.append(spans)
audio_tokens_all.extend(output_groups)
features['audio2text'] = tf.stack(audio_tokens_all, 0)
# here's how this works. all sequences get padded to seq_len at the end bc that's the size of the joint transformer
# if you pass in max_text_seq_len we will ensure that only the first e.g. <=1024 tokens are valid,
# the rest will be padded
max_text_seq_len = config.get('max_text_seq_len', config['seq_len'])
#####################################
# For the audio -> image part
use_audio_tokens = sample_bernoulli(config.get('use_audio_token_prob', 1.0))
matching_toks = []
for i, segment_i in enumerate(segment_list):
matching_toks.append(tf.stack([LTOVPOOL, i * config['num_audio_subsegments'], -1])[None])
audio_subseg = []
for j in range(config['num_audio_subsegments']):
new_subseg = tf.stack([AUDIOSPAN, j + i * config['num_audio_subsegments'], -1])[None]
audio_subseg.append(tf.tile(new_subseg, [config['audio_token_length'], 1]))
audio_subseg = tf.concat(audio_subseg, 0)
# don't bother with alignment here bc floor dividing by num_audio_subsegments later
text_subseg = tf.stack([
segment_i['tok_ids'],
tf.zeros_like(segment_i['tok_ids']) + i * config['num_audio_subsegments'],
tf.zeros_like(segment_i['tok_ids']) - 1], 1)
matching_toks.append(tf.cond(use_audio_tokens, lambda: audio_subseg, lambda: text_subseg))
matching_toks = tf.concat(matching_toks, 0)
aux_info = tf.concat([
[START], encoder.encode('title:').ids, segment_list[0]['title'],
[START], encoder.encode('description:').ids, segment_list[0]['description'],
[START] + encoder.encode('tags:').ids, segment_list[0]['tags'], [END],
], 0)
aux_info = tf.stack([aux_info, tf.zeros_like(aux_info) - 1, tf.zeros_like(aux_info) - 1], 1)
extra_space_for_desc = tf.maximum(max_text_seq_len - get_shape_list(matching_toks, 2)[0], 0)
aux_info = aux_info[:extra_space_for_desc]
matching_toks = tf.concat([aux_info, matching_toks], 0)
features['audio_text_matching'] = pad_tokens_to_fixed_size(matching_toks, config['seq_len'])
####################### Random text
num_text_seqs_in_record = config['num_text_seqs_in_record']
random_text = tf.cast(
tf.stack([x['random_text'] for i, x in enumerate(segment_list) if i < config['num_text_seqs_in_record']]),
dtype=tf.int32)
assert config['num_text_seqs'] <= num_text_seqs_in_record
random_inds = uniform_random_select(num_text_seqs_in_record, config['num_text_seqs'])
random_text = tf.gather(random_text, random_inds)
random_text_l = []
counter = num_audio_spans_trg * (num_audio2text_seqs + num_text2audio_seqs)
token_is_valid_tf = tf.constant(TOKEN_IS_VALID, dtype=tf.bool)
for i in range(config['num_text_seqs']):
# span_budget = int(desired_len / (ev / mask_rate - ev + 1))
_ev = 5.5
if 'text_span_budget' in config:
span_budget = config['text_span_budget']
else:
span_budget = int(max_text_seq_len / (_ev / config['mask_rate'] - _ev + 1.0))
print(f"Using span budget of {span_budget}", flush=True)
tokens_ragged_i, extra_lhs, extra_rhs = convert_rawtext_into_fake_segments(random_text[i],
desired_len=max_text_seq_len,
span_budget=span_budget,
use_v1_stats='ytt180m' in config['train_fns'])
# 4x as often, pick something that only has characters we see in YouTube
want_to_mask = tf.gather(token_is_valid_tf, tokens_ragged_i)
mask_w = 0.2 + 0.8 * tf.cast(tf.reduce_all(want_to_mask, -1), dtype=tf.float32)
do_mask_i = random_categorical_without_replacement(logits=tf.math.log(mask_w), num_samples=span_budget)
do_mask_i = tf.sort(do_mask_i)
spans_i, tokens_i = mask_tokens(tokens_ragged_i, do_mask_i, text_span_start_counter=counter, num_groups=1)
# Add in extra LHS and extra RHS if under max len
tokens_i = tokens_i[0]
amt_needed = tf.maximum(max_text_seq_len - get_shape_list(tokens_i, 2)[0], 0)
extra_lhs_len = get_shape_list(extra_lhs, 1)[0]
amt_lhs = tf.minimum(extra_lhs_len, amt_needed // 2)
extra_lhs = tf.stack([extra_lhs[(extra_lhs_len - amt_lhs):], tf.zeros([amt_lhs], dtype=tf.int32), tf.zeros([amt_lhs], dtype=tf.int32)-1], 1)
extra_rhs_len = get_shape_list(extra_rhs, 1)[0]
amt_rhs = tf.minimum(extra_rhs_len, (amt_needed+1) // 2)
extra_rhs = tf.stack([extra_rhs[:amt_rhs], tokens_i[-1, 1] + tf.ones([amt_rhs], dtype=tf.int32), tf.zeros([amt_rhs], dtype=tf.int32)-1], 1)
tokens_i = tf.concat([extra_lhs, tokens_i, extra_rhs], 0)
# OK now we pad to the length of the joint transformer
tokens_i = pad_tokens_to_fixed_size(tokens_i, padded_seq_len=config['seq_len'])
# Filter out tokens not seen in YouTube
spans_i = filter_out_tokens_not_in_youtube(spans_i, token_is_valid_tf=token_is_valid_tf)
counter += span_budget
random_text_l.append(tokens_i)
spans_all.append(spans_i)
features['text_spans'] = tf.concat(spans_all, 0).to_tensor()
features['text_spans'] = pad_to_fixed_size(features['text_spans'], PADDING,
output_shape=[get_shape_list(features['text_spans'], 2)[0],
config['text_span_length']], truncate=True, axis=1)
if config['num_text_seqs'] > 0:
features['random_text'] = tf.stack(random_text_l, 0)
# Video src idx per segment
features['video_src_index'] = tf.cast(tf.stack([x['video_src_index'] for x in segment_list]), dtype=tf.int32)
features['meta'] = segment_list[0]['meta']
features['youtube_id'] = segment_list[0]['youtube_id']
if config.get('encode_meta', False):
features['youtube_id'] = encode_string(features['youtube_id'], 11)
features['meta'] = encode_string(features['meta'], 256)
return features
def handle_duplicate_text_spans(text_spans, shape_prefix):
"""
Make it so that if two text spans are equal, only one shows up
:param text_spans:
:return:
"""
batch_size, num_text_segments, span_len = get_shape_list(text_spans, 3)
all_ts = tf.reshape(text_spans, [batch_size * num_text_segments, span_len])
is_eq = tf.reduce_all(all_ts[:, None] == all_ts[None, :], -1)
random_perm_idx = uniform_random_select(batch_size * num_text_segments, batch_size * num_text_segments,
sort_idx=False)
overlay_lt_mask = (random_perm_idx[:, None] < random_perm_idx[None])
to_kill = tf.reduce_any(is_eq & overlay_lt_mask, 0)
all_ts = tf.where(to_kill[:, None], x=tf.fill([batch_size * num_text_segments, span_len], PADDING), y=all_ts)
return tf.reshape(all_ts, shape_prefix + [num_text_segments, span_len])
def handle_batch(batched_tensor, num_devices=None, use_bfloat16=False):
"""
Deal with the fact that for a batched tensor, the pointers are off
nvm i'm just not going to worry about that and make the pointers only valid in-batch since we never
link to anything outside of the batch
:param batched_tensor:
:return:
"""
# Mask batch
logger.info("BEFORE HANDLING BATCH")
for k, v in batched_tensor.items():
logger.info("{}: {}".format(k, v.shape))
batch_size, num_segments, hw, ppthree_ = get_shape_list(batched_tensor['images'], 4)
if num_devices is not None:
assert num_devices <= batch_size
assert batch_size % num_devices == 0
shape_prefix = [num_devices, batch_size // num_devices]
logger.info("{} devices: shape prefix is {}".format(num_devices, shape_prefix))
else:
logger.info("No devices, batch size is just {}".format(batch_size))
shape_prefix = [batch_size]
batched_tensor['images'] = tf.reshape(batched_tensor['images'], shape_prefix + [num_segments * hw, ppthree_])
batch_size_, num_segments_, num_audio_subsegments, audio_seq_length, num_mels = get_shape_list(
batched_tensor['audio_clips'], 5)
batched_tensor['audio_clips'] = tf.reshape(batched_tensor['audio_clips'],
shape_prefix + [num_segments * num_audio_subsegments * audio_seq_length,
num_mels])
# batched_tensor['text_spans'] = handle_duplicate_text_spans(batched_tensor['text_spans'], shape_prefix=shape_prefix)
batch_size, num_text_segments, span_len = get_shape_list(batched_tensor['text_spans'], 3)
batched_tensor['text_spans'] = tf.reshape(batched_tensor['text_spans'], shape_prefix + [num_text_segments, span_len])
batched_tensor['video_src_index'] = tf.reshape(batched_tensor['video_src_index'], shape_prefix + [num_segments])
# The hidden order is always [(batch, sub-batch, mask idx)]
for k in ['text2audio', 'audio2text', 'audio_text_matching', 'random_text']:
if k in batched_tensor:
x_shape = get_shape_list(batched_tensor[k])
x2 = tf.reshape(batched_tensor[k], shape_prefix + [int(np.prod(x_shape[1:-2])), x_shape[-2], 3])
batched_tensor[k] = x2[..., 0]
batched_tensor[k + '/audio_ptr'] = x2[..., 1]
batched_tensor[k + '/text_ptr'] = x2[..., 2]
# Delete if not in debug mode
for k in ['meta', 'youtube_id']:
if (num_devices is not None) and (batched_tensor[k].dtype == tf.string):
batched_tensor.pop(k, None)
else:
old_shape = get_shape_list(batched_tensor[k])
batched_tensor[k] = tf.reshape(batched_tensor[k], shape_prefix + old_shape[1:])
if use_bfloat16:
batched_tensor['images'] = tf.cast(batched_tensor['images'], dtype=tf.bfloat16)
batched_tensor['audio_clips'] = tf.cast(batched_tensor['audio_clips'], dtype=tf.bfloat16)
return batched_tensor
def _debug_print_tokens(tokens: np.ndarray, do_print=True):
"""
:param tokens:
:return:
"""
if not isinstance(tokens, np.ndarray):
tokens = tokens.numpy()
if tokens.ndim == 4:
tokens = tokens.reshape([-1] + list(tokens.shape[2:]))
elif tokens.ndim == 2:
tokens = tokens[None]
outs = []
len_out = []
for b, tokens_b in enumerate(tokens):
tokens_b = tokens_b[tokens_b[:, 0] > 0]
out = []
audio_to_merge = set()
for x in tokens_b:
token_id, audio_src, text_src = x.tolist()
if token_id == AUDIOSPAN:
if audio_src not in audio_to_merge:
out.append('<|AI{:02d}|>'.format(audio_src))
audio_to_merge.add(audio_src)
elif token_id == MASK:
out.append('<|MASK text={:02d},audio={:02d}|>'.format(text_src, audio_src))
else:
out.append(encoder.decode([token_id], skip_special_tokens=False))
out = ''.join(out)
if do_print:
print("{:02d}) (len={}) {}".format(b, tokens_b.shape[0], ''.join(out)), flush=True)
outs.append(out)
len_out.append(tokens_b.shape[0])
return outs, len_out
def tokens_to_segments(tokens: np.ndarray, num_audio_segments):
"""
Similar to _debug_print_tokens, i'm going to create a dataframe at the segment level...
:param tokens:
:return:
"""
assert tokens.ndim == 2
# need valid audio segment
tokens = tokens[(tokens[:, 1] != -1) & (tokens[:, 0] > 0)]
out = []
for i in range(num_audio_segments):
tokens_i = tokens[tokens[:, 1] == i]
out.append(_debug_print_tokens(tokens_i, do_print=False)[0][0])
return out
def _debug_invert_imgpatches(img, h, w, patch_size):
"""
Inverts a sequence of patches [H//P * W//P, P * P * 3] into the image
:param img:
:param h: how many patches in height
:param w: how many patches in width
:param patch_size: Int for the patch size
:return:
"""
*leading_dims, nseq, pp3 = img.shape
assert pp3 == (3 * patch_size * patch_size)
assert nseq == (h * w)
img = img.reshape(list(leading_dims) + [h, w, patch_size, patch_size, 3])
img = img.swapaxes(-4, -3)
img = img.reshape(list(leading_dims) + [h * patch_size, w * patch_size, 3])
return img
def make_dataset(config, fns, batch_size, num_devices=None, is_training=True):
"""
Create tf.data dataset for a single tfrecord, or a few. I'm splitting this up because ocassionally I get DNS issues when accessing
google cloud, even while on google cloud. idk why
:param merged_config:
:param fns:
:param batch_size:
:param num_devices:
:param is_training:
:return:
"""
merged_config = deepcopy(config['data'])
merged_config.update(config['model'])
num_parallel_reads = config['device'].get('num_parallel_reads', 4)
num_parallel_reads = min(len(fns), num_parallel_reads) if isinstance(fns, list) else None
if not is_training:
num_parallel_reads = 1
print(f"Constructing TFRecord Input FN over {fns}\n\n{num_parallel_reads} reads in parallel", flush=True)
dataset = tf.data.TFRecordDataset(fns, num_parallel_reads=num_parallel_reads)
options = tf.data.Options()
options.threading.private_threadpool_size = 48
options.threading.max_intra_op_parallelism = 1
options.experimental_optimization.map_parallelization = True
options.experimental_deterministic = (not is_training)
dataset = dataset.with_options(options)
if is_training:
dataset = dataset.shuffle(buffer_size=config['device'].get('shuffle_buffer_size', 256))
dataset = dataset.map(functools.partial(dataset_parser, config=merged_config),
num_parallel_calls=tf.data.experimental.AUTOTUNE)
dataset = dataset.batch(batch_size=batch_size, drop_remainder=True)
dataset = dataset.map(functools.partial(handle_batch, num_devices=num_devices,
use_bfloat16=merged_config['use_bfloat16']))
return dataset
def input_fn_builder(config, make_dataset_fn=make_dataset):
"""
Get input fn for TPU use -- for training
:param config:
:param is_training:
:param as_numpy_iter:
:return:
"""
import jax
from flax import jax_utils
current_host = jax.process_index()
num_hosts = jax.process_count()
num_devices = jax.local_device_count()
batch_size = config['device']['batch_size'] // num_hosts
# random.seed(123456 + current_host)
# non-determinism for reloading...
random.seed(int(time.time()))
tf.random.set_seed(int(time.time()))
matching_fns = []
for i in range(config['data']['num_train_files']):
if i % num_hosts == current_host:
matching_fns.append(config['data']['train_fns'].format(i))
assert len(matching_fns) > 0
def _multi_iterator0():
n_fns_per_cycle = min(config['device'].get('n_fns_per_cycle', 32), len(matching_fns))
while len(matching_fns) % n_fns_per_cycle != 0:
print(f"!!!Truncating n_fns_per_cycle {n_fns_per_cycle} -> {n_fns_per_cycle - 1} so it fits")
n_fns_per_cycle -= 1
n_epochs = 0
while True:
fns_shuff = [x for x in matching_fns]
random.shuffle(fns_shuff)
print(f"Now on epoch {n_epochs}")
for s, e in batch_index_iterator(len(fns_shuff), batch_size=n_fns_per_cycle, skip_end=True):
print(f"Resetting iterator, epoch={n_epochs}, batch of fns={s}:{e} /{len(fns_shuff)}", flush=True)
try:
dataset = make_dataset_fn(config, fns=fns_shuff[s:e], batch_size=batch_size,
num_devices=num_devices, is_training=True)
for item in dataset:
item = jax.tree_map(lambda x: x._numpy(), item)
yield item
# except tf.errors.FailedPreconditionError as e:
except Exception as e:
print(str(e), flush=True)
time.sleep(5)
n_epochs += 1
if config['device'].get('prefetch_size', 1) > 0:
return jax_utils.prefetch_to_device(_multi_iterator0(), size=config['device'].get('prefetch_size', 1))
return _multi_iterator0()
if __name__ == '__main__':
# NOTE: This is some debugging code that may or may not be helpful for analyzing the data
import yaml
with open('configs/base.yaml', 'r') as f:
config = yaml.load(f, Loader=yaml.FullLoader)
merged_config = deepcopy(config['data'])
merged_config.update(config['model'])
config = merged_config
dataset = tf.data.TFRecordDataset(['train00000of32800.tfrecord'])
# # For eager debugging
# for record in dataset:
# assert False
# x = dataset_parser(record, config)
dataset = dataset.map(lambda x: dataset_parser(x, config))
B = 8
dataset = dataset.batch(batch_size=B, drop_remainder=True)
dataset = dataset.map(handle_batch)
start = time.time()
sizes = []
# Debug
lens = []
w2c = defaultdict(int)
span_lens_by_pos = []
char2count = defaultdict(int)
tok_to_count = np.zeros([encoder.get_vocab_size()], dtype=np.int32)
tok_to_count_text = np.zeros([encoder.get_vocab_size()], dtype=np.int32)
for nei, next_element in enumerate(dataset):
print("Done in {:.3f}".format(time.time() - start), flush=True)
span_lens_by_pos.append((next_element['text_spans'].numpy() != 0).sum(-1))