-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
102 lines (68 loc) · 2.45 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
from icevision.all import *
import icedata
from omegaconf import OmegaConf
from icevision_detector import *
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.callbacks import LearningRateMonitor
from pytorch_lightning.callbacks import ModelCheckpoint
params = OmegaConf.create({
'project': 'deepfashion',
'run_name': 'presentation',
'img_size': 512,
'num_classes': 14,
'bs': 4,
'num_workers': 4,
'path': './datasets',
'model_name': 'tf_efficientdet_d1'
})
(train_records, valid_records), class_map = deepfashion_dataset(params.path, autofix=True)
aug_tfms = tfms.A.aug_tfms(
size=params.img_size,
shift_scale_rotate=tfms.A.ShiftScaleRotate(rotate_limit=(-15, 15)),
)
aug_tfms.append(tfms.A.Normalize())
train_tfms = tfms.A.Adapter(aug_tfms)
valid_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(params.img_size), tfms.A.Normalize()])
train_ds = Dataset(train_records, train_tfms)
valid_ds = Dataset(valid_records, valid_tfms)
train_dl = efficientdet.train_dl(train_ds, batch_size=params.bs, num_workers=params.num_workers, shuffle=True)
valid_dl = efficientdet.valid_dl(valid_ds, batch_size=params.bs, num_workers=params.num_workers, shuffle=False)
light_model = EffDetModel(
num_classes=params.num_classes, img_size=params.img_size, model_name=params.model_name,
lr=0.12, warmup_epochs=2)
wandb_logger = WandbLogger(project=params.project, name=params.run_name)
lr_monitor = LearningRateMonitor(log_momentum=True)
checkpoint_callback = ModelCheckpoint(
verbose=True,
monitor='COCOMetric/AP (IoU=0.50) area=all/dl_idx_0',
mode='max'
)
trainer = pl.Trainer(
gpus=1,
max_epochs=3,
sync_batchnorm=True, # from Ross'es training config
weights_summary='top', # print top-level modules summary
logger=wandb_logger,
callbacks=[lr_monitor, checkpoint_callback],
amp_level='O2', # mixed precision
precision=16,
)
light_model = EffDetModel(
num_classes=params.num_classes, img_size=params.img_size, model_name=params.model_name,
lr=0.12, warmup_epochs=2)
trainer.fit(light_model, train_dl, valid_dl)
# trainer = pl.Trainer(
# gpus=2,
# accelerator='ddp',
# logger=wandb_logger,
# callbacks=[lr_monitor, checkpoint_callback],
# max_epochs=300, # caveat
# sync_batchnorm=True, # from Ross'es training config
# weights_summary='full',
# amp_level='O2',
# precision=16,
# )
#
#
#
# trainer.fit(light_model, train_dl, valid_dl)