-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path_Analyse Neuron (Multi-channel - No Hu).ijm
1540 lines (1250 loc) · 52 KB
/
_Analyse Neuron (Multi-channel - No Hu).ijm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//*******
// Author: Pradeep Rajasekhar
// March 2023
// License: BSD3
//
// Copyright 2023 Pradeep Rajasekhar, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
//
// Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
// 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
// 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//Get neuronal counts from multichannel images without Hu
//Similar to analyze neuron multichannel script but doesn't have Hu detection or spatial analysis option
var fs=File.separator;
setOption("ExpandableArrays", true);
print("\\Clear");
run("Clear Results");
//get fiji directory and get the macro folder for GAT
var fiji_dir=getDirectory("imagej");
var gat_dir=fiji_dir+"scripts"+fs+"GAT"+fs+"Tools"+fs+"commands";
//specify directory where StarDist models are stored
var models_dir=fiji_dir+"models"+fs; //"scripts"+fs+"GAT"+fs+"Models"+fs;
//settings for GAT
gat_settings_path=gat_dir+fs+"gat_settings.ijm";
if(!File.exists(gat_settings_path)) exit("Cannot find settings file. Check: "+gat_settings_path);
run("Results... ", "open="+gat_settings_path);
training_pixel_size=parseFloat(Table.get("Values", 0)); //0.7;
neuron_area_limit=parseFloat(Table.get("Values", 1)); //1500
neuron_seg_lower_limit=parseFloat(Table.get("Values", 2)); //90
neuron_lower_limit=parseFloat(Table.get("Values", 3)); //160
backgrnd_radius=parseFloat(Table.get("Values", 4));
probability=parseFloat(Table.get("Values", 5)); //prob neuron
probability_subtype=parseFloat(Table.get("Values", 6)); //prob subtype
overlap= parseFloat(Table.get("Values", 7));
overlap_subtype=parseFloat(Table.get("Values", 8));
neron_subtype_file = Table.getString("Values", 10);
selectWindow("Results");
run("Close");
//Marker segmentation model
subtype_model_path=models_dir+neron_subtype_file;
if(!File.exists(subtype_model_path)) exit("Cannot find models for segmenting neurons at these paths:\n"+subtype_model_path);
//check if required plugins are installed
var check_plugin=gat_dir+fs+"check_plugin.ijm";
if(!File.exists(check_plugin)) exit("Cannot find check plugin macro. Returning: "+check_plugin);
runMacro(check_plugin);
//check if label to roi macro is present
var label_to_roi=gat_dir+fs+"Convert_Label_to_ROIs.ijm";
if(!File.exists(label_to_roi)) exit("Cannot find label to roi script. Returning: "+label_to_roi);
//check if roi to label macro is present
var roi_to_label=gat_dir+fs+"Convert_ROI_to_Labels.ijm";
if(!File.exists(roi_to_label)) exit("Cannot find roi to label script. Returning: "+roi_to_label);
//check if ganglia cell count is present
var ganglia_cell_count=gat_dir+fs+"Calculate_Neurons_per_Ganglia.ijm";
if(!File.exists(ganglia_cell_count)) exit("Cannot find ganglia cell count script. Returning: "+ganglia_cell_count);
//check if ganglia cell count is present
var ganglia_label_cell_count=gat_dir+fs+"Calculate_Neurons_per_Ganglia_label.ijm";
if(!File.exists(ganglia_label_cell_count)) exit("Cannot find ganglia label image cell count script. Returning: "+ganglia_label_cell_count)
//check if ganglia prediction macro present
var segment_ganglia=gat_dir+fs+"Segment_Ganglia.ijm";
if(!File.exists(segment_ganglia)) exit("Cannot find segment ganglia script. Returning: "+segment_ganglia);
var spatial_two_cell_type=gat_dir+fs+"spatial_two_celltype.ijm";
if(!File.exists(spatial_two_cell_type)) exit("Cannot find spatial analysis script. Returning: "+spatial_two_cell_type);
//check if import custom ganglia rois script is present
var ganglia_custom_roi=gat_dir+fs+"ganglia_custom_roi.ijm";
if(!File.exists(ganglia_custom_roi)) exit("Cannot find single ganglia custom roi script. Returning: "+ganglia_custom_roi);
//check if import save centroids script is present
var save_centroids=gat_dir+fs+"save_centroids.ijm";
if(!File.exists(save_centroids)) exit("Cannot find save_centroids custom roi script. Returning: "+save_centroids);
//check if rename_rois script is present
var rename_rois=gat_dir+fs+"rename_rois.ijm";
if(!File.exists(rename_rois)) exit("Cannot find rename_rois custom roi script. Returning: "+rename_rois);
//check if save_roi_composite_img is present
var save_composite_img=gat_dir+fs+"save_roi_composite_img.ijm";
if(!File.exists(save_composite_img)) exit("Cannot find save_composite_img custom roi script. Returning: "+save_composite_img);
fs = File.separator; //get the file separator for the computer (depending on operating system)
#@ File (style="open", label="<html>Choose the image to segment.<br><b>Enter NA if field is empty.</b><html>", value=fiji_dir) path
#@ boolean image_already_open
#@ String(value="<html>If image is already open, tick above box.<html>", visibility="MESSAGE") hint1
#@ String(value="<html> Tick box below if you know channel name and numbers<br/> The order of channel numbers MUST match with channel name order.<html>",visibility="MESSAGE") hint5
#@ boolean Enter_channel_details_now
#@ String(label="Enter channel names followed by a comma (,). Enter NA if not using.", value="NA") marker_names_manual
#@ String(label="Enter channel numbers with separated by a comma (,). Leave as NA if not using.", value="NA") marker_no_manual
#@ String(value="<html>----------------------------------------------------------------------------------------------------------------------------------------<html>",visibility="MESSAGE") divider
#@ String(value="<html><center><b>DETERMINE GANGLIA OUTLINE</b></center> <html>",visibility="MESSAGE") hint_ganglia
#@ String(value="<html> Cell counts per ganglia will be calculated<br/>Requires a neuron channel & second channel that labels the neuronal fibres.<html>",visibility="MESSAGE") hint4
#@ boolean Cell_counts_per_ganglia (description="Use a pretrained deepImageJ model to predict ganglia outline")
#@ String(label="<html> Enter the channel NUMBER that labels neuronal/glial fibres.<br/> Enter NA if not using.<html> ", value="NA") ganglia_channel
#@ String(label="<html> Enter the channel NUMBER for marker that labels most cells.<br/> Enter NA if not using.<html> ", value="NA") cell_channel
#@ String(choices={"DeepImageJ","Manually draw ganglia","Import custom ROI"}, style="radioButtonHorizontal") Ganglia_detection
#@ String(value="<html>----------------------------------------------------------------------------------------------------<html>",visibility="MESSAGE") adv
#@ String(value="<html>Finetune detection parameters are enabled by default<html>",visibility="MESSAGE") finentune_hint
#@ boolean Perform_Spatial_Analysis(description="<html><b>If ticked, it will perform spatial analysis for all markers. Convenient than performing them individually. -> </b><html>")
//#@ boolean Finetune_Detection_Parameters(description="<html><b>Enter custom rescaling factor and probabilities</b><html>")
#@ boolean Contribute_to_GAT(description="<html><b>Contribute to GAT by saving image and masks</b><html>")
scale = 1;
//adjust probabilities by default
Finetune_Detection_Parameters=true;
if(Contribute_to_GAT==true)
{
waitForUser("You can contribute to improving GAT by saving images and masks,\nand sharing it so our deep learning models have better accuracy\nGo to 'Help and Support' button under GAT to get in touch");
img_masks_path = getDirectory("Choose a Folder to save the images and masks");
Save_Image_Masks = true;
}
else
{
Save_Image_Masks = false;
}
//error catch if channel name or number is empty
if(Enter_channel_details_now==true && marker_names_manual=="NA" || marker_names_manual=="") exit("Enter channel name or untick Enter channel details option");
if(Enter_channel_details_now==true && marker_no_manual=="NA" || marker_no_manual=="") exit("Enter channel numbers or untick Enter channel details option");
if(Perform_Spatial_Analysis==true)
{
Dialog.create("Spatial Analysis parameters");
Dialog.addSlider("Cell expansion distance (microns)", 0.0, 20.0, 6.5);
Dialog.addCheckbox("Save parametric image/s?", true);
Dialog.show();
label_dilation= Dialog.getNumber();
save_parametric_image = Dialog.getCheckbox();
}
//listing parameters being used for GAT
print("Using parameters\nSegmentation pixel size:"+training_pixel_size+"\nMax neuron area (microns): "+neuron_area_limit+"\nMin marker area (microns): "+neuron_lower_limit);
print("**Neuron subtype\nProbability: "+probability_subtype+"\nOverlap threshold: "+overlap_subtype+"\n");
if(image_already_open==true)
{
waitForUser("Select Image to analyze");
file_name_full=getTitle(); //get file name without extension (.lif)
selectWindow(file_name_full);
close_other_images = getBoolean("Close any other open images?", "Close others", "Keep other images open");
if(close_other_images) close("\\Others");
dir=getDirectory("Choose Output Folder");
//file_name=File.nameWithoutExtension;
}
else
{
if(endsWith(path, ".czi")|| endsWith(path, ".lif")) run("Bio-Formats", "open=["+path+"] color_mode=Composite rois_import=[ROI manager] view=Hyperstack stack_order=XYCZT");
else if (endsWith(path, ".lif"))
{
run("Bio-Formats Macro Extensions");
Ext.setId(path);
Ext.getSeriesCount(seriesCount);
print("Opening lif file, detected series count of "+seriesCount+". Leave options in bioformats importer unticked");
open(path);
}
else if (endsWith(path, ".tif")|| endsWith(path, ".tiff")) open(path);
else exit("File type not recognised. GAT is compatible with Tif, Lif and Czi files.");
dir=File.directory;
file_name_full=File.nameWithoutExtension; //get file name without extension (.lif)
}
//Create results directory with file name in "analysis"
analysis_dir= dir+"Analysis"+fs;
if (!File.exists(analysis_dir)) File.makeDirectory(analysis_dir);
file_name_length=lengthOf(file_name_full); //length of filename
//if delimiters such as , ; or _ are there in file name, split string and join with underscore
file_name_split = split(file_name_full,",;_-");
file_name_full =String.join(file_name_split,"_");
//check if save location exists
save_location_exists = 1;
do
{
if(file_name_length>50 ||save_location_exists == 1)
{
print("Filename will be shortened if its too long");
file_name_full=substring(file_name_full, 0, 20); //Restricting file name length as in Windows long path names can cause errors
// if save location already exists, then this logic can also be used to add suffix to filename
if(save_location_exists == 1)
{
dialog_title = "Save location already exists ";
dialog_message_1 = "Save location exists, use a custom identifier.\n For example, writing '_1' as the custom identifier \n will name the final folder as ImageName_1";
}
else if(file_name_length>50)
{
dialog_title = "Filename too long";
dialog_message = "Shortening it to 20 characters.\n Use a custom identifier. For example, writing '_1' as the custom identifier \n will name the final folder as ImageName_1";
}
Dialog.create(dialog_title);
Dialog.addString("Custom Identifier", "_1");
Dialog.addMessage(dialog_message_1);
Dialog.show();
suffix = Dialog.getString();
file_name = file_name_full+suffix;
save_location_exists = 0;
}
else file_name=file_name_full;
results_dir=analysis_dir+file_name+fs; //directory to save images
//if file exists in location, create one and set save_location_exists flag to zero to exit the loop
if (!File.exists(results_dir))
{
File.makeDirectory(results_dir); //create directory to save results file
save_location_exists = 0;
}
else
{
waitForUser("The save folder already exists, enter a new name in next prompt");
save_location_exists = 1;
}
}
while(save_location_exists==1)
print("Analysing: "+file_name);
print("Files will be saved at: "+results_dir);
img_name=getTitle();
Stack.getDimensions(width, height, sizeC, sizeZ, frames);
max_save_name="MAX_"+file_name;
run("Select None");
run("Remove Overlay");
getPixelSize(unit, pixelWidth, pixelHeight);
//Check image properties************
//Check if RGB
if (bitDepth()==24)
{
print("Image type is RGB. It is NOT recommended to\nconvert the image to RGB. Instead, use the raw \noutput from the microscope (which is usually in 8,12 or 16-bit)\n.");
rgb_prompt = getBoolean("Image is RGB. It is recommended to use 8,12 or 16-bit images. Would you like to try converting to 8-bit and proceed?", "Convert to 8-bit", "No, stop analysis");
if(rgb_prompt ==1)
{
print("Converting to 8-bit");
selectWindow(img_name);
run("8-bit");
}
else exit("User terminated analysis as Image is RGB.");
}
//check if unit is microns or micron
unit=String.trim(unit);
if(unit!="microns" && unit!="micron" && unit!="um" )
{
print("Image is not calibrated in microns. This is required for accurate segmentation");
exit("Image must have pixel size in microns.\nTo fix this: Go to Image -> Properties: And enter the correct pixel size in microns.\nYou can get this information from the microscope settings.\nCannot proceed: STOPPING Analysis");
}
//************
//Define scale factor to be used
target_pixel_size= training_pixel_size/scale;
scale_factor = pixelWidth/target_pixel_size;
if(scale_factor<1.001 && scale_factor>1) scale_factor=1;
//do not include cells greater than 1000 micron in area
//neuron_area_limit=1500; //microns
neuron_max_pixels=neuron_area_limit/pixelWidth; //convert micron to pixels
//using limit when segmenting neurons
//neuron_seg_lower_limit=90;//microns
neuron_seg_lower_limit=neuron_seg_lower_limit/pixelWidth;
//using limit for marker multiplication and delineation
//neuron_lower_limit= 160;//microns
neuron_min_pixels=neuron_lower_limit/pixelWidth; //convert micron to pixels
backgrnd_radius=backgrnd_radius/pixelWidth;//convert micron to pixels
table_name="Analysis_"+file_name;
Table.create(table_name);//Final Results Table
selectWindow(table_name);
Table.set("File name",0,file_name);
Table.update;
row=0; //row counter for the table
image_counter=0;
//added option for extended depth of field projection for widefield images
if(sizeZ>1)
{
print(img_name+" is a stack");
roiManager("reset");
waitForUser("Verify the type of image projection you'd like (MIP or Extended depth of field\nYou can select in the next prompt.");
projection_method=getBoolean("3D stack detected. Which projection method would you like?", "Maximum Intensity Projection", "Extended Depth of Field (Variance)");
if(projection_method==1)
{
waitForUser("Note the starting and ending slice number of the Z-stack.\nThe slices used to create a Maximum Intensity Projection can be defined in the next prompt.\nPress OK when ready");
Dialog.create("Choose Z-slices");
Dialog.addNumber("Start slice:", 1);
Dialog.addNumber("End slice:", sizeZ);
Dialog.show();
start=Dialog.getNumber();
end=Dialog.getNumber();
run("Z Project...", "start="+start+" stop="+end+" projection=[Max Intensity]");
max_projection=getTitle();
}
else
{
max_projection=extended_depth_proj(img_name);
}
}
else
{
print(img_name+" has only one slice, using as max projection");
max_projection=getTitle();
}
max_save_name="MAX_"+file_name;
selectWindow(max_projection);
rename(max_save_name);
max_projection = max_save_name;
//Segment Neurons
selectWindow(max_projection);
run("Select None");
run("Remove Overlay");
//calculate no. of tiles
new_width=round(width*scale_factor);
new_height=round(height*scale_factor);
n_tiles=4;
if(new_width>2000 || new_height>2000) n_tiles=5;
if(new_width>4500 || new_height>4500) n_tiles=8;
if (new_width>9000 || new_height>9000) n_tiles=16;
if (new_width>15000 || new_height>15000) n_tiles=24;
print("No. of tiles: "+n_tiles);
//Segment ganglia
selectWindow(max_projection);
run("Select None");
run("Remove Overlay");
if (Cell_counts_per_ganglia==true)
{
ganglia_seg_complete = false; //flag for ganglia segmentation QC checking
//do while statement that checks if ganglia binary image occupies greater than 85% of image
//If so, issue a warning and ask if user would like to select a different ganglia seg option
do
{
ganglia_roi_path=""; //ganglia_roi_path and batch_mode arguments not used here for now, but keeping it here for consistency with analyse_neurons macro
batch_mode=false;
//Segment ganglia
selectWindow(max_projection);
run("Select None");
run("Remove Overlay");
ganglia_binary = ganglia_segment(Ganglia_detection,max_projection, cell_channel, ganglia_channel,pixelWidth,ganglia_roi_path,batch_mode);
//get area fraction of ganglia_binary.
selectWindow(ganglia_binary);
run("Select None");
area_fraction = getValue("%Area");
if(area_fraction>=85)
{
waitForUser("Ganglia covers >85% of image.If ganglia segmentation\nisn't accurate, click No and choose another option\n in the next prompt");
ganglia_seg_complete = getBoolean("Is Ganglia segmentation accurate? If so, click Continue", "Continue", "No,Redo");
}
else ganglia_seg_complete=true;
//choose another ganglia segmentation option and redo
if(ganglia_seg_complete==false)
{
Ganglia_detection="DeepImageJ";
print("Redoing ganglia segmentation as "+Ganglia_detection+" option was not satisfactory");
Dialog.create("Redo ganglia segmentation\nChoose ganglia segmentation option");
ganglia_seg_options=newArray("DeepImageJ","Manually draw ganglia","Import custom ROI");
Dialog.addRadioButtonGroup("Ganglia segmentation:", ganglia_seg_options, 3, 1, "DeepImageJ");
Dialog.show();
Ganglia_detection = Dialog.getRadioButton();
print("Ganglia detection option chosen: "+Ganglia_detection);
}
}
while(ganglia_seg_complete==false)
selectWindow(ganglia_binary);
run("Connected Components Labeling", "connectivity=8 type=[16 bits]");
wait(5);
ganglia_label = getTitle();
// flag of 1 is for ganglia segmentation
args = ganglia_label+","+1;
runMacro(label_to_roi,args);
roiManager("deselect");
wait(5);
//rename rois
runMacro(rename_rois,"Ganglia");
//save composite image with ganglia overlay
args = max_projection+","+results_dir+",Ganglia";
runMacro(save_composite_img,args);
ganglia_number=roiManager("count");
roi_location=results_dir+"Ganglia_ROIs_"+file_name+".zip";
roiManager("save",roi_location );
roiManager("reset");
close(ganglia_label);
}
else ganglia_binary = "NA";
//neuron_subtype_matrix=0;
no_markers=0;
//if user wants to enter markers before hand, can do that at the start
//otherwise, option to enter them manually here
arr=Array.getSequence(sizeC);
arr=add_value_array(arr,1);
if(Enter_channel_details_now==true)
{
if(marker_names_manual!="NA")
{
//get user-entered markers into a array of strings
marker_names_manual=split(marker_names_manual, ",");
//trim space from names
marker_names_manual=trim_space_arr(marker_names_manual);
//get channel numbers into an array
marker_no_manual=split(marker_no_manual, ",");
if(marker_names_manual.length!=marker_no_manual.length) exit("Number of marker names and marker channels do not match");
channel_names=marker_names_manual;//split(marker_names_manual, ",");
channel_numbers=marker_no_manual;//split(marker_no_manual, ",");
//get channel numbers by parsing array and converting values to integer
channel_numbers=convert_array_int(marker_no_manual);
no_markers=channel_names.length;
}
else exit("Marker names not defined");
}
else
{
waitForUser("Define the channel names and numbers for analysis in the next prompt");
no_markers=getNumber("How many markers would you like to analyse?", 1);
string=getString("Enter names of markers separated by comma (,)", "Names");
channel_names=split(string, ",");
if(channel_names.length!=no_markers) exit("The number of marker names does not match the number of marker channels. Check the entry and retry");
channel_numbers=newArray(sizeC);
marker_label_img=newArray(sizeC);
Dialog.create("Select channels for each marker");
for(i=0;i<no_markers;i++)
{
Dialog.addChoice("Choose Channel for "+channel_names[i], arr, arr[0]);
//Dialog.addCheckbox("Determine if expression is high or low", false);
}
Dialog.show();
for(i=0;i<no_markers;i++)
{
channel_numbers[i]=Dialog.getChoice();
}
}
//custom probability for subtypes
//create dialog box based on number of markers
probability_subtype_arr=newArray(channel_names.length);
custom_roi_subtype_arr=newArray(channel_names.length);
if(Finetune_Detection_Parameters==true)
{
print("Using manual probability and overlap threshold for detection");
Dialog.create("Advanced Parameters");
Dialog.addMessage("Default values shown below will be used if no changes are made");
Dialog.addNumber("Rescaling Factor", scale, 3, 8, "")
for ( i = 0; i < marker_names_manual.length; i++)
{
Dialog.addSlider("Probability for "+marker_names_manual[i], 0, 1,probability_subtype);
Dialog.addToSameRow();
Dialog.addCheckbox("Custom ROI", 0);
}
Dialog.addSlider("Overlap threshold", 0, 1,overlap);
Dialog.show();
scale = Dialog.getNumber();
for ( i = 0; i < marker_names_manual.length; i++)
{
probability_subtype_arr[i]= Dialog.getNumber();
custom_roi_subtype_arr[i]=Dialog.getCheckbox();
}
overlap_subtype= Dialog.getNumber();
}
else
{ //assign probability subtype default values to all of them
for ( i = 0; i < marker_names_manual.length; i++)
{
custom_roi_subtype_arr[i]=false;
probability_subtype_arr[i]=probability_subtype;
}
}
print("**Neuron subtype\nProbability for");;
Array.print(marker_names_manual);
Array.print(probability_subtype_arr);
print("Overlap threshold: "+overlap_subtype+"\n");
if(no_markers>1)
{
channel_combinations=combinations(channel_names); //get all possible combinations and adds an underscore between name labels if multiple markers
channel_combinations=sort_marker_array(channel_combinations);
}
else
{
channel_combinations=channel_names; // pass single combination
}
channel_position=newArray();
marker_label_arr=newArray(); //store names of label images generated from StarDist
selectWindow(max_projection);
Stack.setDisplayMode("color");
row=0;
//array to store the channel names displayed in table
display_ch_names = newArray();
//iterate through all the channel combinations
//perform segmentation and update table
for(i=0;i<channel_combinations.length;i++)
{
print("Getting counts for cells positive for marker/s: "+channel_combinations[i]);
//get channel names as an array
channel_arr=split(channel_combinations[i], ",");
if(channel_arr.length==1) //if first marker or cycles through each individual marker
{
if(no_markers==1) //if only one marker
{
//channel_position=channel_numbers[i];
channel_no=channel_numbers[i];
channel_name=channel_names[i];
probability_subtype_val = probability_subtype_arr[i];
}
else //multiple markers
{
//find position index of the channel by searching for name
channel_idx=find_str_array(channel_names,channel_combinations[i]); //find channel the marker is in by searching for the name in array with name combinations
//use index of position to get the channel number and the channel name
channel_no=channel_numbers[channel_idx]; //idx fro above is returned as 0 indexed, so using this indx to find channel no
channel_name=channel_names[channel_idx];
probability_subtype_val = probability_subtype_arr[channel_idx];
}
selectWindow(max_projection);
Stack.setChannel(channel_no);
run("Select None");
run("Duplicate...", "title="+channel_name+"_segmentation");
//waitForUser;
marker_image=getTitle();
//scaling marker images so we can segment them using same size as images used for training the model. Also, ensures consistent size exclusion area
seg_marker_img=scale_image(marker_image,scale_factor,channel_name);
roiManager("reset");
//segment cells and return image with normal scaling
print("Segmenting marker "+channel_name);
selectWindow(seg_marker_img);
getPixelSize(unit, rescaled_pixelWidth, rescaled_pixelHeight);
if(custom_roi_subtype_arr[i])
{
print("Importing ROIs for "+channel_name);
custom_subtype_roi_path = File.openDialog("Choose custom ROI for "+channel_name);
roiManager("open", custom_subtype_roi_path);
runMacro(roi_to_label);
wait(5);
rename("label_img_temp");
}
else
{
print("Probability for detection "+probability_subtype_val);
segment_cells(max_projection,seg_marker_img,subtype_model_path,n_tiles,width,height,scale_factor,neuron_seg_lower_limit,probability_subtype_val,overlap_subtype);
selectWindow(max_projection);
roiManager("deselect");
runMacro(roi_to_label);
wait(5);
rename("label_img_temp");
}
close(seg_marker_img);
selectWindow("label_img_temp");
run("glasbey_on_dark");
//selectWindow("label_mapss");
run("Select None");
roiManager("reset");
selectWindow("label_img_temp");
run("Select None");
runMacro(label_to_roi,"label_img_temp");
close("label_img_temp");
wait(5);
//save original rois so any modified rois can be verified later
roiManager("deselect");
roi_location_marker=results_dir+channel_name+"_unmodified_ROIs_"+file_name+".zip";
roiManager("save",roi_location_marker);
print("Saved unmodified ROIs for "+channel_name+" from GAT detection at "+roi_location_marker);
selectWindow(max_projection);
run("Remove Overlay");
//roiManager("deselect");
roiManager("UseNames", "false");
roiManager("show all");
//selectWindow(max_projection);
waitForUser("Verify ROIs for "+channel_name+". Add or delete ROIs as needed using the ROI Manager.\nIf no cells were detected, the ROI Manager will be empty.\nPress OK when done.");
roiManager("deselect");
//convert roi manager to label image
runMacro(roi_to_label);
selectWindow("label_mapss");
rename("label_img_"+channel_name);
label_marker=getTitle();
//store resized label images for analysing label co-expression
label_name = "label_"+channel_name;
label_rescaled_img=scale_image(label_marker,scale_factor,label_name);
selectWindow(label_marker);
//save images and masks if user selects to save them for the marker
if(Save_Image_Masks == true)
{
//cells_img_masks_path = img_masks_path+fs+"Cells"+fs;
//if (!File.exists(cells_img_masks_path)) File.makeDirectory(cells_img_masks_path); //create directory to save img masks for cells
//save_img_mask_macro_path = gat_dir+fs+"save_img_mask.ijm";
args=marker_image+","+label_marker+","+channel_name+","+cells_img_masks_path;
//save img masks for cells
runMacro(save_img_mask_macro_path,args);
close(marker_image);
}
else close(marker_image);
//store marker name in an array to call when analysing marker combinations
if(no_markers>1) marker_label_arr[i]=label_rescaled_img;//label_marker;
marker_count=roiManager("count"); // in case any neurons added after manual verification of markers
selectWindow(table_name);
//Table.set("Marker Combinations", row, channel_name);
//Table.set("Number of cells per marker combination", row, marker_count);
//Table.set("|", row, "|");
Table.set(channel_name, 0,marker_count);
display_ch_names[i]=channel_name;
Table.update;
row+=1;
//selectWindow(max_projection);
roiManager("deselect");
//roi_file_name= String.join(channel_arr, "_");
if(roiManager("count")>0)
{
//rename rois
runMacro(rename_rois,channel_name);
roi_location_marker=results_dir+channel_name+"_ROIs_"+file_name+".zip";
roiManager("save",roi_location_marker);
//save composite image with roi overlay
args = max_projection+","+results_dir+","+channel_name;
runMacro(save_composite_img,args);
}
roiManager("reset");
//Array.print(marker_label_arr);
if (Cell_counts_per_ganglia==true)
{
selectWindow(label_marker);
run("Remove Overlay");
run("Select None");
args=label_marker+","+ganglia_binary;
//get cell count per ganglia
runMacro(ganglia_cell_count,args);
print("Counting the number of "+cell_type+" per ganglia. This may take some time for large images.");
//label_overlap is the ganglia where each of them are labels
selectWindow("label_overlap");
run("Select None");
run("Duplicate...", "title=ganglia_label_img");
//using this for neuronal subtype analysis
ganglia_label_img = "ganglia_label_img";
//make ganglia binary image with ganglia having atleast 1 neuron
selectWindow("label_overlap");
//getMinAndMax(min, max);
setThreshold(1, 65535);
run("Convert to Mask");
resetMinAndMax;
close(ganglia_binary);
selectWindow("label_overlap");
rename("ganglia_binary");
selectWindow("ganglia_binary");
ganglia_binary=getTitle();
selectWindow("cells_ganglia_count");
cell_count_per_ganglia=Table.getColumn("Cell counts");
//cell_count_per_ganglia=Array.deleteValue(cell_count_per_ganglia, 0);
selectWindow(table_name);
Table.set("No of ganglia",0, ganglia_number);
Table.setColumn(channel_name+" counts per ganglia", cell_count_per_ganglia);
Table.update;
selectWindow("cells_ganglia_count");
run("Close");
roiManager("reset");
}
//as there is no hu, not performing spatial analysis between Hu and marker
//only save centroids
if(Perform_Spatial_Analysis==true)
{
//save centroids of rois; this can be used for spatial analysis
//get centroids in microns
selectWindow(label_marker);
setVoxelSize(pixelWidth, pixelHeight, 1, unit);
args=results_dir+","+channel_name+","+roi_location_marker;
runMacro(save_centroids,args);
print("Centroids saved");
}
close(label_marker);
}
//if more than one marker to analyse; if more than one marker, then it multiplies the marker labels from above to find coexpressing cells
else if(channel_arr.length>=1)
{
for(j=0;j<channel_arr.length;j++)
{
marker_name="_"+channel_arr[j];
//print("Getting counts for cells positive for markers: "+String.join(channel_arr, " "));
channel_pos=find_str_array(marker_label_arr,marker_name); //look for marker with _ in its name.returns index of marker_label image
//channel_as=channel_numbers[channel_pos-1]; //use index to get the channel number value
//print(marker_label_arr[channel_pos]+"\t");
//print(channel_pos);
//print("Processing: "+marker_label_arr[channel_pos]+"\t");
if(j==0) //if first time running the loop
{
//multiply_markers
marker_name="_"+channel_arr[1]; //get img2
channel_pos2=find_str_array(marker_label_arr,marker_name);
img1=marker_label_arr[channel_pos];
img2=marker_label_arr[channel_pos2];
//print(channel_pos2);
print("Processing "+img1+" * "+img2);
temp_label=multiply_markers(img1,img2,neuron_min_pixels,neuron_max_pixels);
selectWindow(temp_label);
if(scale_factor!=1)
{
selectWindow(temp_label);
label_temp_name = img1+"_*_"+img2+"_label";
//run("Duplicate...", "title=label_original");
run("Scale...", "x=- y=- width="+width+" height="+height+" interpolation=None create title="+label_temp_name);
close(temp_label);
//selectWindow(label_temp_name);
temp_label = label_temp_name;
}
run("Select None");
//runMacro(label_to_roi,temp_label);
//close(temp_label);
//close(img1);
//close(img2);
wait(5);
selectWindow(temp_label);
run("Select None");
rename(img1+"_"+img2);
result=img1+"_"+img2;
j=j+1;
//image names are label_markername_resize; , we are exracting markername by splitting at "_"
img1_name_arr = split(img1, "_");
img1_name = img1_name_arr[1];
img2_name_arr = split(img2, "_");
img2_name = img2_name_arr[1];
roi_file_name = img1_name+"_"+img2_name;
if(Perform_Spatial_Analysis==true)
{
print("Performing Spatial Analysis for "+img1+" and "+img2+" done");
if(Cell_counts_per_ganglia==true)
{
ganglia_binary_rescaled = ganglia_binary+"_resize";
if(!isOpen(ganglia_binary_rescaled))
{
ganglia_binary_rescaled=scale_image(ganglia_binary,scale_factor,ganglia_binary);
}
}
else ganglia_binary_rescaled="NA";
//get roi locations for spatial analysis
roi_location_img1 = results_dir+img1_name+"_ROIs_"+file_name+".zip";
roi_location_img2 = results_dir+img2_name+"_ROIs_"+file_name+".zip";
args=img1_name+","+img1+","+img2_name+","+img2+","+ganglia_binary_rescaled+","+results_dir+","+label_dilation+","+save_parametric_image+","+rescaled_pixelWidth+","+roi_location_img1+","+roi_location_img2;
runMacro(spatial_two_cell_type,args);
//not saving centroids as roi saving is later in code; for now, will need to get them from ROI manager file
print("Spatial Done");
}
}
else
{
img2=marker_label_arr[channel_pos];
img1=result;
print("Processing "+img1+" * "+img2);
temp_label=multiply_markers(img1,img2,neuron_min_pixels,neuron_max_pixels);
selectWindow(temp_label);
run("Select None");
if(scale_factor!=1)
{
selectWindow(temp_label);
label_temp_name = img1+"_*_"+img2+"_label";
run("Scale...", "x=- y=- width="+width+" height="+height+" interpolation=None create title="+label_temp_name);
close(temp_label);
temp_label = label_temp_name;
}
//image names are label_markername_resize; , we are extracting markername by splitting at "_"
img1_name_arr = split(img1, "_");
img1_name = img1_name_arr[1];
img2_name_arr = split(img2, "_");
img2_name = img2_name_arr[1];
roi_file_name = img1_name+"_"+img2_name;
if(Perform_Spatial_Analysis==true)
{
print("Performing Spatial Analysis for "+img1+" and "+img2+" done");
roi_location_img1 = results_dir+img1_name+"_ROIs_"+file_name+".zip";
roi_location_img2 = results_dir+img2_name+"_ROIs_"+file_name+".zip";
//rescaled images being passed here so, we need to change pixelWidth to make sure label dilation in pixels is accurate
args=img1_name+","+img1+","+img2_name+","+img2+","+ganglia_binary_rescaled+","+results_dir+","+label_dilation+","+save_parametric_image+","+rescaled_pixelWidth+","+roi_location_img1+","+roi_location_img2;
runMacro(spatial_two_cell_type,args);
print("Spatial Done");
}
close(img1);
close(img2);
wait(5);
result="img "+d2s(j,0);
selectWindow(temp_label);
rename(result);
}
//if(j==channel_arr.length-1) //when reaching end of arr length, get ROI counts
//{
//save rois generated from above
selectWindow(result);
run("Select None");
roiManager("reset");
runMacro(label_to_roi,result);
//save with name of channel_combinations[i]
wait(10);
//selectWindow(max_projection);
roiManager("deselect");
//roi_file_name= String.join(channel_arr, "_");
roi_location_marker=results_dir+roi_file_name+"_ROIs_"+file_name+".zip";
//if no cells in marker combination
if(roiManager("count")>0)
{
//rename and save
runMacro(rename_rois,roi_file_name);
roiManager("save",roi_location_marker);
//save composite image with roi_overlay
args = max_projection+","+results_dir+","+roi_file_name;
runMacro(save_composite_img,args);
}
marker_count=roiManager("count"); // in case any neurons added after analysis of markers
selectWindow(table_name);
Table.set(roi_file_name, 0, marker_count);
display_ch_names[i]=roi_file_name;
Table.update;
row+=1;
if (Cell_counts_per_ganglia==true)
{
if(roiManager("count")>0)
{
selectWindow(result);
run("Remove Overlay");
run("Select None");
//pass label image for ganglia
args=result+","+ganglia_label_img;
///use label image from above
//get cell count per ganglia
runMacro(ganglia_label_cell_count,args);
selectWindow("cells_ganglia_count");
cell_count_per_ganglia=Table.getColumn("Cell counts");
selectWindow("cells_ganglia_count");
run("Close");
roiManager("reset");
selectWindow(table_name);
Table.setColumn(roi_file_name+" counts per ganglia", cell_count_per_ganglia);
}
else{
cell_count_per_ganglia = 0;
Table.set(roi_file_name+" counts per ganglia", 0,cell_count_per_ganglia);
}
Table.update;