-
Notifications
You must be signed in to change notification settings - Fork 0
/
transformer.py
246 lines (189 loc) · 8.28 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# https://github.com/guocheng2018/Transformer-Encoder/tree/master/transformer_encoder
import copy
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
def clones(module, N):
"Produce N identical layers."
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
class ScaledDotProductAttention(nn.Module):
def __init__(self):
super(ScaledDotProductAttention, self).__init__()
def forward(self, query, key, value, mask = None, dropout = None):
"""
Args:
`query`: shape (batch_size, n_heads, max_len, d_q)
`key`: shape (batch_size, n_heads, max_len, d_k)
`value`: shape (batch_size, n_heads, max_len, d_v)
`mask`: shape (batch_size, 1, 1, max_len)
`dropout`: nn.Dropout
Returns:
`weighted value`: shape (batch_size, n_heads, max_len, d_v)
`weight matrix`: shape (batch_size, n_heads, max_len, max_len)
"""
d_k = query.size(-1) # d_k = d_model / n_heads
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k) # B*H*L*L
if mask is not None:
scores = scores.masked_fill(mask.eq(0), -1e9)
p_attn = F.softmax(scores, dim = -1) # B*H*L*L
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn
class MultiHeadAttention(nn.Module):
def __init__(self, n_heads, d_model, dropout = 0.1):
super(MultiHeadAttention, self).__init__()
assert d_model % n_heads == 0
# We assume d_v always equals d_k
self.d_k = d_model // n_heads
self.h = n_heads
self.linears = clones(nn.Linear(d_model, d_model), 4)
self.sdpa = ScaledDotProductAttention()
self.attn = None
self.dropout = nn.Dropout(p = dropout)
def forward(self, query, key, value, mask = None):
"""
Args:
`query`: shape (batch_size, max_len, d_model)
`key`: shape (batch_size, max_len, d_model)
`value`: shape (batch_size, max_len, d_model)
`mask`: shape (batch_size, max_len)
Returns:
shape (batch_size, max_len, d_model)
"""
if mask is not None:
# Same mask applied to all h heads. B*1*1*L
mask = mask.unsqueeze(1).unsqueeze(1)
batch_size = query.size(0)
# 1) Do all the linear projections in batch from d_model => h x d_k
query, key, value = [l(x).view(batch_size, -1, self.h, self.d_k).transpose(1, 2) for l, x in zip(self.linears, (query, key, value))]
# 2) Apply attention on all the projected vectors in batch.
# x: B x H x L x D_v
x, self.attn = self.sdpa(query, key, value, mask = mask, dropout = self.dropout)
# 3) "Concat" using a view and apply a final linear.
x = x.transpose(1, 2).contiguous().view(batch_size, -1, self.h * self.d_k)
return self.linears[-1](x)
class FeedForward(nn.Module):
def __init__(self, d_model, d_ff, dropout = 0.1):
super(FeedForward, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
"""
Args:
`x`: shape (batch_size, max_len, d_model)
Returns:
same shape as input x
"""
return self.w_2(self.dropout(F.relu(self.w_1(x))))
class LayerNorm(nn.Module):
def __init__(self, features, eps = 1e-6):
# features = d_model
super(LayerNorm, self).__init__()
self.a = nn.Parameter(torch.ones(features))
self.b = nn.Parameter(torch.zeros(features))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.a * (x - mean) / (std + self.eps) + self.b
class SublayerConnection(nn.Module):
"""
A residual connection followed by a layer norm.
Note for code simplicity the norm is first as opposed to last.
"""
def __init__(self, size, dropout):
super(SublayerConnection, self).__init__()
self.norm = LayerNorm(size)
self.dropout = nn.Dropout(dropout)
def forward(self, x, sublayer):
"""Apply residual connection to any sublayer with the same size."""
return x + self.dropout(sublayer(self.norm(x)))
class EncoderLayer(nn.Module):
"""Encoder is made up of self-attn and feed forward"""
def __init__(self, size, self_attn, feed_forward, dropout):
super(EncoderLayer, self).__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.sublayer = clones(SublayerConnection(size, dropout), 2)
self.size = size
def forward(self, x, mask):
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))
return self.sublayer[1](x, self.feed_forward)
class Encoder(nn.Module):
"Core encoder is a stack of N layers"
def __init__(self, layer, N):
super(Encoder, self).__init__()
self.layers = clones(layer, N)
self.norm = LayerNorm(layer.size)
def forward(self, x, mask):
"Pass the input (and mask) through each layer in turn."
for layer in self.layers:
x = layer(x, mask)
return self.norm(x)
class TransformerEncoder(nn.Module):
"""The encoder of transformer
Args:
`n_layers`: number of stacked encoder layers
`d_model`: model dimension
`d_ff`: hidden dimension of feed forward layer
`n_heads`: number of heads of self-attention
`dropout`: dropout rate, default 0.1
"""
def __init__(self, d_model, d_ff, n_heads, n_layers, dropout = 0.1):
super(TransformerEncoder, self).__init__()
self.multi_headed_attention = MultiHeadAttention(n_heads, d_model, dropout)
self.feed_forward = FeedForward(d_model, d_ff, dropout)
self.encoder_layer = EncoderLayer(d_model, self.multi_headed_attention, self.feed_forward, dropout)
self.encoder = Encoder(self.encoder_layer, n_layers)
self.reset_parameters()
def reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, x, mask):
return self.encoder(x, mask)
# class PositionalEncoding(nn.Module):
# def __init__(self, d_model, dropout = 0.1, max_len = 12):
# super(PositionalEncoding, self).__init__()
# self.dropout = nn.Dropout(p = dropout)
# # Compute the positional encodings once in log space.
# pe = torch.zeros(max_len, d_model)
# position = torch.arange(0, max_len).unsqueeze(1).float()
# div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model))
# pe[:, 0::2] = torch.sin(position * div_term)
# pe[:, 1::2] = torch.cos(position * div_term)
# pe = pe.unsqueeze(0)
# self.register_buffer("pe", pe)
# def forward(self, x):
# """
# Args:
# x: `embeddings`, shape (batch, max_len, d_model)
# Returns:
# `encoder input`, shape (batch, max_len, d_model)
# """
# x = x + self.pe[:, : x.size(1)]
# return self.dropout(x)
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout = 0.1):
super(PositionalEncoding, self).__init__()
self.d_model = d_model
self.dropout = nn.Dropout(p = dropout)
def forward(self, x, pos):
"""
Args:
x: `embeddings`, shape (batch, len, d_model)
Returns:
`encoder input`, shape (batch, len, d_model)
"""
# B, l(11 + 1), d_model
_, _, d_model = x.shape
pe = torch.zeros_like(x)
pos = pos.unsqueeze(-1)
div_term = torch.exp(torch.arange(0, d_model, 2, device = x.device).float() * -(math.log(10000.0) / d_model))
div_term = div_term.unsqueeze(0).unsqueeze(0)
pe[:, :, 0::2] = torch.sin(pos * div_term)
pe[:, :, 1::2] = torch.cos(pos * div_term)
x = x + pe
return self.dropout(x)