-
Notifications
You must be signed in to change notification settings - Fork 0
/
tpdu_logger.c
775 lines (695 loc) · 17.4 KB
/
tpdu_logger.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
/*
tpdu_logger.c
This is part of OsEID (Open source Electronic ID)
Copyright (C) 2021 Peter Popovec, [email protected]
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Sniffer for ISO7816-3 (to determine ATR/PPS log APDU etc)
Disclaimer
~~~~~~~~~~
Whole project is published in good faith and is to be used for educational
purposes only.
AUTHOR IS NOT RESPONSIBLE FOR ANY DAMAGE OF CARD, CARD READERS, COMPUTER
EQUIPMENTS OR DATA LOSS/DATA LEAKAGE! USE AT YOUR OWN RISK ONLY!
*/
/*
Xmega128A4U is connected to card reader:
+-------------------+
| xmega128A4U |
| +-------< voltage regulator 3.3 V
| C C C C |
| 0 2 7 3 +-------< GND
+-+----+----+----+--+
| | | |
-+- -+- -+- +--< debug to USB serial converter 921.6kbaud
| | | | | |
| | | | | |
| | | | | | <--------------- 3x 1kOhm resistor
-+- -+- -+-
| | |
I/O CLK RST
- RST is handled by interrupt handler, falling edge is used to restart MCU
- FLASH/EEPROM is slow, we using cache in RAM (2KiB), EEPOM/FLASH write
can be optimized - write only if whole page of flash/eeprom is available.
- If card is idle, flash/eeprom routine is called to save even partial block.
- MCU is clocked from 2MHZ oscilator over PLL (32MHz)
- TCC0 is used to measure pulse period, TCC0 input is connected over EVENT
channel 0 to CLK
- to use external FLASH/EEPROM, you need write own functions for:
a) eeprom_read_byte()
b) eeprom_write_block()
c) eeprom_is_ready()
(https://www.nongnu.org/avr-libc/user-manual/group__avr__eeprom.html)
FUSES: default values as descibed in xmega doc.
*/
#include <stdint.h>
#include <avr/io.h>
#include <avr/eeprom.h>
#include <avr/interrupt.h>
#include <string.h>
/*/////////////////////////////////////////////////////////////////////////////////////
Default connection:
PC7 over 1k Ohm resistor to RST
PC0 over 1k Ohm resistor to I/O
PC2 over 1k Ohm resistor to CLK
PC3 debug serial output (serial speed 921600)
Change below if needed
*/
#define P_RST_PORT PORTC
#define P_RST_BIT 7
#define P_IO_PORT PORTC
#define P_IO_PIN 0
// port A=0, port B=1, here PORTC -> 2
#define P_CLK_INDEX 2
#define P_CLK_PIN 2
// enable this if parity and error signal is to be logged
//#define LOG_PARITY
////////////////////////////////////////////////////////////////////////////////////
#define PPS_END 0
#define PPS_RESPONSE 1
#define PPS_REQUEST 2
#define P_RST (P_RST_PORT.IN & (1<<P_RST_BIT))
#define P_IO (P_IO_PORT.IN & (1<<P_IO_PIN))
// forward declarations
void log_write(uint16_t size, uint8_t timeout);
////////////////////////////////// Serial debug output functions ////////////
static void serial_putchar(uint8_t c)
{
// while ((USARTC0.STATUS & 0x20)!=0x20);
while (!(USARTC0_STATUS & USART_DREIF_bm)) ;
USARTC0.DATA = c;
}
static void serial_print_nibble(uint8_t d)
{
d &= 15;
if (d > 9)
d += 'a' - 10;
else
d += '0';
serial_putchar(d);
}
static void serial_print_hex(uint8_t data)
{
serial_putchar(' ');
serial_print_nibble(data >> 4);
serial_print_nibble(data);
}
static void serial_init()
{
// PC3 output
PORTC.DIRSET = PIN3_bm;
USARTC0_CTRLA = 0; // no interrupts from usart
// enable transmiter only..
USARTC0_CTRLB = USART_TXEN_bm; // | USART_RXEN_bm;
USARTC0_CTRLC = USART_CHSIZE_8BIT_gc; // 8 bit no parity 1 stop bit
#if 0
USARTC0.BAUDCTRLA = 107; // 460.8
USARTC0.BAUDCTRLB = 0xb0;
#else
USARTC0.BAUDCTRLA = 75; // 921.6
USARTC0.BAUDCTRLB = 0xa0;
#endif
}
////////////////////////////////// CPU init ////////////
void init_cpu(void) __attribute__((naked))
__attribute__((section(".init1")));
void init_cpu(void)
{
cli();
// use PLL - multiply 2MHz RC oscilator to 32MHz
OSC.PLLCTRL = OSC_PLLSRC_RC2M_gc | (32 / 2);
OSC.CTRL |= OSC_PLLEN_bm;
// wait to PLL ready
while (!(OSC.STATUS & OSC_PLLRDY_bm)) ;
// switch CPU core clock to run from PLL
{
asm volatile ( //
"ldi r25,4\n" // value (clock source for CPU core..)
"ldi r24,0xd8\n" // key
"ldi r30,0x40\n" // 0x0040 = CTRL reg address
"ldi r31,0\n" //
"out 0x3b,r1\n" // clear RAMPZ
"out 0x34,r24\n" // write key to CCP
"st Z,r25\n" // write value
"ldi r24,0x40\n" // delay aproximatly 1ms
"ldi r25,0x1f\n" //
"sbiw r24,1\n" //
"brne .-4\n" //
:::);
}
}
////////////////////////////////// CPU restart ////////////
ISR(PORTC_INT0_vect)
{
// save rest of data into EEPROM/FLASH
log_write(0, 1);
// reset MCU
CCP = CCP_IOREG_gc;
RST.CTRL = 1;
}
///////////////////////////////// log cache /////
// max cache size 32kB !!! (respect to device RAM size max 2kB..)
uint8_t cache[1024];
uint8_t *cache_read_position, *cache_write_position, *cache_block;
uint16_t cache_block_size;
uint8_t cache_full;
static uint8_t *cache_move_pointer(uint8_t * p)
{
p++;
if (p == &cache[sizeof(cache)])
p = cache;
return p;
}
static void cache_write_byte(uint8_t byte)
{
// cache full ?
if (cache_write_position < cache_read_position)
cache_write_position += sizeof(cache);
// reserve minimal 3 bytes!
if ((size_t)((cache_write_position + 3) - cache_read_position) > sizeof(cache)) {
// TEMP code
// eeprom_write_block(cache, (uint8_t *) 0, 1024);
// for (;;) ;
// TEMP code end
// print F on debug console to signalize cache full
if (cache_full != 0x80)
serial_putchar('F');
cache_full = 0x80;
return;
}
if (cache_block_size == 0) {
// save position for block length bytes
cache_block = cache_write_position;
// move to block start
cache_write_position = cache_move_pointer(cache_write_position);
cache_write_position = cache_move_pointer(cache_write_position);
}
*(cache_write_position) = byte;
cache_write_position = cache_move_pointer(cache_write_position);
cache_block_size++;
}
static void cache_finalize_block()
{
*(cache_block) = (cache_block_size >> 8) | cache_full;
cache_block = cache_move_pointer(cache_block);
*(cache_block) = cache_block_size & 0xff;
cache_block = cache_move_pointer(cache_block);
// write block to EEROM/FLASH) (but eeprom may refuse write if block is small)
// this is handled in eeprom code
log_write(cache_block_size + 2, 0);
cache_block_size = 0;
cache_full = 0;
}
static void cache_init()
{
memset(cache, 0xff, sizeof(cache));
cache_read_position = cache;
cache_write_position = cache;
cache_block = cache;
cache_full = 0;
cache_block_size = 0;
}
static int16_t cache_read_byte()
{
uint16_t r;
if (cache_read_position == cache_write_position)
return -1;
r = *cache_read_position;
cache_read_position = cache_move_pointer(cache_read_position);
return r;
}
////////////////////////////////// EEPROM functions /////////////////////
// values corresponding to ATxmega16/32 EEPROM size
#define BLOCK_SIZE 32
#define MAX_LOG_SIZE 1024
// values corresponding to ATxmega64/128 EEPROM size
//#define BLOCK_SIZE 32
//#define MAX_LOG_SIZE 2048
static uint32_t log_data_pointer;
void log_init()
{
uint8_t r;
//
// do not owerwrite EEPROm if already filled
r = eeprom_read_byte(NULL);
if (r != 0xff) {
log_data_pointer = MAX_LOG_SIZE;
return;
}
r = eeprom_read_byte(NULL + 1);
if (r != 0xff) {
log_data_pointer = MAX_LOG_SIZE;
return;
}
// ok eeprom is free
// start position in FLASH/EEPROM
log_data_pointer = 0;
}
// cache is circular buffer, we need read data byte by byte
void log_write(uint16_t size, uint8_t timeout)
{
// block size for cache corresponds to TPDU block size
// write to EEPROM/FLASH must be optimized for FLASH block size
//
static uint16_t data_size;
uint8_t buffer[BLOCK_SIZE]; // flash page size
uint8_t *b;
int16_t r;
uint16_t count;
data_size += size;
if (data_size == 0)
return;
// refuse block update if no data for full BLOCK_SIZE
// and no timeout is signalized
if ((data_size < BLOCK_SIZE) && timeout == 0)
return;
// TODO change this if no internal EEPROM is used
// ignore request, EEPROM is busy
if (eeprom_is_ready() == 0)
return;
//
memset(buffer, 0xff, BLOCK_SIZE);
b = buffer;
for (count = 0; count < BLOCK_SIZE; count++) {
r = cache_read_byte();
// internal check, no enough bytes in cache
if (r == -1)
break;
*(b++) = r;
}
if (count == 0)
return;
if (log_data_pointer + count > MAX_LOG_SIZE)
return;
// TODO change this if no internal EEPROM is used
// here stupid converter from uint32_t to void * - because
// eeprom_update_block uses void * as address eeprom address
{
volatile union convert_ {
void *to;
uint32_t from;
} c;
c.to = NULL;
c.from = log_data_pointer;
// serial_putchar('^');
eeprom_write_block(buffer, c.to, BLOCK_SIZE);
}
log_data_pointer += BLOCK_SIZE;
if (data_size > BLOCK_SIZE)
data_size = 0;
else
data_size -= BLOCK_SIZE;
}
/////////////////////////////////////////////
struct card {
uint16_t etu;
uint16_t etu_from_ta1;
uint8_t dir;
uint8_t ta1;
uint8_t protocol;
uint8_t guard_time;
uint8_t pps_state;
uint8_t pps1_request;
uint8_t pps1_response;
uint8_t atr[32 * 2];
} card;
// return value:
// -1 timeout
// bit 0..7 = byte from reader/card
// bit 8 parity bit
// bit 9 there was error signal activated while reading this byte
int16_t sample_byte(struct card *c)
{
uint8_t l, h, i, b = 0;
int16_t byte = 0;
//
repeat_sample_byte:
l = (c->etu / 2) & 0xff;
h = c->etu >> 9;
// wait line idle
while (P_IO == 0) ;
// wait start bit
TCC0.PER = (5 + c->guard_time) * c->etu;
TCC0.INTFLAGS = 1;
for (;;) {
if (P_IO == 0)
break;
// timeout no start bit ..
if (TCC0.INTFLAGS & 1)
return -1;
}
TCC0.CNTL = l;
TCC0.CNTH = h;
TCC0.PER = c->etu;
TCC0.INTFLAGS = 1;
for (i = 0; i < 9; i++) {
while ((TCC0.INTFLAGS & 1) == 0) ;
if (P_IO)
l = 0;
else
l = 1;
if (c->dir) {
b <<= 1;
b |= l;
} else {
b >>= 1;
b |= (l << 7);
}
TCC0.INTFLAGS = 1;
}
// parity bit
while ((TCC0.INTFLAGS & 1) == 0) ;
TCC0.INTFLAGS = 1;
if (P_IO)
byte |= 0x100;
else
byte = 0;
if (c->dir == 0)
b = b ^ 0xff;
byte |= b;
if (c->protocol == 0) {
// stop bit (error signal?)
while ((TCC0.INTFLAGS & 1) == 0) ;
TCC0.INTFLAGS = 1;
if (P_IO == 0) {
byte = 0x200;
goto repeat_sample_byte;
}
}
return byte;
}
uint16_t parse_pps(uint8_t * data, uint16_t len, struct card *c)
{
uint8_t pps_pck;
uint16_t pps_ta = 0x8000;
uint8_t count = 2; // PPSS, PPS0
//
// check pps
pps_pck = 0xff;
pps_pck ^= data[1];
if (data[1] & 0x10) {
pps_ta = data[2];
pps_pck ^= data[count++];
c->protocol = data[1] & 0xf;
}
if (data[1] & 0x20)
pps_pck ^= data[count++];
if (data[1] & 0x40)
pps_pck ^= data[count++];
if (len != (uint16_t) count + 1)
return 0xffff;
pps_pck ^= data[count];
if (pps_pck)
return 0xffff;
return pps_ta;
}
// recelculate measured ETU value to new value (based on TA1 or PPS1)
static uint16_t etu_from_ta(uint8_t ta, uint16_t etu)
{
uint32_t n;
uint16_t F_table[] =
{ 372, 372, 558, 744, 1116, 1488, 1860, 372, 372, 512, 768, 1024, 2048, 372, 372 };
uint16_t D_table[] =
{ 1 * 372, 1 * 372, 2 * 372, 4 * 372, 8 * 372, 16 * 372, 32 * 372, 64 * 372, 12 * 372,
20 * 372, 372, 372, 372, 372, 372, 372
};
//
n = (uint32_t) etu *F_table[ta >> 4];
n /= D_table[ta & 0x0f];
return n & 0xffff;
}
static void parse_atr(struct card *c)
{
uint16_t ta1_etu;
uint8_t *t = c->atr;
uint8_t td;
//
c->etu_from_ta1 = c->etu;
ta1_etu = c->etu;
t++;
// T0
if (c->atr[1] & 0x10) {
// TA
ta1_etu = etu_from_ta(c->atr[2], c->etu);
t++;
}
if (c->atr[1] & 0x20) {
t++;
}
if (c->atr[1] & 0x40) {
t++;
c->guard_time = *t;
}
if (c->atr[1] & 0x80) {
t++;
td = *t;
if (td & 0x10) {
t++;
// TA2 present
if (*t & 0x80) {
// specific mode
c->protocol = td & 0xf;
if ((*t & 0x10) == 0) {
// Fi/Di defined in TA1 should be used
c->etu_from_ta1 = ta1_etu;
c->etu = ta1_etu;
}
c->pps_state = PPS_END;
}
}
}
}
int main()
{
uint8_t block[254 + 5]; // large enough for T1 protocol frame with CRC
uint8_t l, h;
uint8_t val, pval;
uint16_t i;
int16_t byte;
uint8_t timeout;
//
card.guard_time = 0;
card.protocol = 0;
serial_init();
log_init();
cache_init();
// enable inverted input if needed..
// PORTC.PIN0CTRL = 0x40;
// PORTC.PIN1CTRL = 0x40;
// PORTC.PIN2CTRL = 0x40;
EVSYS.CH0MUX = ((10 + P_CLK_INDEX) << 3) | P_CLK_PIN;
TCC0.CTRLA = 8; // timer source event 0
TCC0.CTRLB = 0; //
TCC0.PER = 65535;
serial_putchar('O');
serial_putchar('K');
serial_putchar(0x0a);
//
// INT0 in falling edge on RTS - restart whole MCU
CCP = CCP_IOREG_gc;
PMIC.CTRL = 7;
// PORTC.DIRCLR = 0x80;
P_RST_PORT.DIRCLR = (1 << P_RST_BIT);
// PORTC.INT0MASK = 0x80;
P_RST_PORT.INT0MASK = (1 << P_RST_BIT);
// PORTC.INTCTRL = 1;
P_RST_PORT.INTCTRL = 1; // interrupt level
// PORTC.PIN7CTRL = 2;
#define TOKENPASTE( x, y, z ) x ## y ## z
#define TOKENPASTE3( x, y, z ) TOKENPASTE( x, y, z )
#define _PINCTRL(x) TOKENPASTE3( PIN, x, CTRL )
P_RST_PORT._PINCTRL(P_RST_BIT) = 2;
sei();
// wait for rising edge on RST line
while (P_RST != 0) ;
while (P_RST == 0) ;
serial_putchar('X');
serial_putchar(0x0a);
val = P_IO;
TCC0.CNTL = 0;
TCC0.CNTH = 0;
pval = val;
while (val == pval)
val = P_IO;
l = TCC0.CNTL;
h = TCC0.CNTH;
TCC0.CNTL = 0;
TCC0.CNTH = 0;
// save RST to ATR start bit
cache_write_byte(pval);
cache_write_byte(h);
cache_write_byte(l);
serial_print_hex(pval);
serial_print_hex(h);
serial_print_hex(l);
serial_putchar(0x0a);
pval = val;
// save ATR start bit
while (val == pval)
val = P_IO;
l = TCC0.CNTL;
h = TCC0.CNTH;
TCC0.CNTL = 0;
TCC0.CNTH = 0;
cache_write_byte(pval);
cache_write_byte(h);
cache_write_byte(l);
serial_print_hex(pval);
serial_print_hex(h);
serial_print_hex(l);
serial_putchar(0x0a);
pval = val;
while (val == pval)
val = P_IO;
// save initial two bits from ATR
l = TCC0.CNTL;
h = TCC0.CNTH;
TCC0.CNTL = 0;
TCC0.CNTH = 0;
card.etu = l | (h << 8);
cache_write_byte(pval);
cache_write_byte(h);
cache_write_byte(l);
serial_print_hex(pval);
serial_print_hex(h);
serial_print_hex(l);
serial_putchar(0x0a);
pval = val;
// one or 6 ETU
while (val == pval)
val = P_IO;
l = TCC0.CNTL;
h = TCC0.CNTH;
TCC0.CNTL = 0;
TCC0.CNTH = 0;
cache_write_byte(pval);
cache_write_byte(h);
cache_write_byte(l);
serial_print_hex(pval);
serial_print_hex(h);
serial_print_hex(l);
serial_putchar(0x0a);
if (card.etu > (uint16_t) (l | (h << 8))) {
// 0x3b
card.dir = 0;
card.etu += l | (h << 8);
pval = val;
// 3 ETU
while (val == pval)
val = P_IO;
l = TCC0.CNTL;
h = TCC0.CNTH;
TCC0.CNTL = 0;
TCC0.CNTH = 0;
card.etu += l | (h << 8);
pval = val;
// 2 ETU
while (val == pval)
val = P_IO;
l = TCC0.CNTL;
h = TCC0.CNTH;
TCC0.CNTL = 0;
TCC0.CNTH = 0;
card.etu += l | (h << 8);
card.atr[0] = 0x3b;
} else {
// 0x3f
card.dir = 0xff;
card.etu += l | (h << 8);
card.atr[0] = 0x3f;
}
card.etu /= 8;
cache_write_byte(card.dir);
cache_write_byte(card.etu >> 8);
cache_write_byte(card.etu & 0xff);
serial_print_hex(card.dir);
serial_print_hex(card.etu >> 8);
serial_print_hex(card.etu & 0xff);
serial_putchar(0x0a);
cache_finalize_block();
// read rest of ATR
for (l = 1, i = 1; i < 32; i++) {
byte = sample_byte(&card);
if (byte < 0)
break;
card.atr[l++] = byte & 0xff;
#ifdef LOG_PARITY
cache_write_byte(byte >> 8);
#endif
cache_write_byte(byte & 0xff);
serial_print_hex(byte & 0xff);
}
serial_putchar(0x0a);
cache_finalize_block();
// if mode is negotiable, wait for PPS
card.pps_state = PPS_REQUEST;
parse_atr(&card);
// read data block
for (;;) {
serial_putchar('>');
for (timeout = 0;; timeout++) {
byte = sample_byte(&card);
if (byte >= 0)
break;
// if card is idle, force log update
if (timeout > 250) {
log_write(0, 1);
timeout = 0;
}
}
for (i = 0; i < sizeof(block); i++) {
if (byte < 0) {
serial_putchar(0x0a);
cache_finalize_block();
break;
}
block[i] = byte & 0xff;
#ifdef LOG_PARITY
cache_write_byte(byte >> 8);
#endif
cache_write_byte(byte & 0xff);
serial_print_hex(block[i]);
byte = sample_byte(&card);
}
if (card.pps_state == PPS_REQUEST) {
if (block[0] != 0xff)
card.pps_state = PPS_END;
else {
uint16_t p;
//
p = parse_pps(block, i, &card);
if (p == 0xffff)
card.pps_state = PPS_END;
else if (p == 0x8000) // no PPS1 in PPS request
card.pps1_request = 0x11; // use defaults (Fd = Fn = 372, Dd = Dn = 1)
else
card.pps1_request = p & 0xff;
card.pps_state = PPS_RESPONSE;
}
} else if (card.pps_state == PPS_RESPONSE) {
if (block[0] == 0xff) {
uint16_t p;
//
p = parse_pps(block, i, &card);
if (p == 0xffff)
card.pps_state = PPS_END; // wrong response, continue with defaults
if (p == 0x8000) // no PPS1 in PPS response
card.pps1_response = 0x11; // use defaults (Fd = Fn = 372, Dd = Dn = 1)
else if (p != 0xffff) {
card.pps1_response = p & 0xff;
// switch to new baud rate
card.etu = etu_from_ta(card.pps1_response, card.etu);
}
}
card.pps_state = PPS_END;
}
}
}