Create a conda environment and install the dependencies by
conda create --name manicast python=3.8.16
conda activate manicast
pip install -e .
Install AMASS from their official website and save it to the ./datasets
directory. Depending on the subset of relevant datasets you choose to download, you can change your desired train/val/test split by modifying the amass_splits
variable in data/utils/amass.py
.
CoMaD data is already included under the ./data/comad_data
directory.
├── README.md
|
├── docs
│ ├── SETUP.md <- You are here
|
├── data
│ ├── comad_data <- CoMaD Dataset
| ├── handover_data
| ├── ...
│ ├── utils <- PyTorch Dataset Definitions
| ├── comad.py
| ├── ...
|
├── datasets
│ ├── amass
| ├── ACCAD
| ├── BioMotionLab_NTroje
| ├── CMU
| ├── ...
|
├── src
│ ├── pretrain.py <- Pretrain script
│ ├── finetune.py <- Finetune (manicast) script
│
├── model
│ ├── manicast.py <- Model definition
│
├── model_checkpoints <- Pretrained checkpoints
│ ├── ...
|
├── eval
│ ├── handover.py <- Object Handover evaluation script
│ ├── reactive_stirring.py <- Reactive Stirring evaluation script
│ ├── test_comad.py <- CoMaD Forecasting evaluation script
│
|