-
Notifications
You must be signed in to change notification settings - Fork 0
/
export.py
292 lines (266 loc) · 10.1 KB
/
export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import argparse
import sys
import time
import warnings
sys.path.append("./") # to run '$ python *.py' files in subdirectories
import torch
import torch.nn as nn
from torch.utils.mobile_optimizer import optimize_for_mobile
import models
from models.experimental import End2End, attempt_load
from utils.activations import Hardswish, SiLU
from utils.add_nms import RegisterNMS
from utils.general import check_img_size, set_logging
from utils.torch_utils import select_device
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--weights", type=str, default="./yolor-csp-c.pt", help="weights path"
)
parser.add_argument(
"--img-size", nargs="+", type=int, default=[640, 640], help="image size"
) # height, width
parser.add_argument("--batch-size", type=int, default=1, help="batch size")
parser.add_argument("--dynamic", action="store_true", help="dynamic ONNX axes")
parser.add_argument(
"--dynamic-batch",
action="store_true",
help="dynamic batch onnx for tensorrt and onnx-runtime",
)
parser.add_argument(
"--grid", action="store_true", help="export Detect() layer grid"
)
parser.add_argument("--end2end", action="store_true", help="export end2end onnx")
parser.add_argument(
"--max-wh",
type=int,
default=None,
help="None for tensorrt nms, int value for onnx-runtime nms",
)
parser.add_argument(
"--topk-all", type=int, default=100, help="topk objects for every images"
)
parser.add_argument(
"--iou-thres", type=float, default=0.45, help="iou threshold for NMS"
)
parser.add_argument(
"--conf-thres", type=float, default=0.25, help="conf threshold for NMS"
)
parser.add_argument(
"--device", default="cpu", help="cuda device, i.e. 0 or 0,1,2,3 or cpu"
)
parser.add_argument("--simplify", action="store_true", help="simplify onnx model")
parser.add_argument(
"--include-nms", action="store_true", help="export end2end onnx"
)
parser.add_argument(
"--fp16", action="store_true", help="CoreML FP16 half-precision export"
)
parser.add_argument("--int8", action="store_true", help="CoreML INT8 quantization")
opt = parser.parse_args()
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
opt.dynamic = opt.dynamic and not opt.end2end
opt.dynamic = False if opt.dynamic_batch else opt.dynamic
print(opt)
set_logging()
t = time.time()
# Load PyTorch model
device = select_device(opt.device)
model = attempt_load(opt.weights, map_location=device) # load FP32 model
labels = model.names
# Checks
gs = int(max(model.stride)) # grid size (max stride)
opt.img_size = [
check_img_size(x, gs) for x in opt.img_size
] # verify img_size are gs-multiples
# Input
img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(
device
) # image size(1,3,320,192) iDetection
# Update model
for k, m in model.named_modules():
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
if isinstance(m, models.common.Conv): # assign export-friendly activations
if isinstance(m.act, nn.Hardswish):
m.act = Hardswish()
elif isinstance(m.act, nn.SiLU):
m.act = SiLU()
# elif isinstance(m, models.yolo.Detect):
# m.forward = m.forward_export # assign forward (optional)
model.model[-1].export = not opt.grid # set Detect() layer grid export
y = model(img) # dry run
if opt.include_nms:
model.model[-1].include_nms = True
y = None
# TorchScript export
try:
print("\nStarting TorchScript export with torch %s..." % torch.__version__)
f = opt.weights.replace(".pt", ".torchscript.pt") # filename
ts = torch.jit.trace(model, img, strict=False)
ts.save(f)
print("TorchScript export success, saved as %s" % f)
except Exception as e:
print("TorchScript export failure: %s" % e)
# CoreML export
try:
import coremltools as ct
print("\nStarting CoreML export with coremltools %s..." % ct.__version__)
# convert model from torchscript and apply pixel scaling as per detect.py
ct_model = ct.convert(
ts,
inputs=[
ct.ImageType("image", shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])
],
)
bits, mode = (
(8, "kmeans_lut")
if opt.int8
else (16, "linear")
if opt.fp16
else (32, None)
)
if bits < 32:
if sys.platform.lower() == "darwin": # quantization only supported on macOS
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore", category=DeprecationWarning
) # suppress numpy==1.20 float warning
ct_model = (
ct.models.neural_network.quantization_utils.quantize_weights(
ct_model, bits, mode
)
)
else:
print("quantization only supported on macOS, skipping...")
f = opt.weights.replace(".pt", ".mlmodel") # filename
ct_model.save(f)
print("CoreML export success, saved as %s" % f)
except Exception as e:
print("CoreML export failure: %s" % e)
# TorchScript-Lite export
try:
print("\nStarting TorchScript-Lite export with torch %s..." % torch.__version__)
f = opt.weights.replace(".pt", ".torchscript.ptl") # filename
tsl = torch.jit.trace(model, img, strict=False)
tsl = optimize_for_mobile(tsl)
tsl._save_for_lite_interpreter(f)
print("TorchScript-Lite export success, saved as %s" % f)
except Exception as e:
print("TorchScript-Lite export failure: %s" % e)
# ONNX export
try:
import onnx
print("\nStarting ONNX export with onnx %s..." % onnx.__version__)
f = opt.weights.replace(".pt", ".onnx") # filename
model.eval()
output_names = ["classes", "boxes"] if y is None else ["output"]
dynamic_axes = None
if opt.dynamic:
dynamic_axes = {
"images": {0: "batch", 2: "height", 3: "width"}, # size(1,3,640,640)
"output": {0: "batch", 2: "y", 3: "x"},
}
if opt.dynamic_batch:
opt.batch_size = "batch"
dynamic_axes = {
"images": {
0: "batch",
},
}
if opt.end2end and opt.max_wh is None:
output_axes = {
"num_dets": {0: "batch"},
"det_boxes": {0: "batch"},
"det_scores": {0: "batch"},
"det_classes": {0: "batch"},
}
else:
output_axes = {
"output": {0: "batch"},
}
dynamic_axes.update(output_axes)
if opt.grid:
if opt.end2end:
print(
"\nStarting export end2end onnx model for %s..." % "TensorRT"
if opt.max_wh is None
else "onnxruntime"
)
model = End2End(
model,
opt.topk_all,
opt.iou_thres,
opt.conf_thres,
opt.max_wh,
device,
len(labels),
)
if opt.end2end and opt.max_wh is None:
output_names = [
"num_dets",
"det_boxes",
"det_scores",
"det_classes",
]
shapes = [
opt.batch_size,
1,
opt.batch_size,
opt.topk_all,
4,
opt.batch_size,
opt.topk_all,
opt.batch_size,
opt.topk_all,
]
else:
output_names = ["output"]
else:
model.model[-1].concat = True
torch.onnx.export(
model,
img,
f,
verbose=False,
opset_version=12,
input_names=["images"],
output_names=output_names,
dynamic_axes=dynamic_axes,
)
# Checks
onnx_model = onnx.load(f) # load onnx model
onnx.checker.check_model(onnx_model) # check onnx model
if opt.end2end and opt.max_wh is None:
for i in onnx_model.graph.output:
for j in i.type.tensor_type.shape.dim:
j.dim_param = str(shapes.pop(0))
# print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
# # Metadata
# d = {'stride': int(max(model.stride))}
# for k, v in d.items():
# meta = onnx_model.metadata_props.add()
# meta.key, meta.value = k, str(v)
# onnx.save(onnx_model, f)
if opt.simplify:
try:
import onnxsim
print("\nStarting to simplify ONNX...")
onnx_model, check = onnxsim.simplify(onnx_model)
assert check, "assert check failed"
except Exception as e:
print(f"Simplifier failure: {e}")
# print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
onnx.save(onnx_model, f)
print("ONNX export success, saved as %s" % f)
if opt.include_nms:
print("Registering NMS plugin for ONNX...")
mo = RegisterNMS(f)
mo.register_nms()
mo.save(f)
except Exception as e:
print("ONNX export failure: %s" % e)
# Finish
print(
"\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron."
% (time.time() - t)
)