-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkriAlpha.m
152 lines (142 loc) · 5.41 KB
/
kriAlpha.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
function alpha=kriAlpha(data,scale)
% alpha=kriAlpha(data,scale)
% calculates Krippendorff's Alpha as a measure of inter-rater agreement
% data: rate matrix, each row is a rater or coder, each column is a case
% scale: level of measurement, supported are 'nominal', 'ordinal', 'interval'
% missing values have to be coded as NaN or inf
% For details about Krippendorff's Alpha see:
% http://en.wikipedia.org/wiki/Krippendorff%27s_Alpha
% Hayes, Andrew F. & Krippendorff, Klaus (2007). Answering the call for a
% standard reliability measure for coding data. Communication Methods and
% Measures, 1, 77-89
%
% Results for the two examples below have been verified against the SPSS
% macro, see http://www.afhayes.com/spss-sas-and-mplus-macros-and-code.html
% (downloaded 16. June 2011, used with SPSS v.19)
%
% data=[NaN NaN NaN NaN NaN 3 4 1 2 1 1 3 3 NaN 3; ...
% 1 NaN 2 1 3 3 4 3 NaN NaN NaN NaN NaN NaN NaN; ...
% NaN NaN 2 1 3 4 4 NaN 2 1 1 3 3 NaN 4];
% % alpha nominal: 0.6914, ordinal: 0.8067, interval: 0.8108
%
% data=[1.1000 2.1000 5.0000 1.1000 2.0000; ...
% 2.0000 3.1000 4.0000 1.9000 2.3000; ...
% 1.5000 2.9000 4.5000 4.4000 2.1000; ...
% NaN 2.6000 4.3000 1.1000 2.3000];
% % alpha nominal: 0.0364, ordinal: 0.5482, interval: 0.5905
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Copyright (c) 2012, BBC
% All rights reserved.
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are
% met:
% � Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
% � Redistributions in binary form must reproduce the above copyright
% notice, this list of conditions and the following disclaimer in the
% documentation and/or other materials provided with the distribution.
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
% IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
% THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
% PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
% CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
% EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
% PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
% PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
% LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
% NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
% SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if nargin~=2
help kriAlpha
error('Wrong number of input arguments.')
end
allVals=unique(data(:));
allVals=allVals(isfinite(allVals));
% coincidence matrix
coinMatr=nan(length(allVals));
for r=1:length(allVals)
for c=r:length(allVals)
val=0;
for d=1:size(data,2)
%find number of pairs
thisEx=data(:,d);
thisEx=thisEx(isfinite(thisEx));
numEntr=length(thisEx);
numP=0;
for p1=1:numEntr
for p2=1:numEntr
if p1==p2
continue
end
if (thisEx(p1)==allVals(r) && thisEx(p2)==allVals(c))
numP=numP+1;
end
end
end
if numP
val=val+numP/(numEntr-1);
end
end
coinMatr(r,c)=val;
coinMatr(c,r)=val;
end
end
nc=sum(coinMatr,2);
n=sum(nc);
% expected agreement
expMatr=nan(length(allVals));
for i=1:length(allVals)
for j=1:length(allVals)
if i==j
val=nc(i)*(nc(j)-1)/(n-1);
else
val=nc(i)*nc(j)/(n-1);
end
expMatr(i,j)=val;
end
end
% difference matrix
diffMatr=zeros(length(allVals));
for i=1:length(allVals)
for j=i+1:length(allVals)
if i~=j
if strcmp(scale, 'nominal')
val=1;
elseif strcmp(scale, 'ordinal')
val=sum(nc(i:j))-nc(i)/2-nc(j)/2;
val=val.^2;
elseif strcmp(scale, 'interval')
val=(allVals(j)-allVals(i)).^2;
else
error('unknown scale: %s', scale);
end
else
val=0;
end
diffMatr(i,j)=val;
diffMatr(j,i)=val;
end
end
% observed - expected agreement
do=0; de=0;
for c=1:length(allVals)
for k=c+1:length(allVals)
if strcmp(scale, 'nominal')
do=do+coinMatr(c,k);
de=de+nc(c)*nc(k);
elseif strcmp(scale, 'ordinal')
do=do+coinMatr(c,k)*diffMatr(c,k);
de=de+nc(c)*nc(k)*diffMatr(c,k);
elseif strcmp(scale, 'interval')
do=do+coinMatr(c,k)*(allVals(c)-allVals(k)).^2;
de=de+nc(c)*nc(k)*(allVals(c)-allVals(k)).^2;
else
error('unknown scale: %s', scale);
end
end
end
de=1/(n-1)*de;
alpha=1-do/de;