-
Notifications
You must be signed in to change notification settings - Fork 0
/
hubconf.py
109 lines (87 loc) · 3.59 KB
/
hubconf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
"""PyTorch Hub models
Usage:
import torch
model = torch.hub.load('repo', 'model')
"""
from pathlib import Path
import torch
from models.yolo import Model
from utils.general import check_requirements, set_logging
from utils.google_utils import attempt_download
from utils.torch_utils import select_device
dependencies = ["torch", "yaml"]
check_requirements(
Path(__file__).parent / "requirements.txt", exclude=("pycocotools", "thop")
)
set_logging()
def create(name, pretrained, channels, classes, autoshape):
"""Creates a specified model
Arguments:
name (str): name of model, i.e. 'yolov7'
pretrained (bool): load pretrained weights into the model
channels (int): number of input channels
classes (int): number of model classes
Returns:
pytorch model
"""
try:
cfg = list((Path(__file__).parent / "cfg").rglob(f"{name}.yaml"))[
0
] # model.yaml path
model = Model(cfg, channels, classes)
if pretrained:
fname = f"{name}.pt" # checkpoint filename
attempt_download(fname) # download if not found locally
ckpt = torch.load(fname, map_location=torch.device("cpu")) # load
msd = model.state_dict() # model state_dict
csd = ckpt["model"].float().state_dict() # checkpoint state_dict as FP32
csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape} # filter
model.load_state_dict(csd, strict=False) # load
if len(ckpt["model"].names) == classes:
model.names = ckpt["model"].names # set class names attribute
if autoshape:
model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
device = select_device(
"0" if torch.cuda.is_available() else "cpu"
) # default to GPU if available
return model.to(device)
except Exception as e:
s = "Cache maybe be out of date, try force_reload=True."
raise Exception(s) from e
def custom(path_or_model="path/to/model.pt", autoshape=True):
"""custom mode
Arguments (3 options):
path_or_model (str): 'path/to/model.pt'
path_or_model (dict): torch.load('path/to/model.pt')
path_or_model (nn.Module): torch.load('path/to/model.pt')['model']
Returns:
pytorch model
"""
model = (
torch.load(path_or_model, map_location=torch.device("cpu"))
if isinstance(path_or_model, str)
else path_or_model
) # load checkpoint
if isinstance(model, dict):
model = model["ema" if model.get("ema") else "model"] # load model
hub_model = Model(model.yaml).to(next(model.parameters()).device) # create
hub_model.load_state_dict(model.float().state_dict()) # load state_dict
hub_model.names = model.names # class names
if autoshape:
hub_model = hub_model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
device = select_device(
"0" if torch.cuda.is_available() else "cpu"
) # default to GPU if available
return hub_model.to(device)
def yolov7(pretrained=True, channels=3, classes=80, autoshape=True):
return create("yolov7", pretrained, channels, classes, autoshape)
if __name__ == "__main__":
model = custom(path_or_model="yolov7.pt") # custom example
# model = create(name='yolov7', pretrained=True, channels=3, classes=80, autoshape=True) # pretrained example
# Verify inference
import numpy as np
from PIL import Image
imgs = [np.zeros((640, 480, 3))]
results = model(imgs) # batched inference
results.print()
results.save()