-
Notifications
You must be signed in to change notification settings - Fork 1
/
discriminator.py
463 lines (334 loc) · 13.8 KB
/
discriminator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
# In[2]:
from pathlib import Path
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
get_ipython().run_line_magic('matplotlib', 'inline')
# ## Model and trial
# In[3]:
class AlexNetCAMD(nn.Module):
def __init__(self, input_channels=3, **kwargs):
super(AlexNetCAMD, self).__init__(**kwargs)
self.base_net = nn.Sequential(
nn.BatchNorm2d(input_channels),
nn.Conv2d(input_channels, 96, kernel_size=5),
nn.ReLU(),
nn.AvgPool2d(2, stride=2),
nn.Conv2d(96, 256, kernel_size=5, padding=2),
nn.ReLU(),
nn.AvgPool2d(2, stride=2),
nn.Conv2d(256, 384, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(384, 384, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(384, 384, kernel_size=3, padding=1),
nn.ReLU(),
)
self.classifier = nn.Linear(384, 2)
def forward(self, x):
y = self.base_net(x)
z = torch.mean(y, dim=(2, 3), keepdim=False) # Global average
return self.classifier(z)
def get_cam(self, x):
y = self.base_net(x)
maps = []
for class_weights in self.classifier.weight:
# y : (N, C_o, W_o, H_o)
# class_weights : (C_o, )
# class_map : (N, W_o, H_o)
class_map = torch.tensordot(y, class_weights, dims=([1,], [0,]))
# class_map : (N, W_o, H_o) -> (N, 1, W_i, H_i)
class_map = nn.functional.interpolate(
torch.unsqueeze(class_map, 1),
(x.shape[2], x.shape[3]),
mode='bilinear'
)
maps.append(class_map)
return maps
# In[4]:
def trial(model, input_shape, cuda=True):
x = torch.rand(16, 1, *input_shape, dtype=torch.float32)
if cuda:
model = model.cuda()
x = x.cuda()
y = model.forward(x)
print(f'Output shape:\n\t{y.shape}\n')
num_parameters_trainable = sum([p.numel() for p in model.parameters() if p.requires_grad])
num_parameters = sum([p.numel() for p in model.parameters()])
print(f'Number of parameters:\n\tTrainable = {num_parameters_trainable}\n\tTotal = {num_parameters}')
# In[5]:
discriminator = AlexNetCAMD(input_channels=1)
input_shape = [128, 128]
trial(discriminator, input_shape)
# ## Load data
# In[6]:
# class Dataset_ls4gan(Dataset):
# """
# LS4GAN dataset
# """
# def __init__(self, class_paths, num_samples=None):
# super(Dataset_ls4gan, self).__init__()
# self.image_fnames = []
# self.labels = []
# for c, class_path in enumerate(class_paths):
# fnames = list(Path(class_path).glob('*npz'))
# self.image_fnames += fnames
# self.labels += [c] * len(fnames)
# indices = np.arange(len(self.image_fnames))
# np.random.shuffle(indices)
# if num_samples is not None:
# indices = indices[:num_samples]
# self.image_fnames = np.array(self.image_fnames)[indices]
# self.labels = np.array(self.labels)[indices]
# def __len__(self):
# return len(self.image_fnames)
# def __getitem__(self, idx):
# image_fname, label = self.image_fnames[idx], self.labels[idx]
# image = np.load(image_fname)
# key = list(image.keys())[0]
# image = image[key]
# image = np.expand_dims(np.float32(image), 0)
# image_tensor = torch.from_numpy(image)
# label_tensor = torch.tensor(label, dtype=torch.int64)
# return image_tensor, label_tensor
# path_base = '/sdcc/u/yhuang2/PROJs/GAN/datasets/ls4gan/toyzero_cropped'
# dataset = 'toyzero_2021-06-29_safi_'
# layer = 'W'
# class_paths_train = [
# f'{path_base}/{dataset}{layer}/trainA/',
# f'{path_base}/{dataset}{layer}/trainB/'
# ]
# class_paths_test = [
# f'{path_base}/{dataset}{layer}/testA/',
# f'{path_base}/{dataset}{layer}/testB/'
# ]
# num_samples, bsz = 2000, 16
# dataset_train = Dataset_ls4gan(class_paths_train, num_samples=num_samples)
# dataset_test = Dataset_ls4gan(class_paths_test, num_samples=num_samples)
# dataset_test_d = Dataset_ls4gan(class_paths_test_d)
# train_loader = DataLoader(dataset_train, batch_size=bsz, shuffle=True)
# test_loader = DataLoader(dataset_test, batch_size=bsz, shuffle=True)
# test_loader_d = DataLoader(dataset_test_d, batch_size=bsz, shuffle=True)
# In[7]:
class Dataset_ls4gan(Dataset):
"""
LS4GAN dataset
"""
def __init__(
self,
data_path,
window_fname,
num_samples=None,
apa=None, # If not None, must be list
planes=None, # If not None, must be list, too,
valid_fraction=.2,
batch_size=32,
):
super(Dataset_ls4gan, self).__init__()
df_window = pd.read_csv(window_fname, index_col=0)
# select
if apa is not None:
df_window = df_window[df_window.apa.isin(apa)]
if planes is not None:
df_window = df_window[df_window.plane.isin(planes)]
if num_samples is not None and num_samples < len(df_window):
df_window = df_window.sample(n=num_samples // 2 , replace=False).reset_index(drop=True)
# check existence of folders
assert Path(data_path).exists(), f"{data_path} doesn't exist"
fake_path = Path(data_path)/'fake'
real_path = Path(data_path)/'real'
assert fake_path.exists(), f"{data_path} doesn't contain a subfolder called fake"
assert fake_path.exists(), f"{data_path} doesn't contain a subfolder called real"
# Load data
data_train, data_valid = [], []
for P, c in zip([fake_path, real_path], [0, 1]):
print(f'loading files from {P}')
for index, row in df_window.iterrows():
image, bkg = row['image'], row['bkg']
x, y, x_ws, y_ws = row['x'], row['y'], row['width'], row['height']
image_fname = P/image
image = self._load_image(image_fname, x, y, x_ws, y_ws, bkg)
rnd_key = np.random.rand()
if rnd_key < valid_fraction:
data_valid.append([image, c])
else:
data_train.append([image, c])
self.loader_train = DataLoader(data_train, batch_size=batch_size, shuffle=True)
self.loader_valid = DataLoader(data_valid, batch_size=batch_size, shuffle=True)
print('Done!')
def _load_image(self, image_fname, x, y, x_ws, y_ws, bkg):
image = np.load(image_fname)
key = list(image.keys())[0]
image = image[key]
image = image[x: x + x_ws, y: y + y_ws]
image -= bkg
image = np.expand_dims(np.float32(image), 0)
return image
def get_loaders(self):
return self.loader_train, self.loader_valid
# In[54]:
data_path = '/hpcgpfs01/scratch/yhuang2/merged'
min_signal = 250
window_fname = f'/hpcgpfs01/scratch/yhuang2/merged/windows_{min_signal}-128x128.csv'
batch_size = 32
plane = 'U'
dl = Dataset_ls4gan(data_path, window_fname, num_samples=2000, planes=[plane], batch_size=batch_size)
train_loader, test_loader = dl.get_loaders()
# ## Train
# In[55]:
# discriminator = AlexNetCAMD(input_channels=1).cuda()
# discriminator.load_state_dict(torch.load(f'results/model_dict_{layer}.pt'))
# discriminator.eval()
# In[56]:
discriminator = AlexNetCAMD(input_channels=1).cuda()
criterion = nn.CrossEntropyLoss(reduction='mean')
optimizer = torch.optim.Adam(discriminator.parameters(), lr=1e-5)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=.5, patience=10)
def calc_correct(pred, true_class):
pred_class = torch.argmax(pred, dim=1, keepdim=False)
result = torch.sum(pred_class == true_class, dim=0)
return result
epochs = 200
for epoch in range(epochs): # loop over the dataset multiple times
train_loss, num_correct, total = 0, 0, 0
for i, data in enumerate(train_loader):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
inputs = inputs.cuda()
labels = labels.cuda()
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = discriminator(inputs)
loss = criterion(outputs, labels)
train_loss += loss.item()
loss.backward()
optimizer.step()
num_correct += calc_correct(outputs, labels)
total += len(outputs)
# print(num_correct, total)
train_loss_avg = train_loss / len(train_loader)
acc = num_correct / total
print(f'\nEpoch: {epoch + 1} / {epochs}')
print(f'\ttrain:\tloss = {train_loss_avg:.6f}, acc = {acc:.6f}')
test_loss, num_correct, total = 0, 0, 0
for i, data in enumerate(test_loader):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
inputs = inputs.cuda()
labels = labels.cuda()
# forward + backward + optimize
outputs = discriminator(inputs)
loss = criterion(outputs, labels)
test_loss += loss.item()
num_correct += calc_correct(outputs, labels)
total += len(outputs)
test_loss_avg = test_loss / len(test_loader)
acc = num_correct / total
print(f'\ttest:\tloss = {test_loss_avg:.6f}, acc = {acc:.6f}')
scheduler.step(test_loss_avg)
for param_group in optimizer.param_groups:
cur_lr = param_group['lr']
break
print(f'\tlr={cur_lr:.2e}')
print('Finished Training')
dataset = f'rnd_crop_{min_signal}'
torch.save(discriminator.state_dict(), f'results/{dataset}_model_dict_{plane}.pt')
# ## Evaluation
# Make sure to run evaluation after all planes are done!
# In[42]:
# df_data = []
# wires = ['U', 'V', 'W']
# for layer in wires:
# print(f'{layer}:')
# # Load data
# class_paths_train = [f'{path_base}/{dataset}{layer}/trainA/', f'{path_base}/{dataset}{layer}/trainB/']
# class_paths_test = [f'{path_base}/{dataset}{layer}/testA/', f'{path_base}/{dataset}{layer}/testB/']
# class_paths_test_d = [f'{path_base}/Dmitrii/{layer}/testA/', f'{path_base}/Dmitrii/{layer}/testB/']
# dataset_train = Dataset_ls4gan(class_paths_train)
# dataset_test = Dataset_ls4gan(class_paths_test)
# dataset_test_d = Dataset_ls4gan(class_paths_test_d)
# train_loader = DataLoader(dataset_train, batch_size=bsz, shuffle=True)
# test_loader = DataLoader(dataset_test, batch_size=bsz, shuffle=True)
# test_loader_d = DataLoader(dataset_test_d, batch_size=bsz, shuffle=True)
# # Load model
# discriminator = AlexNetCAMD(input_channels=1).cuda()
# discriminator.load_state_dict(torch.load(f'results/{dataset}model_dict_{layer}.pt'))
# discriminator.eval()
# # Evaluation
# splits = ['train', 'test', 'test_d']
# df_data_row = []
# with torch.no_grad():
# for split, loader in zip(splits, [train_loader, test_loader, test_loader_d]):
# total_example, total_correct = 0, 0
# for i, data in enumerate(loader):
# inputs, labels = data
# inputs = inputs.cuda()
# labels = labels.cuda()
# pred = discriminator(inputs)
# pred_class = torch.argmax(pred, dim=1, keepdim=False)
# result = torch.sum(pred_class == labels, dim=0)
# total_correct += result
# total_example += labels.shape[0]
# acc = total_correct / total_example
# print(f'\t{split} accuracy = {acc:.3f}')
# df_data_row.append(acc.cpu().detach().numpy())
# df_data.append(df_data_row)
# df_result = pd.DataFrame(data=df_data, columns=['train', 'test', 'test_d'], index=wires)
# df_result
# In[52]:
df_data = []
planes = ['U', 'V', 'W']
for plane in planes:
print(f'{plane}:')
dl = Dataset_ls4gan(
data_path,
window_fname,
num_samples=2000,
planes=[plane],
batch_size=batch_size)
train_loader, test_loader = dl.get_loaders()
# Load model
discriminator = AlexNetCAMD(input_channels=1).cuda()
discriminator.load_state_dict(torch.load(f'results/{dataset}_model_dict_{plane}.pt'))
discriminator.eval()
splits = ['train', 'test']
loaders = [train_loader, test_loader]
df_data_row = []
with torch.no_grad():
for split, loader in zip(splits, loaders):
total_example, total_correct = 0, 0
for i, data in enumerate(loader):
inputs, labels = data
inputs = inputs.cuda()
labels = labels.cuda()
pred = discriminator(inputs)
pred_class = torch.argmax(pred, dim=1, keepdim=False)
result = torch.sum(pred_class == labels, dim=0)
total_correct += result
total_example += labels.shape[0]
acc = total_correct / total_example
print(f'\t{split} accuracy = {acc:.3f}')
df_data_row.append(acc.cpu().detach().numpy())
df_data.append(df_data_row)
df_result = pd.DataFrame(data=df_data, columns=['train', 'test'], index=planes)
df_result.to_csv(f'results/{dataset}_ACC.csv', float_format='%.4f')
# In[53]:
dfs = []
for fname in Path('results').glob('rnd_crop_*_ACC.csv'):
min_signal = int(fname.stem.split('_')[-2])
df = pd.read_csv(fname, index_col=0)
df[f'{min_signal}'] = (df['train'] + df['test']) / 2
dfs.append(df[f'{min_signal}'])
df = pd.concat(dfs, axis=1)
df = df.reindex(sorted(df.columns, key=lambda x: int(x)), axis=1)
df
# In[ ]: