-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathATR.py
61 lines (43 loc) · 1.82 KB
/
ATR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
## import libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import linear_model
from sklearn.linear_model import LinearRegression as lm
import yfinance as yf
import talib as ta
## Download historic prices
ticker = "TANLA.NS"
price_data = yf.download(ticker, period="5y")
# Define the ATR period (typically 14 days)
atr_period = 14
# Calculate True Range (TR) for each day
price_data['H-L'] = price_data['High'] - price_data['Low']
price_data['H-PC'] = abs(price_data['High'] - price_data['Adj Close'].shift(1))
price_data['L-PC'] = abs(price_data['Low'] - price_data['Adj Close'].shift(1))
price_data['TR'] = price_data[['H-L', 'H-PC', 'L-PC']].max(axis=1)
# Calculate the ATR using the Wilder's smoothing method
price_data['ATR'] = price_data['TR'].rolling(window=atr_period).mean()
# Print the DataFrame with ATR values
print(price_data[['TR', 'ATR']])
# Define the ATR multiplier for buy and sell signals (adjust as needed)
buy_multiplier = 2.0
sell_multiplier = 1.5
# Initialize the Signal column
price_data['Signal'] = ''
# Generate buy and sell signals based on ATR
for i in range(atr_period, len(price_data)):
if price_data['Adj Close'][i] > price_data['Adj Close'][i - 1] + (price_data['ATR'][i] * buy_multiplier):
price_data.at[price_data.index[i], 'Signal'] = 'Buy'
elif price_data['Adj Close'][i] < price_data['Adj Close'][i - 1] - (price_data['ATR'][i] * sell_multiplier):
price_data.at[price_data.index[i], 'Signal'] = 'Sell'
# Plot the ATR
plt.figure(figsize=(12, 6))
plt.plot(price_data.index, price_data['ATR'], label='Average True Range (ATR)', color='blue')
plt.title('Average True Range (ATR)')
plt.xlabel('Date')
plt.ylabel('ATR Value')
plt.legend()
plt.grid(True)
plt.show()